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28 Abstract (254 words)

29 Background

30 The gut microbiota plays important roles in modulating host metabolism. Previous
31 studies have demonstrated differences in the gut microbiome of T2D and prediabetic
32 individuals compared to healthy individuals, with distinct disease-related microbial
33 profiles being reported in groups of different age and ethnicity. However,
34  confounding factors such as anti-diabetic medication hamper identification of the gut

35 microbial changes in disease development.

3 Method

37  We used a combination of in-depth metagenomics and metaproteomics analyses of
38 faecal samples from treatment-naive type 2 diabetic (TN-T2D, n=77), pre-diabetic
39  (Pre-DM, n=80), and normal glucose tolerant (NGT, n=97) individuals to investigate
40  compositional and functional changes of the gut microbiota and the faecal content of
41 microbial and host proteins in Pre-DM and treatment-naive T2D individuals to
42  elucidate possible host-microbial interplays characterising different disease stages.

43  Findings

44  \We observed distinct differences characterizing the gut microbiota of these three
45  groups and validated several key features in an independent TN-T2D cohort. We also
46  demonstrated that the content of several human antimicrobial peptides and pancreatic

47  enzymes differed in faecal samples between three groups, such as reduced faecal level

48  of antimicrobial peptides and pancreatic enzymes in TN-T2D.

49 Interpretation

50  Our findings suggest a complex, disease stage-dependent interplay between the gut
51  microbiota and the host and emphasize the value of metaproteomics to gain further

52 insight into interplays between the gut microbiota and the host.

53
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61 Introduction (6,070 wordsfor the main text)

62 Type 2 diabetes mellitus (T2D) is a chronic heterogeneous disorder associated
63  with hyperglycaemia and low grade inflammation [1,2]. The prevalence has increased
64  dramatically in Westernized countries, and also in China, where 11.6% and 36% of
65 Chinese adults suffer from diabetes and prediabetes (Pre-DM), respectively [3]. Due
66 to complications and comorbidities related to the development of T2D,
67 comprehensive characterization of phenotypic, metabolic and molecular changes of
68  the host and the gut microbiota in pre-DM and T2D compared to NGT is needed to
69  enable early identification of prediabetic individuals at high risk of T2D development.
70  Cross-sectional metagenomic studies have linked alterations in the gut microbiome to
71 T2D and prediabetes [4-7]. However, a few recent intervention studies have reported
72 profound impact of antidiabetic drugs on the human gut microbiome, such as
73 metformin, acarbose and glucagon-like peptide-1 (GLP-1) based therapies [8-13],
74 emphasizing the importance of controlling for medication in studies on association
75  between the microbiota and T2D. Moreover, distinct disease-related microbial profiles
76  have been reported in different age and ethnic groups [4-7], making it difficult to
77  identify the microbes possibly involved in disease development. Thus, detailed
78 information on the gut microbial species associated with T2D onset and progression is
79  still limited. Whereas information from metagenomics is limited to identification of
80 the presence of genes, taxa, and their inferred functional capacity, introduction of
81 additional omics approaches including metabolomics, metatranscriptomics, and
82  metaproteomics have increased our knowledge of microbial activity in health and
83 disease [14-17]. For instance, recent metatranscriptomics studies on inflammatory
84  bowel disease and cirrhosis cohorts have revealed considerable discrepancies between
85 data obtained from metagenomics vs metatranscriptomics analyses [17,18]. As
86  metaproteomics enables identification of microbial and human proteins
87  simultaneously in faecal samples [14,19,20], such an approach offers a potential for
88  deciphering both active microbial functions and host-microbiota interactions.
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90 In the present study, we examined 254 stool samples collected from a Chinese cohort
91  combining shotgun metagenomics and metaproteomics analyses. We characterized
92 substantial differences between NGT, Pre-DM and TN-T2D individuals. Of note,
93  consistent aberrations in Pre-DM and TN-T2D individuals included lower abundances
94  of Clostridiales species and higher abundances of Megasphaera elsdenii compared to
95 NGT individuals. Several robust microbial compositional changes were detected at
96 both the DNA and protein levels, such as an enrichment of E. coli in Pre-DM
97 individuals and an increased abundance of Bacteroides spp. in TN-T2D patients.
98  Several Pre-DM-specific features were furthermore uncovered, including a reduced
99  capacity for processes involved in energy metabolism and bacterial growth, and an
100  enrichment of Prevotella proteins as detected by metaproteomics. Thus, our findings
101 revealed distinct characteristics of the intestinal ecosystem in the Pre-DM stage. Of
102  note, proteomics analyses of the faecal samples revealed that the levels of a number of
103  human proteins including several antimicrobial peptides (AMPs) differed in faecal
104  samples from NGT, Pre-DM, and TN-T2D individuals, suggesting that specific
105  differences in the host response amongst groups might also influence the composition
106  of the gut microbiota, or vice versa. In conclusion, our study provides a basis for
107  further analyses integrating faecal metagenomics and metaproteomics which may lead
108  to a better understanding of mechanisms underlying the development of Pre-DM and

109 T2D.
110

111 Materialsand Methods

112 Suzhou T2D study population

113 The study population recruited from community residents from Suzhou, comprised 97
114 Chinese adults with normal glucose tolerance (NGT), 80 prediabetes patients
115 (Pre-DM) and 77 newly diagnosed, treatment naive type 2 diabetes patients (TN-T2D).
116 All TN-T2D patients and Pre-DM individuals were screened and newly diagnosed
117  according to the 2011 WHO criteria via well-trained staffs from the Suzhou Centre for

118  Disease Prevention and Control (CDC), as described in detail in a recent published
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119  lipidomic study based on this cohort [21]. All enrolled 254 individuals have reported
120  with no anti-diabetic treatments; thus, none have had taken insulin, or any oral or
121 injectable anti-diabetic medication before. Stool samples for metagenomics were
122 self-collected in 2ml faecal containers and immediately stored at -80°C and
123  transported to the laboratory on dry ice. DNA was extracted as previously described
124  [4]. A summary of sample information is presented in Table S1. In addition, shotgun
125  metagenomic datasets of stools from 94 anti-diabetic medication TN-T2D patients
126  from Shanghai [9], a city near to Suzhou, were used for validation purpose.

127

128  Method for M etagenomics

129 1. Generation of BGI SEQ-500 based faecal metagenome data set

130 In this study, we performed DNA library construction and the combinatorial
131 probe-anchor synthesis (cPAS)-based BGISEQ-500 sequencing for metagenomics
132  (single-end; read length of 100bp) and applied the same quality control workflow to
133  filter the low-quality reads in accordance with the recently published metagenomic
134  study using this new platform [22]. The remaining high-quality reads were then
135  aligned to hgl9 to remove human reads [23]. Metagenomic data statistics is provided
136  in Table S2.

137

138 2. Profiling of metagenomic samples and biodiver sity analysis

139  High-quality non-human reads were aligned to the 9.9M integrated gene catalogue
140  (IGC) by SOAP2 using the criterion of identity > 90% [23]. Sequence-based gene
141 abundance profiling was performed as previously described. The relative abundances
142 of phyla, genera, species and KOs were calculated by the sum of the relative
143  abundance of their annotated genes. The alpha diversity (within-sample diversity) was
144  quantified by the Shannon index using the relative abundance profiles at gene, genus
145 and KO levels as described [23]. The beta diversity (between-sample diversity) was
146  calculated using Bray-Curtis dissimilarity (R version 3.3.2, vegan package 2.4-4).

147
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148 3. Metagenome-wide association analysis (MWAYS)

149  MWAS was performed on the Suzhou T2D cohort as previously described [4] . Using
150  non-parametric Kruskal-Wallis test (R version 3.3.2 stats package), we identified
151 266,015 genes showing significant different abundances between the NGT, Pre-DM
152  and TN-T2D groups (P < 0.05). After clustering, a total of 126 MLGs (>100 genes)
153  were generated from these genes. The relative abundance of each MLG was summed
154  using the relative abundance values of all genes from this MLG. The taxonomic
155  annotation of each MLG was determined if more than 50% of genes in this MLG
156  could be assigned to a certain taxon according to their IGC annotation. The genes of
157 85 unclassified MLGs were further annotated using a reference sequence database
158 including 1520 high-quality genomes cultivated from healthy Chinese individuals
159  [24], resulted in the taxonomic annotations of 11 additional MLGs (See detailed
160  information in Table S5).

161

162  Method for M etaproteomics

163 1. Sample preparation and L C-M S/M S analysis

164  Faecal samples from 84 individuals from NGT, Pre-DM, and TN-T2D individuals
165  were used for metaproteome analysis using isobaric tags for relative and absolute
166  quantitation (iTRAQ)-coupled-liquid chromatography tandem mass spectrometry
167  (LC-MS/MS) (Figure S1). Each group consisted of 28 randomly selected individual
168  samples with matched age, sex and BMI by propensity score matching (R version
169  3.3.2, Matchlt package 2.4-21) [25] (Table S3). Faecal samples were processed using
170  the filter-aided sample preparation (FASP) protocol [26]. Briefly, 100mg frozen faeces
171 from each individual were suspended in 500ul lysis buffer (4% SDS, 100mM
172  dithiothreitol, 100mM Tris-HCL (pH=7.8) with freshly added protease inhibitors
173 (cOmplete™, EDTA-free Protease Inhibitor Cocktail, Roche Applied Science). The
174  samples were incubated for 5 min at 100 °C, followed by sonication to decrease the
175  viscosity. The protein supernatants were collected after centrifugation at 30,0009 at

176 4 °C for 30 min and then quantified using a 2D-quant kit (Sigma). For each diagnostic

7
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177  group, protein extracts in equal amounts from four individuals were pooled, and the
178  selected 28 samples were thus aliquoted into 7 mixtures. A reference sample was
179  created by pooling equal amounts of protein from each of 84 individual sample and 28
180  samples from self-reported T2D patients. Each mixture containing 100ug proteins
181 was loaded onto a 10 kDa cut-off spin column (Vivacon 500, Sartorius AG,
182  Goettingen, Germany). The lysate was adjusted to 8M urea by centrifuging to remove
183  SDS and low-molecular-weight material. After reduction by dithiothreitol (DTT) and
184  alkylation by iodoacetamide (IAM), 8M urea was added and centrifuged to remove
185 any remaining reagent such as IAM. The urea buffer was then replaced with 0.5M
186 triethylammonium bicarbonate (TEAB) and the sample was washed with 0.5M TEAB
187 5 times. Trypsin (Promega, Madison, WI, USA) was added to digest the protein at a
188  protein: trypsin ratio of 50:1 and the mixtures were incubated for 18 hours at 37 °C.
189  The resulting peptides were eluted twice with 100ul 0.5M TEAB by centrifuging at
190 12,000 g for 30 min and vacuum-dried. The peptide mixture samples were then
191  dissolved in 0.5M TEAB and labelled with 8-plex iTRAQ reagents according to the
192  manufacturer’s protocol (AB Sciex, USA). For each diagnostic group, 7 mixtures
193  were labelled with tags from 1113 to 1119. To perform the iTRAQ quantitation
194  throughout the whole experiment, we labelled the reference sample by tag 121 in each
195 iTRAQ run. Thus, three independent 8-plex iTRAQ runs were conducted.
196  Subsequently, labelled peptides were separated on a LC-20AB HPLC system
197  (Shimadzu, Kyoto, Japan) with an Ultremex SCX column (Phenomenon, Torrance,
198 CA) and collected into 20 fractions. Each fraction was analysed via a NanoLC system
199  coupled with a Q Exactive mass spectrometry (Thermo Fisher Scientific, San Jose,
200 CA) as described previously [27].

201

202 2. Database searching and protein identification

203  For protein database searching, we used Mascot (Version 2.3) [28] as the search
204  engine with the following parameters: trypsin was used as default enzyme and up to

205 two missed cleavages were allowed. Carbamidomethyl (C), iTRAQ8plex (N-term)

8
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206 and iTRAQS8plex (K) were chosen as fixed modifications, and Oxidation (M) was
207  chosen as variable modification. The peptide mass tolerance was set to 10 ppm and
208  the fragment mass tolerance to 0.03 Da.

209 A two-step search method was applied. The MS/MS spectra were first searched
210  against a collection of three protein sequence databases, including Homo sapiens
211 sequences retrieved from SwissProt (release 2014 11), and human gut microbial
212 protein sequences of IGC genes mapped by sequencing reads from our 254
213 metagenomic samples. The detailed search parameters are presented in Table $S4. The
214  Mascot search yielded a set of scored peptide-spectrum matches (PSMs) and the
215 proteins were inferred from the PSMs. Subsequently, a target-decoy protein database
216  was created containing the above-mentioned proteins and the reversed sequences from
217  these proteins. A second round search based on the target-decoy database was
218  performed to control for false positives as described elsewhere [29]. The PSMs were
219  re-scored by Mascot Percolator [30] integrated into IQuant [31], and filtered at false
220 discovery rate (FDR) < 0.01. To improve the confidence in identification, peptides
221 supported by > 2 spectra were retained and protein identifications were thus inferred.
222

223 3. Meta-protein Generation

224 Due to the shared similarity of metagenomic protein reference sequences, a microbial
225  peptide hit is typically returned from several proteins within and between species. To
226 avoid inflating numbers and alleviate taxonomic ambiguities of identified microbial
227  proteins, several processes were performed to reduce data redundancy. We first
228  grouped the microbial proteins with at least one shared peptide to generate protein
229  clusters (Figure S2). Each cluster was then processed according to the maximum
230  parsimony principle. The minimum protein sets containing all peptides of each cluster
231 were selected and defined as the meta-protein representing the cluster (Figure S2).
232 Individual proteins which only contained unique peptides were also assigned as a
233  meta-protein. All redundant non-meta-protein sequences were thus omitted in

234  subsequent analyses.
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235

236 4. Protein Quantification

237  Protein quantification was performed by IQuant [31] in the following three steps.

238  We first normalized the intensities of iTRAQ reporter ions for all spectra across the

239  eight iTRAQ-labelled samples (1113...1119, 1121) using the formula (1) as follows:

240

— Si—k —
241 Stk = ot ) , Where k=1113...1119, 1121 1)
242

243  Where 5, is the normalized relative intensity of spectrum i in the label k.
244

245  The reporter ion ratios were then determined using the formula (2):

246 T = == | wherek = 113...1119 (2)

247  Where 7,_, is the ratio of relative intensity of spectrum i in the label k, with S;_5;,
248 the relative intensity of the global QC labelled with 121 tags, as denominators.

249

250  For protein quantification, only unique peptides were taken into consideration. The
251  relative protein ratio was calculated using the mean relative intensity ratio of all

252 unique peptide spectra in each protein using the formula (3):
253 D = mean(T;_y: T, ), where k = 1113 ...1119 €)

254  Where p, is the protein ratio in label K and acts as an indication of the relative
255  proportions of that protein between the differently labelled samples.

256

257 5. Protein annotation

258  For microbial meta-proteins, taxonomic and functional annotations of identified
259  proteins were derived from the putative protein-coding IGC genes. As a result, we
260 linked 64.15% (8777 of 11,980) of the meta-proteins with annotation at the phylum or
261 lower taxonomical levels and 80.27% (10983 of 11,980) with KEGG Ontology (KO)

10
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262 annotation. For human proteins, functional annotations were obtained from
263  UniProtKB/Swiss-Prot (release 2014_11).

264

265  Statistical analyses of metagenomes and metaproteomes

266 ML G-based random forest classification

267  Relative abundance data of all MLGs were subjected to random forest (RF) analysis
268 to perform five-fold cross validation (R 3.3.2, caret package 6.0-77) [32]. The
269 combinations of optimal MLGs markers maximising the discrimination accuracy
270  between each two groups were thus determined by RF using an embedded feature
271 selection strategy as previously reported [33]. The importance values of
272 model-selected MLGs were calculated using “mean decrease in accuracy” strategy.
273

274  Spearman’srank coefficient correlation

275  Spearman’s rank coefficient correlation (SCC) analysis was used for correlations
276  between MLG profiles and phenotypic factors, and between number of meta-proteins
277  and metagenomic abundances at the genus level, and between the levels of proteins.
278  The significance cut-off for SCC was set at an FDR adjusted P < 0.05.

279

280 Enrichment analysis of KEGG modules

281  Differentially enriched KEGG modules were identified according to reporter Z-scores
282  [34]. Z-score for each KO was first calculated from Benjamin-Hochberg (BH)-adjusted P values
283  from Wilcoxon rank-sum tests of comparisons between each two groups. The aggregated Z-score
284  for each module was calculated using Z-scores of all individual KOs belonging to the
285  corresponding module. A module was considered significant at a |reporter Z-score | >
286  1.96.

287

288  Other statistical analyses

289  Kruskal-Wallis test was conducted to detect the differences in continuous phenotypic

290  factors, microbial diversity, richness and MLG relative abundances between

11
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291 multi-groups. Dunn’s post hoc tests followed by pairwise comparisons were applied to
292 explore the differential phenotypes and MLGs between each two groups (R version
293 3.3.2, PMCMR package 4.1). The Dunn's post hoc p-values were adjusted with
294  the Benjamini-Hochberg method among multiple pairwise  comparisons. The
295  significance cut-off was set as a Dunn’s post hoc P value less than 0.05. Wilcoxon
296  rank-sum test was performed for comparisons of MLG relative abundances between
297  published TN-T2D patients from Shanghai [9] and NGT or Pre-DM from the Suzhou
298  cohort in this study for validation purposes. The significance cut-off of Wilcoxon
299  rank-sum test was set as a P value less than 0.05. Detailed information on enrichment
300 of MLGs between groups is provided in Table Sb.

301  Wilcoxon rank-sum test was conducted to detect differences in protein levels between
302 each two groups. The significance cut-off for proteins was set as a P value less than
303  0.05, and a fold change of protein levels > 1.2 or < 0.8. Chi-square test was conducted
304 to detect the distribution of differences in discrete phenotypic factors, such as sex and
305 treatment distribution between groups, and to identify differences in taxonomic and
306  functional assignments between metagenomic and metaproteomic datasets. The
307  significant cut-off was set as P value less than 0.05.

308

309 Dataavailability

310  Metagenomic sequencing data for 254 faecal samples can be accessed from China
311 Nucleotide Sequence Archive (CNSA) with the dataset identifier CNP0000175. The
312  mass spectrometry metaproteomics data have been deposited to the ProteomeXchange
313  Consortium via the PRIDE partner repository with the dataset identifier PXD013452
314  and 10.6019/PXD013452.

315

316  Results
317  Experimental design
318  The cohort consisted of 77 TN-T2D patients, 80 Pre-DM individuals and 97 NGT

319 individuals from Suzhou, China (Methods, Table S1). The three groups were

12
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320 matched regarding body mass index (BMI) and sex (P > 0.05), but individuals with
321 TN-T2D (mean age 66 +/- 8 years) were on average 5 years older than individuals in
322  the two other groups (Table S1). Shotgun metagenomics was performed on faecal
323  samples from all participants, whereas metaproteomics profiling was performed on a
324  subgroup of 84 participants, including 28 age-, sex-, and BMI-matched individuals

325  from each group (Figurel).

326
327 Distinct metagenomics profiles in Chinese prediabetic and type 2 diabetic
328 individuals

329  Shotgun metagenomic sequencing of the 254 stool DNA samples was performed
330 using the BGISEQ-500 platform and raw reads were filtered and aligned to the
331 integrated gene catalogue (IGC) of the human gut microbiome to generate gene,
332  taxonomic and functional profiles as previously described (Methods, Table S2). In
333  line with previous studies [4-6], no significant differences in microbial gene-based
334  richness, alpha-diversity, and beta-diversity were found between the NGT, Pre-DM,
335 and TN-T2D individuals (Figure S3, Kruskal-Wallis (KW) test, P > 0.05). Using a
336 metagenome-wide  association  approach [4], we identified 266,015
337  T2D-associated genes (KW test, P < 0.05) and clustered these genes into 126
338  metagenomic linkage groups (MLGs, >100 genes, Table S5).

339  We further applied the KW test to detect statistically significant differences in the
340 relative abundances of MLGs between individuals with NGT, Pre-DM, and TN-T2D.
341 Compared to NGT individuals, the abundances of MLGs from the Clostridia class,
342 such as Butyrivibrio crossotus (MLG-2076), Dialister invisus (MLG-3376) and
343 Roseburia hominis (MLG-14865 and MLG-14920) were significantly lower in
344 individuals with Pre-DM or TN-T2D (Figure 2A, Table S5, Dunn’s post hoc test, P <
345  0.05), which is in agreement with previous findings in a Danish T2D cohort [6]. In
346  addition, we found that the abundance of the butyrate-producing Faecalibacterium
347  prausnitzi (MLG-4560) was lower in Pre-DM compared to both NGT and TN-T2D
348 individuals. On the contrary, MLGs annotated to Escherichia coli (MLG-7919 and
349  MLG-7840), Sreptococcus salivarius (MLG-6991 and MLG-7099), and Eggerthella

13
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350 sp. (MLG-351) were highly enriched in Pre-DM compared to NGT individuals
351 (Figure 2A, P < 0.05). An increased abundance of Streptococcus operational
352  taxonomic units (OTUs) was also recently reported in a Danish prediabetic cohort [7].
353  Additionally, Pre-DM individuals also exhibited a significant enrichment in E. coli
354  abundance compared to TN-T2D individuals (Figure 2A, P < 0.05). Moreover, we
355  detected significantly lower abundances of Akkermansia muciniphila (MLG-2159)
356  and Clostridium bartlettii (MLG-7540) and higher abundances of Bacteroides caccae
357 (MLG-10234 and MLG-10325), Bacteroides finegoldii (MLG-10154 and
358 MLG-10159), and Coallinsdla intestinalis (MLG-10084) in TN-T2D patients
359 compared with NGT and Pre-DM individuals (Figure 2A, P < 0.05). Finally, the
360 abundance of Megasphaera elsdenii (MLG-1568) was significantly higher in both
361  TN-T2D and Pre-DM individuals than in NGT individuals (Figure 2A, P < 0.05), in
362 line with the positive correlation between the relative abundance of the genus
363 Megasphaera and T2D recently reported in a large cohort with about 7000 individuals
364  from South China [35]. Several key findings were further validated in faecal samples
365 of 94 treatment naive T2D patients in Shanghai (Gu et al., 2017a) , such as a lower
366 abundance of A. muciniphila and C. bartlettii compared to NGT and Pre-DM
367 individuals, and a lower abundance of E.coli compared to Pre-DM individuals in this
368 study (Figure 2A, Table S5, Wilcoxon rank test, P < 0.05). A summary of gut
369 microbial taxa reported in previously published cross-sectional T2D or prediabetes
370  studies is presented in Table S6.

371 We next performed Spearman’s rank correlation analysis to explore the associations
372 between host phenotypes and MLGs. M. elsdenii and four unannotated MLGs
373 enriched in TN-T2D individuals showed significantly positive correlations to
374  glycaemic indices, including homeostasis model assessment of insulin resistance
375 (HOMA-IR), fasting blood glucose (FBG), 2h post-load glucose (2h-PG), and HbAlc,
376  whereas MLGs enriched in NGT were negatively correlated with the abovementioned
377 indices (adjusted P < 0.05, Figure $4A-B). Very few MLGs showed significant

378 correlations with non-glycaemic indices, such as age, BMI and systolic blood pressure
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379 (SBP) (Figure $4).

380 To assess the discriminative power of MLGs in T2D and identify key MLGs
381 differentiating individuals with respect to different disease stages, we applied a
382  feature selection approach and constructed Random Forest (RF) classification models
383 comparing the groups (Methods). Remarkably, the RF models provided high
384  performances regarding classification of samples from the two different disease stages,
385  with area under the ROC curve (AUC) values from 0.90 to 0.94 (Figure 2B). Apart
386  from taxonomically unclassified MLGs, the most discriminatory MLG for separating
387 TN-T2D and NGT was A. muciniphila. Moreover, MLGs annotated to F. prausnitzii
388 and E. coli both showed to be important in separating Pre-DM samples from TN-T2D
389 and NGT samples (Figure 2C), indicating the unique microbial signatures of lower
390 abundance of F. prausnitzii and higher abundance of E. coli in Pre-DM individuals.
391  We also validated the predictive power of the RF models between TN-T2D and other
392  two groups, which showed an accuracy of 76. 6% (72 of 94 patients) for disease
393  prediction in a previously described TN-T2D cohort from Shanghai (Table S7) [9].
394 We next performed KEGG enrichment analyses to examine possible differential
395  patterns of microbial functional potentials in NGT, Pre-DM and TN-T2D individuals
396 (Table S8). Interestingly, we observed a significant enrichment in modules
397  comprising several sugar phosphotransferase systems (PTS), ATP-binding cassette
398 transporters (ABC transporters) of amino acids, and bacterial secretion systems in the
399 gut microbiota of Pre-DM compared to NGT individuals (reporter score > 1.96,
400 Figure 2D). Likewise, in line with previous findings in several Chinese cohorts with
401  metabolic diseases, such as atherosclerotic cardiovascular disease (ACVD), obesity
402 and T2D [36], a similar enrichment was found in TN-T2D patients compared with
403  NGT individuals (Figure 2D). The abundances of the transport system for microcin C,
404  a peptide-nucleotide antibiotic produced by Enterobacteria [37], and the transport
405  system for autoinducer-2 (Al-2), a quorum sensing signalling molecule reported in
406  Proteobacteria [38], were also significant higher in Pre-DM than in NGT individuals

407  (Figure2D). Except for enrichment of type 11-1V secretion and Al-2 transport systems
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408 in Pre-DM vs TN-T2D, we found no other KEGG modules for PTS and ABC
409  transporters to differ significantly in abundance between Pre-DM and TN-T2D
410  individuals (Figure 2D). However, Pre-DM individuals displayed a significant
411 reduction with respect to several energy and nucleotide metabolism modules
412  compared to both NGT and TN-T2D individuals, including modules of V-type ATPase,
413  pyruvate: ferredoxin oxidoreductase, and bacterial ribosomal proteins (Figure 2D).
414  Taken together, these results indicate the possible involvement of substantial
415 compositional and functional disease-related gut microbial changes in the pre-diabetic

416  stage.

417
418  Gut metaproteomics smultaneoudy identifies faecal levels of microbial and
419  human proteins

420  To gain further insights into functional changes in the gut microbiota associated with
421  T2D, we conducted metaproteomic analyses using iTRAQ (isobaric peptide tags for
422  relative and absolute quantification) and LC-MS/MS-based protocols on 84 samples,
423  with 28 samples derived from each of the three diagnostic groups (Methods, Figure
424 S1). Using the strict parameters of 2 peptide-spectrum matches (PSMs) per protein, <
425 10 ppm mass error and 1% PSM-level FDR (Methods), we identified a total of
426 145,014 high quality PSMs corresponding to 15,670 proteins, including 15,245
427  (97.29%) microbial proteins and 425 (2.71%) human proteins (Table S9). As reported
428  [14,19,20], one microbial peptide often exhibits matches to multiple proteins with
429  high sequence similarity, resulting in difficulties in identifying the microbial origin of
430 individual peptides. To alleviate ambiguities, we applied a maximum parsimony
431  principle reported in recent studies [14] [39] and generated 11,980 non-redundant
432  meta-proteins (78.58% of microbial proteins) containing at least one unique microbial
433  peptide. The relative intensities of these unique peptides were further used for
434  meta-protein quantification (Methods, Table S9). The number of identified
435  meta-proteins ranged between 5,067 in the Pre-DM samples to 8,134 in the TN-T2D
436  samples (Table S9). Venn diagrams showed that only 2782 meta-proteins (34.2%-54.9%

437  of the total number of meta-proteins per group) were shared among the three groups
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438  (Figure SbA), indicating differential microbial expression patterns at the protein level
439 among the groups. Taxonomic annotations indicated a higher percentage of unique
440  Proteobacteria meta-proteins in Pre-DM individuals, compared to the other groups
441  (Chi-square test, P < 0.05, Figure S5B), whereas no difference in the distributions of
442  the uniquely detected meta-proteins associated with a wide range of functions was
443  found between the three groups (Figure S5C).

444

445  Concordance and discordance of microbiota features between metagenomes and
446  metaproteomes

447  Based on annotated microbial features, we next investigated the consistency as well as
448  the divergence of microbial composition and function at the DNA and protein level.
449 At the phylum level, more than 90% genes and meta-proteins were consistently
450  assigned to three major phyla, namely Firmicutes, Bacteroidetes and Proteobacteria
451  (Figure 3A). Despite the overall consistency, we found a significantly higher
452  percentage of the annotated proteins to be assigned to Bacteroidetes (41%) compared
453  to the percentage of genes annotated to Bacteroidetes (25%) (Chi-square test, P < 0.05,
454  Figure 3A), suggesting that Bacteroidetes might display an overall higher protein
455  production than the other phyla across the 84 samples. At the genus level, the
456  composition of the metaproteomes was biased towards a limited number of genera.
457  Among 212 common metagenomically-identified genera detected in at least 10% of
458  the 84 samples, only 81 genera (38.21%) could be detected based on metaproteomics
459 (Table S10). Spearman’s rank correlation analysis was subsequently performed to
460 determine the relationship between the number of meta-proteins and the abundances
461  at the genus level based on metagenomics. The more abundant a given genus was
462  based on metagenomics analysis, the more of the identified meta-proteins were
463  assigned to this genus (Spearman's correlation coefficient (SCC) = 0.726, P =
464  5.21E-08, Figure 3B, Table S9), with Bacteroides (n=1664), Prevotella (n=818) and
465  Faecalibacterium (n=719) harbouring most assigned meta-proteins. For a few genera,

466  such as Anaerotruncus (n=9), Paraprevotella (n=9) and Enterococcus (n=7), we were
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467  only able to identify less than 10 meta-proteins although their median metagenomic
468  abundances were greater than 1E-04 (Table S10).

469  Comparing KEGG functional categories based on metagenomics and metaproteomics
470 data, we observed large differences in the relative contribution of individual
471  categories between the two datasets (Chi-square test, P < 0.05, Figure 3C), in
472  accordance with several previous studies [14,19,20]. For instance, as determined by
473  metaproteomics, 24% and 18% of the proteins were assigned to carbohydrate
474  metabolism and translation categories, whereas the corresponding metagenomic
475  percentages of the two categories were only 11% and 4%, respectively (Figure 3C).
476  We found that 1508 meta-proteins, accounting for 12.59% of all identified
477  meta-proteins, could be assigned to 10 KEGG orthologues (KO). The top KOs
478  harboured 360 proteins annotated as Ca-activated chloride channel homologues
479  (KO07114), whereas the remaining KOs comprised proteins representing abundant
480  house-keeping proteins such as elongation factors, large subunit ribosomal proteins
481  (K02355, KO02358 and KO02395), chaperones (K04077 and KO04043), and
482  glyceraldehyde 3-phosphate dehydrogenase (K00134) as well as flagellin proteins
483  (K02406) (Table S11, Figure S6A).

484  Aiming to link the microbial protein patterns to metagenomic microbial abundances,
485  we next conducted a fold-change analysis of meta-proteins. In agreement with our
486  metagenomic findings (Figure 2A), the Proteobacteria meta-proteins (mainly from
487  Escherichia, Citrobacter and Enterobacter) exhibited enrichment in the Pre-DM
488  group, whereas Bacteroides meta-proteins were enriched in TN-T2D individuals
489  (Figure 3D, Table S12, P < 0.05 and fold change of protein intensities > 1.2).
490  Surprisingly, Prevotella meta-proteins were selectively enriched in Pre-DM
491  individuals (Figure 3D), although no Prevotella annotated metagenomic MLGs
492  exhibited significantly higher abundance. At the functional level, we observed that the
493 level of meta-proteins involved in carbohydrate metabolism tended to be lower in
494  NGT compared to Pre-DM and TN-T2D individuals, including those involved in the
495  metabolism of succinate (Figure 3E, Figure S6B, Table S11).
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496

497  Functional characteristics of faecal excreted human proteinsin T2D

498  Among the 425 detected human proteins, we identified 218 human proteins that were
499  shared among the NGT, Pre-DM, and TN-T2D groups, accounting for 59.6% to 85.2%
500 of the identified human proteins in each group (Figure S7A). We next annotated the
501  human proteins with Gene Ontology (GO) terms to obtain insight into the functional
502  characteristics of the human proteins excreted in faeces (Table S13). Among the
503 identified proteins, 181 (42.59%) had previously been identified in faecal samples by
504  metaproteomics, indicative of their general presence (Table S14) [14,19,20]. These
505 included several intestinal mucin proteins, such as MUC-1, MUC-2, MUC-4, MUCSB,
506 MUC12 and MUC-13 as well as members of annexins (ANXA1- ANXA7, a family of
507  calcium-binding proteins) (Table S14). We identified 233 of the faecal human
508  proteins to have tissue-specific annotation, amongst which 151 proteins (64.81%)
509  were reported to exhibit high expression in the digestive system, and the remaining
510  proteins were annotated to be highly expressed in blood or other tissues such as
511  epidermis (Table S13). Of interest, 18 of the human proteins were annotated as AMPs
512 [40] (Table S13). Several human proteins involved in glucose metabolism, including
513  the sodium/glucose cotransporter 1, were detected in faecal samples of TN-T2D
514  patients only (Figure S6B). Inhibitors of this protein have been proposed for
515  antidiabetic treatment %°. Additionally, the TMAO-producing enzyme, dimethylaniline
516  monooxygenase [N-oxide-forming] 3 (FMO3) was also identified exclusively in the
517 TN-T2D group (Table S13). On the other hand, we found that ras
518  GTPase-activating-like protein (IQGAP1) and unconventional myosin-lc (MYO1C)
519  were uniquely identified in the NGT group (Figure S7B). Loss of IQGAPL and
520 MYOIC has been related to impairment of insulin signalling [43-45], but whether
521  their presence in faeces has functional implications remains to be established.

522

523  Forty-nine of the human proteins present in faeces were found to differ significantly

524 in intensity between at least two of the groups (Figure 4A, Table S15). We found
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525  significantly higher levels of four AMPs, including defensin-5, neutrophil defensin-1,
526  lysozyme c, as well as secreted phospholipase A2, all with important roles in the
527  defence against bacteria [46-48], in faecal samples from NGT individuals than in
528 samples from TN-T2D individuals (Figure 4A). We also found higher levels of
529  mucin-5AC samples from NGT compared to TN-T2D individuals, suggesting
530 possible effects on the mucus barrier in TN-T2D. Interestingly, the level of the
531  antimicrobial cathepsin G, reported to inhibit the growth of several organisms from
532  the Proteobacteria phylum [49], was higher in samples from Pre-DM than NGT and
533 TN-T2D, and this was coupled to lower levels of alpha-1l-antichymotrypsin and
534  alpha-l-antitrypsin, both known inhibitors of cathepsin G [50] (Figure 4A),
535  suggesting that Pre-DM individuals have initiated strategies to activate a defence
536  system against the enhanced relative abundances of E. coli. By contrast, we found that
537  several proteins within the immunoglobulin superfamily were present at lower levels
538 in samples from Pre-DM compared to NGT or TN-T2D (Figure 4A). Individuals with
539 Pre-DM also exhibited lower levels of galectin-3, a lectin with
540 beta-galactoside-binding ability. Galectin-3 has been reported to bind
541  lipopolysaccharides (LPS) from E. coli and play a role as a negative regulator of
542  LPS-mediated inflammation [51]. In addition, galectin-3 was also reported to improve
543  epithelial intercellular contact via desmoglein-2 stabilization [52]. Taken together,
544  these finding indicate that the gut ecosystem in Pre-DM individuals exhibits trait
545  compatible with the upregulation of defence systems against an increased abundance
546  of Proteobacteria simultaneously with the downregulation of factors capable of
547  reducing the impact of the inflammation-inducing activity of LPS. We also found that
548  several digestive enzymes differed in levels in faeces from NGT, Pre-DM, and
549  TN-T2D individuals. Thus, we found lower levels of proteases (trypsin and
550  chymotrypsin and their precursors) and lipases, and higher amylase (AMY1) levels in
551  TN-T2D (Figure 4A). It is also interesting to note that the level of dipeptidyl
552  peptidase 4 (DDP4), known to inhibit insulin secretion via its action on GLP-1, was

553  lower in individuals with Pre-DM than in TN-T2D individuals. A network analysis
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554  revealed significant correlations between 20 human proteins showing significant
555  differences in levels in two-pairwise comparisons between NGT, Pre-DM and
556  TN-T2D individuals (Figure 4B). For instance, we identified a negative correlation
557  between the defensin-5 and TN-T2D-enriched peptidyl-prolyl cis-trans isomerase B
558 (PPIB) (Figure 4B, SCC, adjusted P < 0.05), the latter previously reported to be
559  associated with islet dysfunction [53].

560  Aiming to investigate possible host-microbial protein interactions in the human gut,
561  we next investigate the possible correlation between the discriminatory bacterial and
562  human proteins. Interestingly, we found significantly negative correlations between
563  several Pre-DM-enriched E. coli proteins and human proteins involved in innate
564  immune responses (HV304, HV305) and adhesion (CEAM6, CEAMTY), whereas
565  positive correlations were found between E. coli proteins and cathepsin G,
566  Cytochrome ¢ (CYC) and trypsin-1 (TRY1) (Figure 4C, adjusted P < 0.05).
567  Conversely, NGT-enriched proteins from F. prausnitzii showed positive correlations
568  with several NGT-enriched digestive enzymes from the exocrine pancreas, such as
569  chymotrypsin-like elastase family member 3A (CEL3A), chymotrypsinogen B2
570 (CTRB2) and carboxypeptidases (CBPAL and CBPB1).

571

572  Discussion

573  Our comparative study using metagenomics and metaproteomics in normal glucose
574  tolerant, pre-diabetics and treatment naive T2D individuals provides important novel
575  findings with regard to disease-stage specifications at the gut bacterial and host level.
576 A substantial number of Pre-DM associated features were revealed at both the
577  metagenomics and metaproteomics level. Of specific note are the significantly higher
578  abundance of Proteobacteria species (dominated by E. coli) and the lower levels of
579  host proteins which potentially are involved in Proteobacteria-specific responses in
580 Pre-DM, such as galectin-3 and proteins within the immunoglobulin superfamily.
581  Furthermore, significantly higher levels of Prevotella proteins were uniquely detected

582 in Pre-DM individuals although the abundance of Prevotella was not significantly
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583  enriched in this group based on metagenomics data. Prevotella copri has previously
584  been shown to produce branched-chain amino acids (BCAA), reported to correlate
585  with BCAA blood levels and insulin resistance [54]. However, in the present study
586 only two enzymes related to the synthesis of BCAAs were detected among the
587 identified Prevotella proteins with no differences in levels between the three groups.
588

589  Only a modest number of relatively highly abundant faecal proteins were identified in
590 the current study. This reflects the current methodological challenges in microbial
591  protein extraction, identification, and annotation as reported previously [55,56], as
592  well as the detection limitations of MS-based proteomics [57]. For instance, we
593 identified less than 50 proteins from each of several taxa with median abundances in
594 the 0.1 % ranges based on metagenomics data (such as NGT-enriched Dialister,
595  Butyrivibrio and Haemophilus). Nevertheless, metaproteomics provides a valuable
596  addition to not only estimating expression of microbial proteins, but also to delineate
597  host-microbial protein interactions in different disease stages. In this regard, we
598 identified higher levels of several host-derived AMPs in NGT individuals compared
599 to TN-T2D and Pre-DM individuals, suggesting a possible stronger host defence
600 against invading (disease-related) microbes in NGT individuals. By contrast,
601  significant negative associations were found between Pre-DM-enriched E. coli
602 proteins and several human proteins, including AMPs, adhesion molecules and
603  galectin-3, all involved in intestinal barrier function. It is also worth to note the
604  significant changes in levels and types of digestive enzymes identified in the faecal
605 samples, where TN-T2D showed enhanced alpha-amylase (AMY1) levels, as
606 compared to pancreatic-derived lipases and proteases. However, the level of
607  pancreatic alpha-amylase (AMYP) was lower in Pre-DM compared to the two other
608  groups. A metaproteomics study has reported lower faecal AMYP levels in type 1
609 diabetes (T1D) patients compared to their healthy relatives *°, whereas no difference
610 in levels of AMY1 was reported between T1D and controls, suggesting different

611  amylase responses might be present in Pre-DM, TN-T2D and T1D patients based on
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612  metaproteomics data. Differences in levels of secreted digestive enzymes from the
613  exocrine pancreas in NGT, Pre-DM and T2D have to our notice not been addressed
614  previously, although it may be of major importance in relation to the metabolic state
615 inT2D.

616  Together, our findings suggest that unique and nonlinear changes of the intestinal
617  ecosystem might exist in Pre-DM individuals before transition to T2D. Further
618  large-scale, longitudinal follow-up studies are needed to delineate how microbial
619  functions changes from prediabetes to diabetes and to address the nature of
620 interactions between the gut microbiota and the host in the transitional phases leading

621 toovert T2D.
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834 FigureLegends

835 Figure 1. Experimental overview.

836 254 participants were recruited from the Suzhou cohort and diagnosed as treatment
837 naive T2D patients (TN-T2D, n=77, red), prediabetic individuals (Pre-DM, n=80,
838  Dblue) or individuals with normal glucose tolerance (NGT, n=97, green). Each
839  participant provided two stool samples. One set of stool samples was used for
840  metagenomic shotgun sequencing, followed by IGC-based taxonomic and functional
841  analyses. The other set of stool samples, comprising a total of 84 samples with 28
842  age-, BMI- and sex-matched participants from each group, was selected for
843  metaproteomic analyses using isobaric tags for relative and absolute
844  quantitation (iITRAQ)-coupled-liquid chromatography tandem mass spectrometry
845 (ITRAQ-LC-MS/MS) to provide information on the microbial and host proteins
846  present in stool samples.

847  Atotal of 11, 980 meta-proteins and 425 human proteins were identified in this study.
848  Microbial gene and protein profiling were used to determine alterations in the
849  abundance of microbial taxa and functions, and human protein profiling was used to
850 identify alterations in the abundance of human proteins in faecal samples from NGT,
851  Pre-DM and TN-T2D individuals.

852

853  Figure 2. Determination of alterationsin the abundance of ML Gs and functional
854  modules.

855 (A) Heatmap of statistically significant annotated MLGs discriminating between
856  TN-T2D, Pre-DM and NGT based on Z-scores. Red, MLGs enriched in high glucose
857  groups, blue, MLGs enriched in low glucose groups. *, indicates MLGs significantly
858  differed between any two groups in the Suzhou cohort; Dunn’s post hoc test, P < 0.05.
859  #, indicates significant MLGs replicated in the treatment naive T2D patients from
860 Shanghai (Gu et al., 2017a) compared with Pre-DM and NGT in the Suzhou cohort;
861  Wilcoxon rank-sum test, P < 0.05 (See Table S5 for full list).

862 (B) Performance of cross-validated random forest (RF) classification models using
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863 relative abundance profiles of gut microbial MLGs, assessed by the area under the
864 ROC curve (AUC), 95% confidence intervals (CI). Orange, AUC for the RF model
865 classifying NGT (n=97) and Pre-DM (n=80). Grey, AUC for the RF model classifying
866 NGT (n=97) and TN-T2D (n=77). Blue, AUC for the RF model classifying Pre-DM
867 (n=80) and TN-T2D (n=77). The best cut-off points are marked on the ROC curves.
868 (C) Bar plot showing the 10 most discriminating MLGs in the RF models for
869  distinguishing between NGT, Pre-DM and TN-T2D. The bar lengths indicate the
870 importance of the selected MLGs, and colours represent enrichment in NGT (green),
871  Pre-DM (blue) and TN-T2D (red).

872 (D) Differential enrichment of KEGG modules comparing TN-T2D, Pre-DM and
873  NGT. Dashed lines indicate a reporter score of 1.96, corresponding to 95% confidence
874  inanormal distribution.

875

876 Figure 3. Concordance and discordance of gut microbiome features in
877  metagenomes and metaproteomes.

878  (A) Taxonomic distribution at the phylum level. Inner circle, metagenomes; Outer
879  circle, metaproteomes.

880 (B) Spearman’s rank correlation between the median relative abundances of genera in
881  metagenomes of 84 samples selected for metaproteomics and the number of identified
882  meta-proteins assigned to the same genus. (C) Functional distribution at KEGG level
883 2. Inner circle, metagenomes; Outer circle, metaproteomes.

884  (D-E) Enrichment analysis of differentially expressed meta-proteins at taxonomic (d)
885 and functional levels (e) comparing NGT, Pre-DM and TN-T2D individuals. The
886 number of meta-proteins that exhibited significant differences in levels in each
887  pairwise comparison is shown. Colours represent enrichment in NGT (green),
888 Pre-DM (blue) and TN-T2D (red). Significant enrichment is defined as P < 0.05
889  (Wilcoxon rank-sum test) with a fold change of mean intensities > 1.2 in pairwise
890  comparisons.

891
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892  Figure 4. Characterisation of human proteins in faecal samples from Chinese
893 NGT, Pre-DM, and TN-T2D individuals.

894  (A) Heatmap showing levels of 49 discriminatory human proteins as fold change
895  between each two groups. *, P < 0.05 and fold change of protein levels > 1.2 or < 0.8.
896  (B) Protein-protein interaction network based on 20 discriminatory human proteins in
897  at least two pair-wise comparisons. The group signatures indicate human proteins
898  with significantly higher or lower levels in this group compared to others. Orange
899 indicates higher protein levels and blue indicates lower protein levels.

900 (C) Protein-protein interactions based on discriminatory meta-proteins in pair-wise
901  comparisons and discriminatory human proteins. Only discriminatory meta-proteins
902  annotated to the corresponding taxon of the MLGs were selected for the analysis.

903  The circles indicate human proteins and diamonds indicate meta-proteins. Detailed
904 information on the numbered meta-proteins is presented in Table S12. Colours
905  represent protein enrichment in NGT (green), Pre-DM (blue) and TN-T2D (red). Pink
906 line indicates positive correlation and grey line indicates negative correlation

907  (Spearman’s rank correlations, adjusted P < 0.05).
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