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Abstract (254 words) 28 

Background 29 

The gut microbiota plays important roles in modulating host metabolism. Previous 30 

studies have demonstrated differences in the gut microbiome of T2D and prediabetic 31 

individuals compared to healthy individuals, with distinct disease-related microbial 32 

profiles being reported in groups of different age and ethnicity. However, 33 

confounding factors such as anti-diabetic medication hamper identification of the gut 34 

microbial changes in disease development. 35 

Method 36 

We used a combination of in-depth metagenomics and metaproteomics analyses of 37 

faecal samples from treatment-naïve type 2 diabetic (TN-T2D, n=77), pre-diabetic 38 

(Pre-DM, n=80), and normal glucose tolerant (NGT, n=97) individuals to investigate 39 

compositional and functional changes of the gut microbiota and the faecal content of 40 

microbial and host proteins in Pre-DM and treatment-naïve T2D individuals to 41 

elucidate possible host-microbial interplays characterising different disease stages. 42 

Findings 43 

We observed distinct differences characterizing the gut microbiota of these three 44 

groups and validated several key features in an independent TN-T2D cohort. We also 45 

demonstrated that the content of several human antimicrobial peptides and pancreatic 46 

enzymes differed in faecal samples between three groups, such as reduced faecal level 47 

of antimicrobial peptides and pancreatic enzymes in TN-T2D. 48 

Interpretation 49 

Our findings suggest a complex, disease stage-dependent interplay between the gut 50 

microbiota and the host and emphasize the value of metaproteomics to gain further 51 

insight into interplays between the gut microbiota and the host.  52 
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Introduction (6,070 words for the main text) 61 

Type 2 diabetes mellitus (T2D) is a chronic heterogeneous disorder associated 62 

with hyperglycaemia and low grade inflammation [1,2]. The prevalence has increased 63 

dramatically in Westernized countries, and also in China, where 11.6% and 36% of 64 

Chinese adults suffer from diabetes and prediabetes (Pre-DM), respectively [3]. Due 65 

to complications and comorbidities related to the development of T2D, 66 

comprehensive characterization of phenotypic, metabolic and molecular changes of 67 

the host and the gut microbiota in pre-DM and T2D compared to NGT is needed to 68 

enable early identification of prediabetic individuals at high risk of T2D development.  69 

Cross-sectional metagenomic studies have linked alterations in the gut microbiome to 70 

T2D and prediabetes [4–7]. However, a few recent intervention studies have reported 71 

profound impact of antidiabetic drugs on the human gut microbiome, such as 72 

metformin, acarbose and glucagon-like peptide-1 (GLP-1) based therapies [8–13], 73 

emphasizing the importance of controlling for medication in studies on association 74 

between the microbiota and T2D. Moreover, distinct disease-related microbial profiles 75 

have been reported in different age and ethnic groups [4–7], making it difficult to 76 

identify the microbes possibly involved in disease development. Thus, detailed 77 

information on the gut microbial species associated with T2D onset and progression is 78 

still limited. Whereas information from metagenomics is limited to identification of 79 

the presence of genes, taxa, and their inferred functional capacity, introduction of 80 

additional omics approaches including metabolomics, metatranscriptomics, and 81 

metaproteomics have increased our knowledge of microbial activity in health and 82 

disease [14–17]. For instance, recent metatranscriptomics studies on inflammatory 83 

bowel disease and cirrhosis cohorts have revealed considerable discrepancies between 84 

data obtained from metagenomics vs metatranscriptomics analyses [17,18]. As 85 

metaproteomics enables identification of microbial and human proteins 86 

simultaneously in faecal samples [14,19,20], such an approach offers a potential for 87 

deciphering both active microbial functions and host-microbiota interactions.  88 

 89 
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In the present study, we examined 254 stool samples collected from a Chinese cohort 90 

combining shotgun metagenomics and metaproteomics analyses. We characterized 91 

substantial differences between NGT, Pre-DM and TN-T2D individuals. Of note, 92 

consistent aberrations in Pre-DM and TN-T2D individuals included lower abundances 93 

of Clostridiales species and higher abundances of Megasphaera elsdenii compared to 94 

NGT individuals. Several robust microbial compositional changes were detected at 95 

both the DNA and protein levels, such as an enrichment of E. coli in Pre-DM 96 

individuals and an increased abundance of Bacteroides spp. in TN-T2D patients. 97 

Several Pre-DM-specific features were furthermore uncovered, including a reduced 98 

capacity for processes involved in energy metabolism and bacterial growth, and an 99 

enrichment of Prevotella proteins as detected by metaproteomics. Thus, our findings 100 

revealed distinct characteristics of the intestinal ecosystem in the Pre-DM stage. Of 101 

note, proteomics analyses of the faecal samples revealed that the levels of a number of 102 

human proteins including several antimicrobial peptides (AMPs) differed in faecal 103 

samples from NGT, Pre-DM, and TN-T2D individuals, suggesting that specific 104 

differences in the host response amongst groups might also influence the composition 105 

of the gut microbiota, or vice versa. In conclusion, our study provides a basis for 106 

further analyses integrating faecal metagenomics and metaproteomics which may lead 107 

to a better understanding of mechanisms underlying the development of Pre-DM and 108 

T2D. 109 

 110 

Materials and Methods 111 

Suzhou T2D study population 112 

The study population recruited from community residents from Suzhou, comprised 97 113 

Chinese adults with normal glucose tolerance (NGT), 80 prediabetes patients 114 

(Pre-DM) and 77 newly diagnosed, treatment naïve type 2 diabetes patients (TN-T2D). 115 

All TN-T2D patients and Pre-DM individuals were screened and newly diagnosed 116 

according to the 2011 WHO criteria via well-trained staffs from the Suzhou Centre for 117 

Disease Prevention and Control (CDC), as described in detail in a recent published 118 
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lipidomic study based on this cohort [21]. All enrolled 254 individuals have reported 119 

with no anti-diabetic treatments; thus, none have had taken insulin, or any oral or 120 

injectable anti-diabetic medication before. Stool samples for metagenomics were 121 

self-collected in 2ml faecal containers and immediately stored at -80°C and 122 

transported to the laboratory on dry ice. DNA was extracted as previously described 123 

[4]. A summary of sample information is presented in Table S1. In addition, shotgun 124 

metagenomic datasets of stools from 94 anti-diabetic medication TN-T2D patients 125 

from Shanghai [9], a city near to Suzhou, were used for validation purpose. 126 

 127 

Method for Metagenomics 128 

1. Generation of BGISEQ-500 based faecal metagenome data set 129 

In this study, we performed DNA library construction and the combinatorial 130 

probe-anchor synthesis (cPAS)-based BGISEQ-500 sequencing for metagenomics 131 

(single-end; read length of 100bp) and applied the same quality control workflow to 132 

filter the low-quality reads in accordance with the recently published metagenomic 133 

study using this new platform [22]. The remaining high-quality reads were then 134 

aligned to hg19 to remove human reads [23]. Metagenomic data statistics is provided 135 

in Table S2. 136 

 137 

2. Profiling of metagenomic samples and biodiversity analysis 138 

High-quality non-human reads were aligned to the 9.9M integrated gene catalogue 139 

(IGC) by SOAP2 using the criterion of identity ≥ 90% [23]. Sequence-based gene 140 

abundance profiling was performed as previously described. The relative abundances 141 

of phyla, genera, species and KOs were calculated by the sum of the relative 142 

abundance of their annotated genes. The alpha diversity (within-sample diversity) was 143 

quantified by the Shannon index using the relative abundance profiles at gene, genus 144 

and KO levels as described [23]. The beta diversity (between-sample diversity) was 145 

calculated using Bray-Curtis dissimilarity (R version 3.3.2, vegan package 2.4-4).  146 

 147 
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3. Metagenome-wide association analysis (MWAS)  148 

MWAS was performed on the Suzhou T2D cohort as previously described [4] . Using 149 

non-parametric Kruskal-Wallis test (R version 3.3.2 stats package), we identified 150 

266,015 genes showing significant different abundances between the NGT, Pre-DM 151 

and TN-T2D groups (P < 0.05). After clustering, a total of 126 MLGs (≥100 genes) 152 

were generated from these genes. The relative abundance of each MLG was summed 153 

using the relative abundance values of all genes from this MLG. The taxonomic 154 

annotation of each MLG was determined if more than 50% of genes in this MLG 155 

could be assigned to a certain taxon according to their IGC annotation. The genes of 156 

85 unclassified MLGs were further annotated using a reference sequence database 157 

including 1520 high-quality genomes cultivated from healthy Chinese individuals 158 

[24], resulted in the taxonomic annotations of 11 additional MLGs (See detailed 159 

information in Table S5).  160 

 161 

Method for Metaproteomics 162 

1. Sample preparation and LC-MS/MS analysis 163 

Faecal samples from 84 individuals from NGT, Pre-DM, and TN-T2D individuals 164 

were used for metaproteome analysis using isobaric tags for relative and absolute 165 

quantitation (iTRAQ)–coupled-liquid chromatography tandem mass spectrometry 166 

(LC-MS/MS) (Figure S1). Each group consisted of 28 randomly selected individual 167 

samples with matched age, sex and BMI by propensity score matching (R version 168 

3.3.2, MatchIt package 2.4-21) [25] (Table S3). Faecal samples were processed using 169 

the filter-aided sample preparation (FASP) protocol [26]. Briefly, 100mg frozen faeces 170 

from each individual were suspended in 500µl lysis buffer (4% SDS, 100mM 171 

dithiothreitol, 100mM Tris-HCL (pH=7.8) with freshly added protease inhibitors 172 

(cOmplete™, EDTA-free Protease Inhibitor Cocktail, Roche Applied Science). The 173 

samples were incubated for 5 min at 100 °C, followed by sonication to decrease the 174 

viscosity. The protein supernatants were collected after centrifugation at 30,000g at 175 

4 °C for 30 min and then quantified using a 2D-quant kit (Sigma). For each diagnostic 176 
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group, protein extracts in equal amounts from four individuals were pooled, and the 177 

selected 28 samples were thus aliquoted into 7 mixtures. A reference sample was 178 

created by pooling equal amounts of protein from each of 84 individual sample and 28 179 

samples from self-reported T2D patients. Each mixture containing 100µg proteins 180 

was loaded onto a 10 kDa cut-off spin column (Vivacon 500, Sartorius AG, 181 

Goettingen, Germany). The lysate was adjusted to 8M urea by centrifuging to remove 182 

SDS and low-molecular-weight material. After reduction by dithiothreitol (DTT) and 183 

alkylation by iodoacetamide (IAM), 8M urea was added and centrifuged to remove 184 

any remaining reagent such as IAM. The urea buffer was then replaced with 0.5M 185 

triethylammonium bicarbonate (TEAB) and the sample was washed with 0.5M TEAB 186 

5 times. Trypsin (Promega, Madison, WI, USA) was added to digest the protein at a 187 

protein: trypsin ratio of 50:1 and the mixtures were incubated for 18 hours at 37 °C. 188 

The resulting peptides were eluted twice with 100µl 0.5M TEAB by centrifuging at 189 

12,000 g for 30 min and vacuum-dried. The peptide mixture samples were then 190 

dissolved in 0.5M TEAB and labelled with 8-plex iTRAQ reagents according to the 191 

manufacturer’s protocol (AB Sciex, USA). For each diagnostic group, 7 mixtures 192 

were labelled with tags from I113 to I119. To perform the iTRAQ quantitation 193 

throughout the whole experiment, we labelled the reference sample by tag 121 in each 194 

iTRAQ run. Thus, three independent 8-plex iTRAQ runs were conducted. 195 

Subsequently, labelled peptides were separated on a LC-20AB HPLC system 196 

(Shimadzu, Kyoto, Japan) with an Ultremex SCX column (Phenomenon, Torrance, 197 

CA) and collected into 20 fractions. Each fraction was analysed via a NanoLC system 198 

coupled with a Q Exactive mass spectrometry (Thermo Fisher Scientific, San Jose, 199 

CA) as described previously [27].  200 

 201 

2. Database searching and protein identification 202 

For protein database searching, we used Mascot (Version 2.3) [28] as the search 203 

engine with the following parameters: trypsin was used as default enzyme and up to 204 

two missed cleavages were allowed. Carbamidomethyl (C), iTRAQ8plex (N-term) 205 
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and iTRAQ8plex (K) were chosen as fixed modifications, and Oxidation (M) was 206 

chosen as variable modification. The peptide mass tolerance was set to 10 ppm and 207 

the fragment mass tolerance to 0.03 Da.  208 

A two-step search method was applied. The MS/MS spectra were first searched 209 

against a collection of three protein sequence databases, including Homo sapiens 210 

sequences retrieved from SwissProt (release 2014_11), and human gut microbial 211 

protein sequences of IGC genes mapped by sequencing reads from our 254 212 

metagenomic samples. The detailed search parameters are presented in Table S4. The 213 

Mascot search yielded a set of scored peptide-spectrum matches (PSMs) and the 214 

proteins were inferred from the PSMs. Subsequently, a target-decoy protein database 215 

was created containing the above-mentioned proteins and the reversed sequences from 216 

these proteins. A second round search based on the target-decoy database was 217 

performed to control for false positives as described elsewhere [29]. The PSMs were 218 

re-scored by Mascot Percolator [30] integrated into IQuant [31], and filtered at false 219 

discovery rate (FDR) ≤ 0.01. To improve the confidence in identification, peptides 220 

supported by ≥ 2 spectra were retained and protein identifications were thus inferred.  221 

 222 

3. Meta-protein Generation 223 

Due to the shared similarity of metagenomic protein reference sequences, a microbial 224 

peptide hit is typically returned from several proteins within and between species. To 225 

avoid inflating numbers and alleviate taxonomic ambiguities of identified microbial 226 

proteins, several processes were performed to reduce data redundancy. We first 227 

grouped the microbial proteins with at least one shared peptide to generate protein 228 

clusters (Figure S2). Each cluster was then processed according to the maximum 229 

parsimony principle. The minimum protein sets containing all peptides of each cluster 230 

were selected and defined as the meta-protein representing the cluster (Figure S2). 231 

Individual proteins which only contained unique peptides were also assigned as a 232 

meta-protein. All redundant non-meta-protein sequences were thus omitted in 233 

subsequent analyses. 234 
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 235 

4. Protein Quantification 236 

Protein quantification was performed by IQuant [31] in the following three steps.  237 

We first normalized the intensities of iTRAQ reporter ions for all spectra across the 238 

eight iTRAQ-labelled samples (I113…I119, I121) using the formula (1) as follows: 239 

 240 

��������� � ����

����	
�����:����

 , where k=I113…I119, I121  (1) 241 

 242 

Where ��������� is the normalized relative intensity of spectrum i in the label k. 243 

 244 

The reporter ion ratios were then determined using the formula (2): 245 

��������� � ����������

���������������
 , where k � �113 … �119                   (2) 246 

Where ��������� is the ratio of relative intensity of spectrum i in the label k, with ������ , 247 

the relative intensity of the global QC labelled with 121 tags, as denominators. 248 

 249 

For protein quantification, only unique peptides were taken into consideration. The 250 

relative protein ratio was calculated using the mean relative intensity ratio of all 251 

unique peptide spectra in each protein using the formula (3): 252 

����� � ��������������: �����������, where � � �113 … �119          (3) 253 

Where ����� is the protein ratio in label K and acts as an indication of the relative 254 

proportions of that protein between the differently labelled samples. 255 

 256 

5. Protein annotation 257 

For microbial meta-proteins, taxonomic and functional annotations of identified 258 

proteins were derived from the putative protein-coding IGC genes. As a result, we 259 

linked 64.15% (8777 of 11,980) of the meta-proteins with annotation at the phylum or 260 

lower taxonomical levels and 80.27% (10983 of 11,980) with KEGG Ontology (KO) 261 
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annotation. For human proteins, functional annotations were obtained from 262 

UniProtKB/Swiss-Prot (release 2014_11). 263 

 264 

Statistical analyses of metagenomes and metaproteomes 265 

MLG-based random forest classification 266 

Relative abundance data of all MLGs were subjected to random forest (RF) analysis 267 

to perform five-fold cross validation (R 3.3.2, caret package 6.0-77) [32]. The 268 

combinations of optimal MLGs markers maximising the discrimination accuracy 269 

between each two groups were thus determined by RF using an embedded feature 270 

selection strategy as previously reported [33]. The importance values of 271 

model-selected MLGs were calculated using “mean decrease in accuracy” strategy. 272 

 273 

Spearman’s rank coefficient correlation 274 

Spearman’s rank coefficient correlation (SCC) analysis was used for correlations 275 

between MLG profiles and phenotypic factors, and between number of meta-proteins 276 

and metagenomic abundances at the genus level, and between the levels of proteins. 277 

The significance cut-off for SCC was set at an FDR adjusted P < 0.05. 278 

 279 

Enrichment analysis of KEGG modules 280 

Differentially enriched KEGG modules were identified according to reporter Z-scores 281 

[34]. Z-score for each KO was first calculated from Benjamín-Hochberg (BH)-adjusted P values 282 

from Wilcoxon rank-sum tests of comparisons between each two groups. The aggregated Z-score 283 

for each module was calculated using Z-scores of all  individual  KOs belonging to the 284 

corresponding module. A module was considered significant at a |reporter Z-score | ≥ 285 

1.96.  286 

 287 

Other statistical analyses 288 

Kruskal–Wallis test was conducted to detect the differences in continuous phenotypic 289 

factors, microbial diversity, richness and MLG relative abundances between 290 
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multi-groups. Dunn’s post hoc tests followed by pairwise comparisons were applied to 291 

explore the differential phenotypes and MLGs between each two groups (R version 292 

3.3.2, PMCMR package 4.1). The Dunn’s post hoc p-values were adjusted with 293 

the Benjamini-Hochberg method among multiple pairwise comparisons. The 294 

significance cut-off was set as a Dunn’s post hoc P value less than 0.05. Wilcoxon 295 

rank-sum test was performed for comparisons of MLG relative abundances between 296 

published TN-T2D patients from Shanghai [9] and NGT or Pre-DM from the Suzhou 297 

cohort in this study for validation purposes. The significance cut-off of Wilcoxon 298 

rank-sum test was set as a P value less than 0.05. Detailed information on enrichment 299 

of MLGs between groups is provided in Table S5.  300 

Wilcoxon rank-sum test was conducted to detect differences in protein levels between 301 

each two groups. The significance cut-off for proteins was set as a P value less than 302 

0.05, and a fold change of protein levels > 1.2 or < 0.8. Chi-square test was conducted 303 

to detect the distribution of differences in discrete phenotypic factors, such as sex and 304 

treatment distribution between groups, and to identify differences in taxonomic and 305 

functional assignments between metagenomic and metaproteomic datasets. The 306 

significant cut-off was set as P value less than 0.05.  307 

 308 

Data availability 309 

Metagenomic sequencing data for 254 faecal samples can be accessed from China 310 

Nucleotide Sequence Archive (CNSA) with the dataset identifier CNP0000175. The 311 

mass spectrometry metaproteomics data have been deposited to the ProteomeXchange 312 

Consortium via the PRIDE partner repository with the dataset identifier PXD013452 313 

and 10.6019/PXD013452. 314 

 315 

Results 316 

Experimental design 317 

The cohort consisted of 77 TN-T2D patients, 80 Pre-DM individuals and 97 NGT 318 

individuals from Suzhou, China (Methods, Table S1). The three groups were 319 
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matched regarding body mass index (BMI) and sex (P > 0.05), but individuals with 320 

TN-T2D (mean age 66 +/- 8 years) were on average 5 years older than individuals in 321 

the two other groups (Table S1). Shotgun metagenomics was performed on faecal 322 

samples from all participants, whereas metaproteomics profiling was performed on a 323 

subgroup of 84 participants, including 28 age-, sex-, and BMI-matched individuals 324 

from each group (Figure 1). 325 

 326 

Distinct metagenomics profiles in Chinese prediabetic and type 2 diabetic 327 

individuals 328 

Shotgun metagenomic sequencing of the 254 stool DNA samples was performed 329 

using the BGISEQ-500 platform and raw reads were filtered and aligned to the 330 

integrated gene catalogue (IGC) of the human gut microbiome to generate gene, 331 

taxonomic and functional profiles as previously described (Methods, Table S2). In 332 

line with previous studies [4–6], no significant differences in microbial gene-based 333 

richness, alpha-diversity, and beta-diversity were found between the NGT, Pre-DM, 334 

and TN-T2D individuals (Figure S3, Kruskal-Wallis (KW) test, P > 0.05). Using a 335 

metagenome-wide association approach [4], we identified 266,015 336 

T2D-associated genes (KW test, P < 0.05) and clustered these genes into 126 337 

metagenomic linkage groups (MLGs, ≥100 genes, Table S5).  338 

We further applied the KW test to detect statistically significant differences in the 339 

relative abundances of MLGs between individuals with NGT, Pre-DM, and TN-T2D. 340 

Compared to NGT individuals, the abundances of MLGs from the Clostridia class, 341 

such as Butyrivibrio crossotus (MLG-2076), Dialister invisus (MLG-3376) and 342 

Roseburia hominis (MLG-14865 and MLG-14920) were significantly lower in 343 

individuals with Pre-DM or TN-T2D (Figure 2A, Table S5, Dunn’s post hoc test, P < 344 

0.05), which is in agreement with previous findings in a Danish T2D cohort [6]. In 345 

addition, we found that the abundance of the butyrate-producing Faecalibacterium 346 

prausnitzii (MLG-4560) was lower in Pre-DM compared to both NGT and TN-T2D 347 

individuals. On the contrary, MLGs annotated to Escherichia coli (MLG-7919 and 348 

MLG-7840), Streptococcus salivarius (MLG-6991 and MLG-7099), and Eggerthella 349 
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sp. (MLG-351) were highly enriched in Pre-DM compared to NGT individuals 350 

(Figure 2A, P < 0.05). An increased abundance of Streptococcus operational 351 

taxonomic units (OTUs) was also recently reported in a Danish prediabetic cohort [7]. 352 

Additionally, Pre-DM individuals also exhibited a significant enrichment in E. coli 353 

abundance compared to TN-T2D individuals (Figure 2A, P < 0.05). Moreover, we 354 

detected significantly lower abundances of Akkermansia muciniphila (MLG-2159) 355 

and Clostridium bartlettii (MLG-7540) and higher abundances of Bacteroides caccae 356 

(MLG-10234 and MLG-10325), Bacteroides finegoldii (MLG-10154 and 357 

MLG-10159), and Collinsella intestinalis (MLG-10084) in TN-T2D patients 358 

compared with NGT and Pre-DM individuals (Figure 2A, P < 0.05). Finally, the 359 

abundance of Megasphaera elsdenii (MLG-1568) was significantly higher in both 360 

TN-T2D and Pre-DM individuals than in NGT individuals (Figure 2A, P < 0.05), in 361 

line with the positive correlation between the relative abundance of the genus 362 

Megasphaera and T2D recently reported in a large cohort with about 7000 individuals 363 

from South China [35]. Several key findings were further validated in faecal samples 364 

of 94 treatment naïve T2D patients in Shanghai (Gu et al., 2017a) , such as a lower 365 

abundance of A. muciniphila and C. bartlettii compared to NGT and Pre-DM 366 

individuals, and a lower abundance of E.coli compared to Pre-DM individuals in this 367 

study (Figure 2A, Table S5, Wilcoxon rank test, P < 0.05). A summary of gut 368 

microbial taxa reported in previously published cross-sectional T2D or prediabetes 369 

studies is presented in Table S6.  370 

We next performed Spearman’s rank correlation analysis to explore the associations 371 

between host phenotypes and MLGs. M. elsdenii and four unannotated MLGs 372 

enriched in TN-T2D individuals showed significantly positive correlations to 373 

glycaemic indices, including homeostasis model assessment of insulin resistance 374 

(HOMA-IR), fasting blood glucose (FBG), 2h post-load glucose (2h-PG), and HbA1c, 375 

whereas MLGs enriched in NGT were negatively correlated with the abovementioned 376 

indices (adjusted P < 0.05, Figure S4A-B). Very few MLGs showed significant 377 

correlations with non-glycaemic indices, such as age, BMI and systolic blood pressure 378 
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(SBP) (Figure S4). 379 

To assess the discriminative power of MLGs in T2D and identify key MLGs 380 

differentiating individuals with respect to different disease stages, we applied a 381 

feature selection approach and constructed Random Forest (RF) classification models 382 

comparing the groups (Methods). Remarkably, the RF models provided high 383 

performances regarding classification of samples from the two different disease stages, 384 

with area under the ROC curve (AUC) values from 0.90 to 0.94 (Figure 2B). Apart 385 

from taxonomically unclassified MLGs, the most discriminatory MLG for separating 386 

TN-T2D and NGT was A. muciniphila. Moreover, MLGs annotated to F. prausnitzii 387 

and E. coli both showed to be important in separating Pre-DM samples from TN-T2D 388 

and NGT samples (Figure 2C), indicating the unique microbial signatures of lower 389 

abundance of F. prausnitzii and higher abundance of E. coli in Pre-DM individuals. 390 

We also validated the predictive power of the RF models between TN-T2D and other 391 

two groups, which showed an accuracy of 76. 6% (72 of 94 patients) for disease 392 

prediction in a previously described TN-T2D cohort from Shanghai (Table S7) [9]. 393 

We next performed KEGG enrichment analyses to examine possible differential 394 

patterns of microbial functional potentials in NGT, Pre-DM and TN-T2D individuals 395 

(Table S8). Interestingly, we observed a significant enrichment in modules 396 

comprising several sugar phosphotransferase systems (PTS), ATP-binding cassette 397 

transporters (ABC transporters) of amino acids, and bacterial secretion systems in the 398 

gut microbiota of Pre-DM compared to NGT individuals (reporter score ≥ 1.96, 399 

Figure 2D). Likewise, in line with previous findings in several Chinese cohorts with 400 

metabolic diseases, such as atherosclerotic cardiovascular disease (ACVD), obesity 401 

and T2D [36], a similar enrichment was found in TN-T2D patients compared with 402 

NGT individuals (Figure 2D). The abundances of the transport system for microcin C, 403 

a peptide-nucleotide antibiotic produced by Enterobacteria [37], and the transport 404 

system for autoinducer-2 (AI-2), a quorum sensing signalling molecule reported in 405 

Proteobacteria [38], were also significant higher in Pre-DM than in NGT individuals 406 

(Figure 2D). Except for enrichment of type II-IV secretion and AI-2 transport systems 407 
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in Pre-DM vs TN-T2D, we found no other KEGG modules for PTS and ABC 408 

transporters to differ significantly in abundance between Pre-DM and TN-T2D 409 

individuals (Figure 2D). However, Pre-DM individuals displayed a significant 410 

reduction with respect to several energy and nucleotide metabolism modules 411 

compared to both NGT and TN-T2D individuals, including modules of V-type ATPase, 412 

pyruvate: ferredoxin oxidoreductase, and bacterial ribosomal proteins (Figure 2D). 413 

Taken together, these results indicate the possible involvement of substantial 414 

compositional and functional disease-related gut microbial changes in the pre-diabetic 415 

stage.  416 

 417 

Gut metaproteomics simultaneously identifies faecal levels of microbial and 418 

human proteins  419 

To gain further insights into functional changes in the gut microbiota associated with 420 

T2D, we conducted metaproteomic analyses using iTRAQ (isobaric peptide tags for 421 

relative and absolute quantification) and LC-MS/MS-based protocols on 84 samples, 422 

with 28 samples derived from each of the three diagnostic groups (Methods, Figure 423 

S1). Using the strict parameters of 2 peptide-spectrum matches (PSMs) per protein, < 424 

10 ppm mass error and 1% PSM-level FDR (Methods), we identified a total of 425 

145,014 high quality PSMs corresponding to 15,670 proteins, including 15,245 426 

(97.29%) microbial proteins and 425 (2.71%) human proteins (Table S9). As reported 427 

[14,19,20], one microbial peptide often exhibits matches to multiple proteins with 428 

high sequence similarity, resulting in difficulties in identifying the microbial origin of 429 

individual peptides. To alleviate ambiguities, we applied a maximum parsimony 430 

principle reported in recent studies [14], [39] and generated 11,980 non-redundant 431 

meta-proteins (78.58% of microbial proteins) containing at least one unique microbial 432 

peptide. The relative intensities of these unique peptides were further used for 433 

meta-protein quantification (Methods, Table S9). The number of identified 434 

meta-proteins ranged between 5,067 in the Pre-DM samples to 8,134 in the TN-T2D 435 

samples (Table S9). Venn diagrams showed that only 2782 meta-proteins (34.2%-54.9% 436 

of the total number of meta-proteins per group) were shared among the three groups 437 
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(Figure S5A), indicating differential microbial expression patterns at the protein level 438 

among the groups. Taxonomic annotations indicated a higher percentage of unique 439 

Proteobacteria meta-proteins in Pre-DM individuals, compared to the other groups 440 

(Chi-square test, P < 0.05, Figure S5B), whereas no difference in the distributions of 441 

the uniquely detected meta-proteins associated with a wide range of functions was 442 

found between the three groups (Figure S5C).  443 

 444 

Concordance and discordance of microbiota features between metagenomes and 445 

metaproteomes 446 

Based on annotated microbial features, we next investigated the consistency as well as 447 

the divergence of microbial composition and function at the DNA and protein level. 448 

At the phylum level, more than 90% genes and meta-proteins were consistently 449 

assigned to three major phyla, namely Firmicutes, Bacteroidetes and Proteobacteria 450 

(Figure 3A). Despite the overall consistency, we found a significantly higher 451 

percentage of the annotated proteins to be assigned to Bacteroidetes (41%) compared 452 

to the percentage of genes annotated to Bacteroidetes (25%) (Chi-square test, P < 0.05, 453 

Figure 3A), suggesting that Bacteroidetes might display an overall higher protein 454 

production than the other phyla across the 84 samples. At the genus level, the 455 

composition of the metaproteomes was biased towards a limited number of genera. 456 

Among 212 common metagenomically-identified genera detected in at least 10% of 457 

the 84 samples, only 81 genera (38.21%) could be detected based on metaproteomics 458 

(Table S10). Spearman’s rank correlation analysis was subsequently performed to 459 

determine the relationship between the number of meta-proteins and the abundances 460 

at the genus level based on metagenomics. The more abundant a given genus was 461 

based on metagenomics analysis, the more of the identified meta-proteins were 462 

assigned to this genus (Spearman's correlation coefficient (SCC) = 0.726, P = 463 

5.21E-08, Figure 3B, Table S9), with Bacteroides (n=1664), Prevotella (n=818) and 464 

Faecalibacterium (n=719) harbouring most assigned meta-proteins. For a few genera, 465 

such as Anaerotruncus (n=9), Paraprevotella (n=9) and Enterococcus (n=7), we were 466 
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only able to identify less than 10 meta-proteins although their median metagenomic 467 

abundances were greater than 1E-04 (Table S10).  468 

Comparing KEGG functional categories based on metagenomics and metaproteomics 469 

data, we observed large differences in the relative contribution of individual 470 

categories between the two datasets (Chi-square test, P < 0.05, Figure 3C), in 471 

accordance with several previous studies [14,19,20]. For instance, as determined by 472 

metaproteomics, 24% and 18% of the proteins were assigned to carbohydrate 473 

metabolism and translation categories, whereas the corresponding metagenomic 474 

percentages of the two categories were only 11% and 4%, respectively (Figure 3C). 475 

We found that 1508 meta-proteins, accounting for 12.59% of all identified 476 

meta-proteins, could be assigned to 10 KEGG orthologues (KO). The top KOs 477 

harboured 360 proteins annotated as Ca-activated chloride channel homologues 478 

(K07114), whereas the remaining KOs comprised proteins representing abundant 479 

house-keeping proteins such as elongation factors, large subunit ribosomal proteins 480 

(K02355, K02358 and K02395), chaperones (K04077 and K04043), and 481 

glyceraldehyde 3-phosphate dehydrogenase (K00134) as well as flagellin proteins 482 

(K02406) (Table S11, Figure S6A). 483 

Aiming to link the microbial protein patterns to metagenomic microbial abundances, 484 

we next conducted a fold-change analysis of meta-proteins. In agreement with our 485 

metagenomic findings (Figure 2A), the Proteobacteria meta-proteins (mainly from 486 

Escherichia, Citrobacter and Enterobacter) exhibited enrichment in the Pre-DM 487 

group, whereas Bacteroides meta-proteins were enriched in TN-T2D individuals 488 

(Figure 3D, Table S12, P < 0.05 and fold change of protein intensities > 1.2). 489 

Surprisingly, Prevotella meta-proteins were selectively enriched in Pre-DM 490 

individuals (Figure 3D), although no Prevotella annotated metagenomic MLGs 491 

exhibited significantly higher abundance. At the functional level, we observed that the 492 

level of meta-proteins involved in carbohydrate metabolism tended to be lower in 493 

NGT compared to Pre-DM and TN-T2D individuals, including those involved in the 494 

metabolism of succinate (Figure 3E, Figure S6B, Table S11).  495 
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 496 

Functional characteristics of faecal excreted human proteins in T2D 497 

Among the 425 detected human proteins, we identified 218 human proteins that were 498 

shared among the NGT, Pre-DM, and TN-T2D groups, accounting for 59.6% to 85.2% 499 

of the identified human proteins in each group (Figure S7A). We next annotated the 500 

human proteins with Gene Ontology (GO) terms to obtain insight into the functional 501 

characteristics of the human proteins excreted in faeces (Table S13). Among the 502 

identified proteins, 181 (42.59%) had previously been identified in faecal samples by 503 

metaproteomics, indicative of their general presence (Table S14) [14,19,20]. These 504 

included several intestinal mucin proteins, such as MUC-1, MUC-2, MUC-4, MUC5B, 505 

MUC12 and MUC-13 as well as members of annexins (ANXA1- ANXA7, a family of 506 

calcium-binding proteins) (Table S14). We identified 233 of the faecal human 507 

proteins to have tissue-specific annotation, amongst which 151 proteins (64.81%) 508 

were reported to exhibit high expression in the digestive system, and the remaining 509 

proteins were annotated to be highly expressed in blood or other tissues such as 510 

epidermis (Table S13). Of interest, 18 of the human proteins were annotated as AMPs 511 

[40] (Table S13). Several human proteins involved in glucose metabolism, including 512 

the sodium/glucose cotransporter 1, were detected in faecal samples of TN-T2D 513 

patients only (Figure S6B). Inhibitors of this protein have been proposed for 514 

antidiabetic treatment 26. Additionally, the TMAO-producing enzyme, dimethylaniline 515 

monooxygenase [N-oxide-forming] 3 (FMO3) was also identified exclusively in the 516 

TN-T2D group (Table S13). On the other hand, we found that ras 517 

GTPase-activating-like protein (IQGAP1) and unconventional myosin-Ic (MYO1C) 518 

were uniquely identified in the NGT group (Figure S7B). Loss of IQGAP1 and 519 

MYO1C has been related to impairment of insulin signalling [43–45], but whether 520 

their presence in faeces has functional implications remains to be established.  521 

 522 

Forty-nine of the human proteins present in faeces were found to differ significantly 523 

in intensity between at least two of the groups (Figure 4A, Table S15). We found 524 
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significantly higher levels of four AMPs, including defensin-5, neutrophil defensin-1, 525 

lysozyme c, as well as secreted phospholipase A2, all with important roles in the 526 

defence against bacteria [46–48], in faecal samples from NGT individuals than in 527 

samples from TN-T2D individuals (Figure 4A). We also found higher levels of 528 

mucin-5AC samples from NGT compared to TN-T2D individuals, suggesting 529 

possible effects on the mucus barrier in TN-T2D. Interestingly, the level of the 530 

antimicrobial cathepsin G, reported to inhibit the growth of several organisms from 531 

the Proteobacteria phylum [49], was higher in samples from Pre-DM than NGT and 532 

TN-T2D, and this was coupled to lower levels of alpha-1-antichymotrypsin and 533 

alpha-1-antitrypsin, both known inhibitors of cathepsin G [50] (Figure 4A), 534 

suggesting that Pre-DM individuals have initiated strategies to activate a defence 535 

system against the enhanced relative abundances of E. coli. By contrast, we found that 536 

several proteins within the immunoglobulin superfamily were present at lower levels 537 

in samples from Pre-DM compared to NGT or TN-T2D (Figure 4A). Individuals with 538 

Pre-DM also exhibited lower levels of galectin-3, a lectin with 539 

beta-galactoside-binding ability. Galectin-3 has been reported to bind 540 

lipopolysaccharides (LPS) from E. coli and play a role as a negative regulator of 541 

LPS-mediated inflammation [51]. In addition, galectin-3 was also reported to improve 542 

epithelial intercellular contact via desmoglein-2 stabilization [52]. Taken together, 543 

these finding indicate that the gut ecosystem in Pre-DM individuals exhibits trait 544 

compatible with the upregulation of defence systems against an increased abundance 545 

of Proteobacteria simultaneously with the downregulation of factors capable of 546 

reducing the impact of the inflammation-inducing activity of LPS. We also found that 547 

several digestive enzymes differed in levels in faeces from NGT, Pre-DM, and 548 

TN-T2D individuals. Thus, we found lower levels of proteases (trypsin and 549 

chymotrypsin and their precursors) and lipases, and higher amylase (AMY1) levels in 550 

TN-T2D (Figure 4A). It is also interesting to note that the level of dipeptidyl 551 

peptidase 4 (DDP4), known to inhibit insulin secretion via its action on GLP-1, was 552 

lower in individuals with Pre-DM than in TN-T2D individuals. A network analysis 553 
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revealed significant correlations between 20 human proteins showing significant 554 

differences in levels in two-pairwise comparisons between NGT, Pre-DM and 555 

TN-T2D individuals (Figure 4B). For instance, we identified a negative correlation 556 

between the defensin-5 and TN-T2D-enriched peptidyl-prolyl cis-trans isomerase B 557 

(PPIB) (Figure 4B, SCC, adjusted P < 0.05), the latter previously reported to be 558 

associated with islet dysfunction [53].  559 

Aiming to investigate possible host-microbial protein interactions in the human gut, 560 

we next investigate the possible correlation between the discriminatory bacterial and 561 

human proteins. Interestingly, we found significantly negative correlations between 562 

several Pre-DM-enriched E. coli proteins and human proteins involved in innate 563 

immune responses (HV304, HV305) and adhesion (CEAM6, CEAM7), whereas 564 

positive correlations were found between E. coli proteins and cathepsin G, 565 

Cytochrome c (CYC) and trypsin−1 (TRY1) (Figure 4C, adjusted P < 0.05). 566 

Conversely, NGT-enriched proteins from F. prausnitzii showed positive correlations 567 

with several NGT-enriched digestive enzymes from the exocrine pancreas, such as 568 

chymotrypsin-like elastase family member 3A (CEL3A), chymotrypsinogen B2 569 

(CTRB2) and carboxypeptidases (CBPA1 and CBPB1). 570 

 571 

Discussion 572 

Our comparative study using metagenomics and metaproteomics in normal glucose 573 

tolerant, pre-diabetics and treatment naïve T2D individuals provides important novel 574 

findings with regard to disease-stage specifications at the gut bacterial and host level. 575 

A substantial number of Pre-DM associated features were revealed at both the 576 

metagenomics and metaproteomics level. Of specific note are the significantly higher 577 

abundance of Proteobacteria species (dominated by E. coli) and the lower levels of 578 

host proteins which potentially are involved in Proteobacteria-specific responses in 579 

Pre-DM, such as galectin-3 and proteins within the immunoglobulin superfamily. 580 

Furthermore, significantly higher levels of Prevotella proteins were uniquely detected 581 

in Pre-DM individuals although the abundance of Prevotella was not significantly 582 
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enriched in this group based on metagenomics data. Prevotella copri has previously 583 

been shown to produce branched-chain amino acids (BCAA), reported to correlate 584 

with BCAA blood levels and insulin resistance [54]. However, in the present study 585 

only two enzymes related to the synthesis of BCAAs were detected among the 586 

identified Prevotella proteins with no differences in levels between the three groups.  587 

 588 

Only a modest number of relatively highly abundant faecal proteins were identified in 589 

the current study. This reflects the current methodological challenges in microbial 590 

protein extraction, identification, and annotation as reported previously [55,56], as 591 

well as the detection limitations of MS-based proteomics [57]. For instance, we 592 

identified less than 50 proteins from each of several taxa with median abundances in 593 

the 0.1 % ranges based on metagenomics data (such as NGT-enriched Dialister, 594 

Butyrivibrio and Haemophilus). Nevertheless, metaproteomics provides a valuable 595 

addition to not only estimating expression of microbial proteins, but also to delineate 596 

host-microbial protein interactions in different disease stages. In this regard, we 597 

identified higher levels of several host-derived AMPs in NGT individuals compared 598 

to TN-T2D and Pre-DM individuals, suggesting a possible stronger host defence 599 

against invading (disease-related) microbes in NGT individuals. By contrast, 600 

significant negative associations were found between Pre-DM-enriched E. coli 601 

proteins and several human proteins, including AMPs, adhesion molecules and 602 

galectin-3, all involved in intestinal barrier function. It is also worth to note the 603 

significant changes in levels and types of digestive enzymes identified in the faecal 604 

samples, where TN-T2D showed enhanced alpha-amylase (AMY1) levels, as 605 

compared to pancreatic-derived lipases and proteases. However, the level of 606 

pancreatic alpha-amylase (AMYP) was lower in Pre-DM compared to the two other 607 

groups. A metaproteomics study has reported lower faecal AMYP levels in type 1 608 

diabetes (T1D) patients compared to their healthy relatives 10, whereas no difference 609 

in levels of AMY1 was reported between T1D and controls, suggesting different 610 

amylase responses might be present in Pre-DM, TN-T2D and T1D patients based on 611 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2019. ; https://doi.org/10.1101/666263doi: bioRxiv preprint 

https://doi.org/10.1101/666263
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

metaproteomics data. Differences in levels of secreted digestive enzymes from the 612 

exocrine pancreas in NGT, Pre-DM and T2D have to our notice not been addressed 613 

previously, although it may be of major importance in relation to the metabolic state 614 

in T2D.  615 

Together, our findings suggest that unique and nonlinear changes of the intestinal 616 

ecosystem might exist in Pre-DM individuals before transition to T2D. Further 617 

large-scale, longitudinal follow-up studies are needed to delineate how microbial 618 

functions changes from prediabetes to diabetes and to address the nature of 619 

interactions between the gut microbiota and the host in the transitional phases leading 620 

to overt T2D. 621 
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Figure Legends 834 

Figure 1. Experimental overview. 835 

254 participants were recruited from the Suzhou cohort and diagnosed as treatment 836 

naive T2D patients (TN-T2D, n=77, red), prediabetic individuals (Pre-DM, n=80, 837 

blue) or individuals with normal glucose tolerance (NGT, n=97, green). Each 838 

participant provided two stool samples. One set of stool samples was used for 839 

metagenomic shotgun sequencing, followed by IGC-based taxonomic and functional 840 

analyses. The other set of stool samples, comprising a total of 84 samples with 28 841 

age-, BMI- and sex-matched participants from each group, was selected for 842 

metaproteomic analyses using isobaric tags for relative and absolute 843 

quantitation (iTRAQ)–coupled-liquid chromatography tandem mass spectrometry 844 

(iTRAQ-LC-MS/MS) to provide information on the microbial and host proteins 845 

present in stool samples. 846 

A total of 11, 980 meta-proteins and 425 human proteins were identified in this study. 847 

Microbial gene and protein profiling were used to determine alterations in the 848 

abundance of microbial taxa and functions, and human protein profiling was used to 849 

identify alterations in the abundance of human proteins in faecal samples from NGT, 850 

Pre-DM and TN-T2D individuals. 851 

 852 

Figure 2. Determination of alterations in the abundance of MLGs and functional 853 

modules. 854 

(A) Heatmap of statistically significant annotated MLGs discriminating between 855 

TN-T2D, Pre-DM and NGT based on Z-scores. Red, MLGs enriched in high glucose 856 

groups, blue, MLGs enriched in low glucose groups. *, indicates MLGs significantly 857 

differed between any two groups in the Suzhou cohort; Dunn’s post hoc test, P < 0.05. 858 

#, indicates significant MLGs replicated in the treatment naïve T2D patients from 859 

Shanghai (Gu et al., 2017a) compared with Pre-DM and NGT in the Suzhou cohort; 860 

Wilcoxon rank-sum test, P < 0.05 (See Table S5 for full list).  861 

(B) Performance of cross-validated random forest (RF) classification models using 862 
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relative abundance profiles of gut microbial MLGs, assessed by the area under the 863 

ROC curve (AUC), 95% confidence intervals (CI). Orange, AUC for the RF model 864 

classifying NGT (n=97) and Pre-DM (n=80). Grey, AUC for the RF model classifying 865 

NGT (n=97) and TN-T2D (n=77). Blue, AUC for the RF model classifying Pre-DM 866 

(n=80) and TN-T2D (n=77). The best cut-off points are marked on the ROC curves.  867 

(C) Bar plot showing the 10 most discriminating MLGs in the RF models for 868 

distinguishing between NGT, Pre-DM and TN-T2D. The bar lengths indicate the 869 

importance of the selected MLGs, and colours represent enrichment in NGT (green), 870 

Pre-DM (blue) and TN-T2D (red). 871 

(D) Differential enrichment of KEGG modules comparing TN-T2D, Pre-DM and 872 

NGT. Dashed lines indicate a reporter score of 1.96, corresponding to 95% confidence 873 

in a normal distribution. 874 

 875 

Figure 3. Concordance and discordance of gut microbiome features in 876 

metagenomes and metaproteomes. 877 

(A) Taxonomic distribution at the phylum level. Inner circle, metagenomes; Outer 878 

circle, metaproteomes.  879 

(B) Spearman’s rank correlation between the median relative abundances of genera in 880 

metagenomes of 84 samples selected for metaproteomics and the number of identified 881 

meta-proteins assigned to the same genus. (C) Functional distribution at KEGG level 882 

2. Inner circle, metagenomes; Outer circle, metaproteomes.  883 

(D-E) Enrichment analysis of differentially expressed meta-proteins at taxonomic (d) 884 

and functional levels (e) comparing NGT, Pre-DM and TN-T2D individuals. The 885 

number of meta-proteins that exhibited significant differences in levels in each 886 

pairwise comparison is shown. Colours represent enrichment in NGT (green), 887 

Pre-DM (blue) and TN-T2D (red). Significant enrichment is defined as P < 0.05 888 

(Wilcoxon rank-sum test) with a fold change of mean intensities > 1.2 in pairwise 889 

comparisons. 890 

 891 
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Figure 4. Characterisation of human proteins in faecal samples from Chinese 892 

NGT, Pre-DM, and TN-T2D individuals. 893 

(A) Heatmap showing levels of 49 discriminatory human proteins as fold change 894 

between each two groups. *, P < 0.05 and fold change of protein levels > 1.2 or < 0.8. 895 

(B) Protein-protein interaction network based on 20 discriminatory human proteins in 896 

at least two pair-wise comparisons. The group signatures indicate human proteins 897 

with significantly higher or lower levels in this group compared to others. Orange 898 

indicates higher protein levels and blue indicates lower protein levels. 899 

(C) Protein-protein interactions based on discriminatory meta-proteins in pair-wise 900 

comparisons and discriminatory human proteins. Only discriminatory meta-proteins 901 

annotated to the corresponding taxon of the MLGs were selected for the analysis.  902 

The circles indicate human proteins and diamonds indicate meta-proteins. Detailed 903 

information on the numbered meta-proteins is presented in Table S12. Colours 904 

represent protein enrichment in NGT (green), Pre-DM (blue) and TN-T2D (red). Pink 905 

line indicates positive correlation and grey line indicates negative correlation 906 

(Spearman’s rank correlations, adjusted P < 0.05). 907 
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