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Abstract

Significant efforts have been made in building large-scale kinetic models of cellular metabolism in 

the past two decades. However, most kinetic models published to date, remain focused around 

central carbon pathways or are built around ad hoc reduced models without clear justification on 

their derivation and usage. Systematic algorithms exist for reducing genome-scale metabolic 

reconstructions to build thermodynamically feasible and consistently reduced stoichiometric 

models. It has not been studied previously how network complexity affects the Metabolic Sensitivity 

Coefficients (MSCs) of large-scale kinetic models build around consistently reduced models. We 

reduced the iJO1366 Escherichia Coli genome-scale metabolic reconstruction (GEM) systematically 

to build three stoichiometric models of variable size. Since the reduced models are expansions 

around the core subsystems for which the reduction was performed, the models are modular. We 

propose a method for scaling up the flux profile and the concentration vector reference steady-

states from the smallest model to the larger ones, whilst preserving maximum equivalency. 

Populations of non-linear kinetic models, preserving similarity in kinetic parameters, were built 

around the reference steady-states and their MSCs were computed. The analysis of the populations 
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of MSCs for the reduced models evidences that metabolic engineering strategies - independent of 

network complexity - can be designed using our proposed workflow. These findings suggest that we 

can successfully construct reduced kinetic models from a GEM, without losing information relevant 

to the scope of the study. Our proposed workflow can serve as an approach for testing the suitability 

of a model for answering certain study-specific questions. 

Author Summary

Kinetic models of metabolism are very useful tools for metabolic engineering. However, they are 

generated ad hoc because, to our knowledge, there exists no standardized procedure for 

constructing kinetic models of metabolism. We sought to investigate systematically the effect of 

model complexity and size on sensitivity characteristics. Hence, we used the redGEM and the 

lumpGEM algorithms to build the backbone of three consistently and modularly reduced 

stoichiometric models from the iJO1366 genome-scale model for aerobically grown E.coli. These 

three models were of increasing complexity in terms of network topology and served as basis for 

building populations of kinetic models. We proposed for the first time a way for scaling up steady-

states of the metabolic fluxes and the metabolite concentrations from one kinetic model to another 

and developed a workflow for fixing kinetic parameters between the models in order to preserve 

equivalency. We performed metabolic control analysis (MCA) around the populations of kinetic 

models and used their MCA control coefficients as measurable outputs to compare the three 

models. We demonstrated that we can systematically reduce genome-scale models to construct 

kinetic models of different complexity levels for a phenotype that, independent of network 

complexity, lead to mostly consistent MCA-based metabolic engineering conclusions.

Introduction

Kinetic models of cellular metabolism can provide comprehensive understanding on the dynamics of 

the cell and its response to environmental changes and perturbations. In depth understanding of 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/666859doi: bioRxiv preprint 

https://doi.org/10.1101/666859
http://creativecommons.org/licenses/by/4.0/


3

cellular metabolism can allow metabolic engineers to tailor cells according to sought specifications 

and objectives. This could enable the design of cell factories where flux is directed towards the 

production of biofuels, pharmaceuticals or other specialty chemicals. To be useful though, a kinetic 

model should represent the dynamics of the cell accurately enough to provide the required study-

specific knowledge [1]. To date, important strides towards building large- and genome-scale kinetic 

models of metabolism have been made [2-5]. Despite the emergence of methodologies for building 

kinetic models, the research community knows that several challenges remain to be confronted. 

With larger and better quality kinetic models, the mathematical representations become 

increasingly complex. Furthermore, the parameter sensitivities of systems biology models are in 

general “sloppy” [6]. Hatzimanikatis and coworkers noted that metabolic models are often built 

around certain central carbon pathways or, ad-hoc reduced models of genome-scale metabolic 

network models (GEMs) [7]. Such models do not account for the full information contained in the 

GEMs and, the ad hoc reduced models do not come with explicit explanations and justifications on 

how the model was reduced. Several studies have built kinetic models around ad hoc reduced 

models and computed Metabolic Sensitivity Coefficients (MSCs) for the system [1, 2, 8-10]. MSCs 

are desirable outputs of the kinetic models as they give insight into control patterns of the cell, 

assuming that the model is correct and accurate. However, Palsson and Lee showed that network 

complexity significantly affected the numerical values and the interpretation of MSCs [11]. Their 

study showed that three different red cell metabolic models produced MSCs that have opposite 

signs. This suggested that the analysis of incomplete metabolic models could lead to misleading and 

inaccurate information. 

Palsson and Lee acknowledge that their models were reduced in an ad hoc manner to analyze how 

significantly network complexity can affect the MSCs of kinetic models [11]. However, nowadays 

algorithms for reducing GEMs are starting to emerge [7, 12, 13]. The NetworkReducer algorithm 
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aims to reduce the network around certain “protected” metabolites and reactions by iteratively 

removing reactions that do not obstruct their activity [13]. Hatzimanikatis and coworkers developed 

the redGEM and lumpGEM algorithms which allow reduction of GEMs around selected subsystems 

by retaining linkages and the information captured in GEMs [7, 12]. The algorithm performs 

consistency checks with the GEM to ensure that the reduced model is consistent in terms of flux 

profiles, essential genes and reactions, thermodynamic feasible ranges of metabolite concentrations 

and ranges of Gibbs free energy of reactions. The redGEM and lumpGEM algorithms can be used to 

build thermodynamically feasible models with different levels of complexity consistent with the 

GEM for the same chosen subsystems. These algorithms open up the possibility to investigate how 

MSCs are affected by model complexity for consistently reduced models by building kinetic models 

around them. 

We used the redGEM and lumpGEM algorithm to reduce the E.coli iJO1366 GEM to three different 

models, namely D1, D2 and D3, encompassing 271, 307 and 327 enzymatic reactions and 160, 188 

and 197 metabolites, respectively. The thermodynamic formulation of the stoichiometric models 

allowed integration of fluxomics and metabolomics data for aerobically grown E.coli (S1 Table) [14]. 

Due to the topological differences between the three models, we proposed a technique for scaling 

up the flux profile and concentration vector reference steady-states from D1 into the larger models 

D2 and D3. This scale-up procedure ensures physiological equivalency of the models by assuring that 

their steady-states are numerically similar. All the three models satisfy thermodynamic constraints 

and are consistent with the GEM. We used the Optimization and Risk Analysis of Complex Living 

Entities (ORACLE) workflow to construct kinetic models for D1, D2 and D3 around their scaled 

reference steady-states. We fixed kinetic parameters from the smaller model into the larger one to 

further ensure equivalency of the models and hence a fair comparison. As integral part of the 

ORACLE workflow, we compute the MSCs for the stable kinetic models. We studied the MSCs across 
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the three models and demonstrate that there is consistency amongst MSCs and that we can make 

metabolic engineering decisions, independent of model complexity. 

Results and Discussions

Reduced E.coli models

We applied redGEM and lumpGEM algorithms [7, 12] to systematically derive modular, reduced, 

E.coli stoichiometric models (Methods) from the iJO1366 GEM [15]. We selected glycolysis, pentose 

phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, glyoxylate cycle, pyruvate metabolism and 

electron transport chain (ETC) as the subsystems (as defined in the iJO1366 GEM [15]) around which 

reduction was performed to different degrees of connectivity, similarly to Ataman et al. [7]. These 

subsystems contain the 12 essential biomass precursors defined by Neidhart et al [16] and capture 

the central carbon metabolism of E.coli. Reduced stoichiometric models D1, D2 and D3 inter-connect 

the subsystems between each other with up to one, two and three reactions, respectively. 

Consequently, D1, D2 and D3 model cores generated via redGEM are constituted of 271, 307 and 

327 enzymatic reactions and 160, 188 and 197 metabolites, respectively (Figure 1). The cores were 

connected to biomass production via lumped reactions, generated by the lumpGEM, to characterize 

the rest of the GEM (further discussion on lumped reactions around Figure 2 later in this section).

Figure 1. E.coli network diagram illustrating the core topologies studied for D1, D2 and D3. Edges represent 

the metabolic reactions and the nodes correspond to the metabolites. The reactions (edges) and metabolites 

(nodes) are coloured according to their pertinence to D1, D2 and D3, in blue, red and green, respectively. The 

reaction labels are coloured in black when the reaction is unidirectional. The bidirectional reactions’ labels are 

coloured if the reaction can operate in both forward and backward directions in D1, D2 or D3 in blue, red and 

green, respectively. The reactions that are bidirectional in a smaller model were also bidirectional in the larger 

model(s), as it is an expansion around the same core. Diagram does not include all the reactions of the 

systems. 
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The additional reactions in D2 include xylose isomerase (XYLI2), hexokinase D-fructose (HEX7) and D-

fructose 6-phosphate phosphatase (F6PP), that connect D-glucose with D-fructose 6-phosphate via 

D-fructose. D2 also includes the maltodextrin system which connects the D-glucose to D-glucose 1-

phophate via the maltodextrin phosphorylase and maltodextrin glucosidase reactions. In D2, 

dihydroxyacetone phosphate can react to methyglyoxal, which in turn can react to D-Lactate, 

providing increased connectivity between glycolysis and the pyruvate node. Additionally, pyruvate 

can react to 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate, which can react to 

form 2-oxoglutarate, thus connecting the TCA cycle with the pyruvate metabolism. D2 also includes 

three different ways to connect with two reactions from fumarate to L-aspartate, which - via 

argininosuccinate, adenylsuccinate and  adenylosuccinate - further link the TCA cycle with the ETC. 

The adentylate kinase (ADK3), nucleoside-diphosphate kinase (NDPK1) and nucleoside-

triphosphatase (NTP3) enzymes provide D2 model with additional flexibility in the system’s energy 

metabolism. 

D3 has additional reactions enabling the transformation of methylglyoxal into D-lactate and L-

lactate. Methylglyoxal is a hub metabolite that provides connectivity between upper glycolysis to the 

pyruvate node. The pyruvate and phosphoenolpyruvate nodes are connected to the TCA cycle via 

chorismate. Fruthermore, the glutamin and glutamate synthases provide additional flexibility in 

allowing conversion between L-glutamate and L-glutamine.  In D3 the presence of AMP nucleosidase 

(AMPN) provides an additional connection between the PPP and the ETC.  However, the expansion 

from D1 to D2 resulted in more central carbon metabolites that change in connectivity than the 

expansion from D2 to D3 (Figure 2). Several hub metabolites like methylglyoxal, isochorismate, 

pyruvate, D-lactate and 2-oxoglutarate change in connectivity between the three models. 

Figure 2. Metabolites connecting subsystems and the number of pairwise connections they achieve. Central 
carbon metabolites that change in connectivity (A) between D1 and D2, and (B) between D2 and D3.
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Thermodynamic-based variability analysis 

Within the thermodynamic formulation [17] of the stoichiometric models D1, D2 and D3, we 

integrated fluxomics and metabolomics data for aerobically grown E.coli (S1 Table). Several 

assumptions were made on reaction directionalities, based on literature [14, 18-21], to further 

constrain the models (Methods). We performed a thermodynamic-based variability analysis (TVA) 

[22] on D1, D2 and D3 and we found they had 9, 17 and 18 bi-directional reactions, respectively (S2 

Table).  

Analysis of reaction flux ranges from TVA for D1, D2 and D3 revealed several considerable 

differences between the central carbon reactions. When comparing the ranges between D1 and D2, 

the largest differences were noted in adenylate kinase (ADK1), tartronate semialdehyde reductase 

(TRSARr), glucose-6-phosphate isomerase (PGI), phosphoglucomutase (PGMT), D-lactate 

dehydrogenase (LDH_D), triose-phosphate isomerase (TPI), phosphoglycerate kinase (PGK), 

glyceraldehyde-3-phosphate dehydrogenase (GAPD), phosphoglycerate mutase (PGM) and enolase 

(ENO) (S2 Table). Performing the same analysis between D2 and D3 reveals that only transketolase 

(TKT2) and glutamate dehydrogenase (GLUDy) changed considerably in ranges amongst central 

carbon reactions. In fact, GLUDy became bidirectional with this expansion. Other differences were 

noted in the peripheral reactions pertaining to additions from expansion from D2 to D3. Generally, 

most differences in the flux variability ranges resulted from the bypass routes that additional 

reactions provided, which resulted in certain reactions becoming bi-directional (Figure 1). 

The TVA was also performed on concentration ranges of the models and we notice several 

differences in the allowable ranges of metabolite concentrations between D1, D2 and D3. Most 

noticeable concentration range differences between D1 and D2 occurred in D-glucose 6-phosphate, 

D-fructose 6-phosphate, fumarate, L-arinine and S-Dihydroorotate (S2 Table). However, between D2 

and D3, noticeable differences were only noted in the ranges of D-glucose 6-phosphate and D-

fructose 6-phosphate. The comparison of these TVA ranges in metabolite concentrations and 
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reaction fluxes reveals that more considerable differences occurred between D1 and D2 than 

between D2 and D3. 

Model equivalency

Despite the inclusion of omics data for aerobically grown E.coli, D1, D2 and D3 remained 

underdetermined systems, resulting in the existence of multiple alternative --states that can 

characterize the studied E.coli physiology. A representative steady-state is required for the flux 

profile and for the metabolite concentration vector, to build a kinetic model around the selected 

steady-state. Furthermore, in light of benchmarking the outputs of kinetic models, the models are 

required to themselves be as close to each other as possible to allow for an unbiased comparison. 

Hence, their representative steady-states were kept similar so that the models describe the same 

operational state of the cell. 

Scaling up steady-states. We sampled the flux and the concentration solution spaces for D1 and we 

used PCA to select representative steady-states (Methods). To preserve equivalency across the 

kinetic models, it was desirable that the flux profile and the concentration vector steady-states in D2 

and D3 resemble the ones selected in D1. The topological modularity of the core models generated 

with redGEM eased the transferability of steady-states across models, allowing us to preserve 

similar values for fluxes and concentrations for the overlapping reactions of the three models. 

We connected the core models to the biomass building blocks (BBBs), as defined by Neidhart et al. 

[16], via lumped reactions generated with the lumpGEM algorithm by applying approaches 

developed by Ataman and Hatzimanikatis [12]. A lumped reaction is a reaction that collapses a 

subnetwork of reactions into one mass-balanced reaction. D1-3 had 247, 189 and 196 lumped 

reactions, respectively. The models’ lumped reactions are indeed not the same across D1-3. 

Consequently, lumped reactions impose certain stoichiometric constraints that can require flux to 

pass through alternative metabolic routes within the models.  For instance, a BBB can be produced 
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by a completely different lumped reaction (Figure 3A), as we can generate it via a different 

subnetwork of reactions in the systems with larger cores. Thus, having distinct lumped reactions 

results in the redistribution of the flux profiles across models. An example of this is the hub 

metabolite methylglyoxal that provides new alternatives for lumped reactions in D2 and D3, thus 

contributing to differences in flux distribution across the models. 

We studied the lumped reactions and in D1-3 and observed that 103 were common between the 

models (Figure 3B). D1, D2 and D3 have 126, 57 and 66 lumped reactions that are unique to 

themselves. D1 requires considerably more lumped reactions in order to produce the BBBs from the 

core subsystems. If we consider the lumped reactions as subnetworks of reactions, 474, 453 and 458 

reactions are used to build the lumped reactions of D1-3, respectively (Figure 3C). Interestingly, 446 

reactions are common between the pools of reactions that constitute the lumped reactions of D1-3. 

Figure 3. Illustration and analysis of core metabolism connections to biomass building blocks via lumped 

reactions. The schematic representation (A) of the studied metabolic networks where the edges are reactions 

and the nodes are metabolites. The blue edges and nodes belong to the core network of D1. The red edges 

and nodes correspond to additions from the D2 expansion. The dashed arrows are lumped reactions of the 

system, connecting the core to the biomass, where: black represents lumped reactions that are present in all 

the models, blue is for lumped reactions existing only prior to the expansion in D1 and red is for lumped 

reactions existing only after network expansion in D2. Biomass building blocks (BBBs) are represented by the 

green ovals. The black solid arrows indicate fluxomics data that were integrated for optimally grown E.coli 

[14].  Venn diagrams highlight differences in the lumped reactions of D1, D2 and D3 in terms of (B) 

subnetworks and in terms of (C) reactions.

In order to ensure equivalency between D1-3, we proposed a procedure that uses a Mixed Integer 

Linear Programming (MILP) formulation that imposes similarity between the representative steady-

states of the models (Methods). The D2 fluxes of central carbon reactions are within below one 

percent deviation from the reference flux of D1 (S3 Table). The only central carbon fluxes in D3 that 
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deviate from D2 reference flux with more than one percentage are transaldolase (TALA) and xylose 

isomerase (XYLI2) with 4.5% and 33.2% respectively.  The concentration profile of D2 is within one 

percent of D1 reference steady-state, except for ADP, CoA, S-dihydroorotate and L-glutamine with 

16%, 45%, 303% and 94% deviations from D1. On the other hand, the D3 metabolite concentration 

steady-state is within one percentage from the D2 metabolite concentration vector. The modularity 

and the consistency of redGEM and lumpGEM algorithms in GEM reduction allowed the steady-

states to be transferred and communicated between models efficiently.

Equivalence in kinetic parameters. We constructed kinetic models around the selected reference 

steady-states of D1-3 using the ORACLE workflow [3, 23-25]. Uniform Monte Carlo sampling of the 

degrees of saturation of the enzyme active sites allowed us to study the kinetic parameter space, as 

proposed by Hatzimanikatis and colleagues [23]. The local stability of the models generated was 

tested by verifying that the eigenvalues are not positive. We first sampled 50’000 stable kinetic 

models for D1. To ensure equivalency at kinetic parameter level between D1-3, we adapted the 

ORACLE workflow to allow fixing the sampled saturation states from one model to another 

(Methods). From the 50’000 stable D1 kinetic models, we found 96.1% (48’080) to be stable in D2, of 

which 98.4% (47’299) were stable in D3. We then computed the MSCs for these stable models in 

order to compare how MCA-based decisions are affected by metabolic network size. 

Consistency in MCA across models

Ranking enzymes for flux control. Some fundamental cellular tasks for a given physiology include 

metabolite excretion, substrate uptake and cellular growth, μ. As we studied the physiology of 

optimally grown E.coli, we considered control over μ across models to assess the consistency in 

conclusions based on MCA outputs. The flux control coefficients (FCCs) of μ were ranked for D1-3 

based on their absolute means across stable models. The models were compared pairwise in 

increasing order of size (i.e. D1 versus D2, and D2 versus D3) to assess the impact of systematic 

network expansion on MCA (Figure 4).  
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Figure 4. Cellular growth (μ) control across models. Pairwise illustration of the union of the top 7 enzymes 

across the models in terms of absolute control over cellular growth for (A) D1 versus D2, and (B) D2 versus D3. 

The whiskers give the upper and lower quartiles of the FCC populations and the bars give the means.  

The cellular growth FCCs with respect to PGI, phosphofructokinase (PFK) and ATP maintenance 

(ATPM) are the most consistent in terms of sign and magnitude when comparing D1 with D2 (Figure 

4A). Pyruvate kinase (PYK), fructose biphosphate aldolase (FBA) and 2-oxogluterate dehydrogenase 

(AKGDH) are also in agreement in terms of sign but magnitude can differ significantly. Some 

enzymes have control in D1 but no control in D2, such as ribulose 5-phosphate 3-epimerase (RPE) 

and phosphoglycerate mutase (PGM). Others, vice versa, have control in D2 but no control in D1 

such as phosphoglycerate kinase (PGK) and glucose 6-phosphate dehydrogenase (G6PDH2r). Ribose-

5-phosphate isomerase (RPI), on the other hand, has opposing control on cellular growth in the two 

models. Differences in FCCs of cellular growth between D1 and D2 suggest that the modular 

expansion of D1 to D2 significantly affects the control scheme. 

We then compared top cellular growth FCCs in D2 and D3, which are in great sign and magnitude 

agreement (Figure 4B). PGI, PFK and PYK are the top three enzymes in terms of cellular growth 

control according to both D2 and D3. The consistency between these FCCs suggests that the modular 

expansion of D2 to D3 does not affect the control pattern as significantly as the network expansion 

from D1 to D2. An analogous analysis was carried out for the flux control of glucose uptake and 

several other cellular excretions (S4 Figure), and we observed a similar trend. The differences in 

control patterns appear to be significant when expanding from D1 to D2, but of lesser importance 

when expanding from D2 to D3. This finding could suggest that entire genome-scale kinetic models 

are not necessary to capture the essential physiological features of a cell as long as the model 

reduction is done systematically around carefully selected subsystems of study interest. Additionally, 

this could mean that D1 is possibly missing on some important information for performing MCA. 
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Clearly, a study-specific resolution criterion in terms of model size/complexity that has to be met 

needs to be established before a model is used for further analysis.  

MCA consistency across reduced models. As the study above revealed, certain flux control patterns 

can change significantly between models due to network complexity. We tried to locate, analyze and 

understand the differences and the similarities in MSCs that occur due to the topological alterations 

in kinetic model complexity. According to MCA theory, the FCCs conform with the summation theory 

[26, 27]. We proposed a deviation index (DI) that provides a quantitative measure on how much a 

reaction’s FCCs differ between two models, postulated from the summation theory (Methods). The 

DI served as a metric to classify reactions with respect to their consistency in FCCs across the 

reduced models.

We estimated the DI of 271 common enzymatic reactions when expanding from D1 to D2 to predict 

deviations in FCCs for the system. Reactions with the lowest DI (0-25 percentile) were mostly from 

the central carbon metabolism (Figure 5). The reactions with the highest DI (75-100 percentile) were 

mostly located in the ETC. The only central carbon metabolism reactions having a high DI were TALA, 

acetyl-CoA synthase (ACS), phosphoenolpyruvate synthase (PPS) and NAD malic enzyme (ME1). TALA 

produces D-fructose 6-phosphate and, PPS and ME1 involve transformation of pyruvate. D-fructose 

6-phosphate and pyruvate are both central carbon metabolites around which the expansion adds 

reactions (Figure 2 and 5). ACS is only one reaction away topologically from pyruvate, around which 

the expansion adds a reaction (Figure 2 and 5).

Figure 5. E.coli network diagram illustrating the deviation index (DI) of reactions when scaling up from D1 to 

D2. The flux values of the D2 flux profile (reference state) are given for the reactions in mmol/gDW/h next to 

their labels. The reactions added by the modular redGEM expansion from D1 to D2 are given in blue and the 

271 enzymatic reactions in common between D1 and D2 are color-coded based on the DI. The reactions were 

categorized into low DI (0-25 percentile), medium DI (25-75 percentile) and high DI (75-100 percentile), and 
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are given in dark green, light green and red, respectively. Diagram does not include all the reactions of the 

systems.

We repeated the above analysis for D2 and D3, where we analogously compute the DIs for the 307 

common enzymatic reactions (Methods). Similar observations were made for the reactions having 

low DIs (0-25 percentile) as most were located in central carbon metabolism, within the subsystems 

around which reduction was performed (Figure 6). The reactions with higher DIs (75-100 percentile) 

are predominantly located around the ETC, with the exception of several reactions pertaining to 

central carbon metabolism. As with the previous analysis of D1 versus D2, ME1 and ACS had high 

DIs. The D3 expansion adds reactions around pyruvate (Figure 2 and 6), which could explain this 

observation. Aspartate transaminase (ASPTA), phosphoenolpyruvate carboxykinase (PPCK) and 

succinate dehydrogenase (SUCDi) from the central carbon metabolism exhibited high DIs (Figure 6). 

ASPTA is directly connected via 2-oxoglutarate with NADPH glutamate synthase (GLUSy), which is a 

newly added reaction by the D3 expansion. PPCK is connected via polyenolpyruvate to 3-

phosphoshikimate 1-carboxyvinyltransferase (PSCVT), another add by the D3 expansion. 

Furthermore, SUCDi is topologically connected with the added reaction ubiquinone L-Lactate 

dehydrogenase (L-LACD2), as cofactors ubiquinone-8 and ubiquinol-8 partake in both reactions. 

Interestingly, periplasmic glucose dehydrogen (GLCDpp), where ubiquinone-8 and ubiquinol-8 also 

participate, has a high DI as well. GLCDpp possibly causes its neighbouring reactions gluconokinase 

(GNK) and D-gluconate transport (GLCNt2rpp) to have high DIs too, due to stoichiometric coupling. 

These observations suggest that alterations in flux split ratios around important branching points - 

caused by network expansion - could result into higher DIs in reactions at their vicinities.  

Figure 6. E.coli network diagram illustrating the deviation index (DI) of reactions when scaling up from D2 to 

D3. The flux values of the D3 flux profile (reference state) are given for the reactions in mmol/gDW/h next to 

their labels. The reactions added by the modular redGEM expansion from D2 to D3 are given in blue and the 

307 enzymatic reactions in common between D2 and D3 are color-coded based on the DI. The reactions were 
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categorized into low DI (0-25 percentile), medium DI (25-75 percentile) and high DI (75-100 percentile), and 

are given in dark green, light green and red, respectively. Diagram does not include all the reactions of the 

systems.

Overall, lower DIs were observed for reactions having a higher flux, pertaining to the core central 

carbon metabolism around which the models D1-3 were reduced (Figures 5 and 6). Since the cores 

of the reduced models contain the 12 precursor metabolites for biomass, their control patterns were 

expected to be similar. Stephanopoulos and Vallino point out that metabolic pathways of organisms 

have evolved over time to resist flux alterations at branching points [28]. The control architecture of 

an organism is built such that it preserves the flux splitting ratios of essential metabolic nodes. 

However, if two models have differences in the number of reactions and/or in the flux splitting 

ratios around an important branching point, the control architecture of the two systems can differ 

considerably. 

Since we studied optimally grown E.coli, it was expected that the D1 to D2 expansion with the 

addition of XYLI2, F6PP and HEX7 would have influence on control patterns: the flux splitting ratios 

around the essential biomass precursor D-fructose 6-phosphate is altered. D-fructose 6-phosphate is 

a critical metabolic node for producing cell wall biomass building blocks and is located relatively 

upstream in the process of glucose catabolism. Altering flux splitting ratios around D-fructose 6-

phosphate will have direct implications on the fate of the carbon flow across the whole network, 

particularly due to its upstream location. 

The expansion from D2 to D3 results in different flux splitting ratios around three biomass 

precursors: pyruvate, polyenolpyruvate and 2-oxoglutarate. Again, we can expect flux control 

patterns across the models to differ as the proportion of carbon flow directed towards certain 

biomass building blocks is affected. However, within the central carbon metabolism, these 

precursors are located relatively downstream to the glucose uptake, compared to for instance D-

fructose 6-phosphate. Consequently, we can expect that these flux splitting ratios have less impact 
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on the growth control of the system than D-fructose 6-phosphate. If we were discussing the 

production of certain amino acids of interest, rather than just cellular growth, these ratios could be 

of higher importance to the analysis. The significance of a metabolic node is strongly subject to the 

scope of the study. Hence, it is difficult to imagine a “one-size-fits-all” model due to the complexity 

of the problems encountered in metabolic engineering.

Indeed, the importance of a metabolic branching point is very study-specific as objectives can vary 

significantly. Had we, for instance, been interested in the study of D-lactate production, it would 

have been essential to include the metabolism of methylglyoxal, D-lactate and L-lactate into the 

subsystems around which model reduction is performed. However, as we are not interested in the 

production of D-lactate, we are not that concerned about the high DI of D-lactate transporter (D-

LACt2pp) when comparing D2 and D3 (Figure 6). Furthermore, if we were interested to produce D-

lactate, it would be essential to consider implication of attempting to deviate flux towards the 

metabolism of D-lactate. If the redirection of flux towards D-lactate imposes important changes in 

the flux splitting ratios of significant metabolic nodes of wild-type E.coli, it may be worth considering 

other organisms that cause fewer modifications in flux distribution [28, 29].

Study of uncertainty in MCA. The MCA results of D1-3 were further studied by comparing their 

absolute deviations in the FCCs. We considered with respect to the central carbon subsystems to 

find which central carbon enzymes contributed in most uncertainty across the networks. The FCCs of 

reactions in the glycolysis (Figure 7) appear to have most absolute deviation stemming from 

enzymes in the glycolysis and in the PPP. When comparing D1 with D2 (Figure 7A), enzymes in 

glycolysis contribute most to the uncertainty whereas in the comparison of D2 and D3 (Figure 7B), 

the PPP contributes the most. Again, the additional connections around D-fructose 6-phosphate 

(Figures 1 and 2) when expanding from D1 to D2 could explain this. Differences in flux splitting ratio 

around D-fructose 6-phosphate affect the redistribution of the flux in the network and hence the 

control pattern. Generally, reactions with a larger flux exhibit less absolute deviations in their FCCs. 
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This parallels the observation that central carbon reactions carrying higher flux are perhaps more 

rigid in control patterns. 

Figure 7. Comparison of flux and absolute deviations in FCCs for glycolytic reactions for (A) D1 versus D2, 

and (B) D2 versus D3. The absolute deviations computed per subsystem correspond to the sum of the 

absolute deviations in FCCs of reaction i with respect to all enzymes of the subsystem j.  The reactions 

contained in a subsystem are as defined in the original GEM that was reduced [15]. The flux values shown did 

not deviate by more than 1% between pairs of models. 

We perform a parallel analysis on FCCs of PPP reactions and similar observations were made. The 

expansion from D1 to D2 has most absolute deviations coming from enzymes from glycolysis (Figure 

8A), whereas, the expansion from D2 to D3 has most deviations due to PPP enzymes (Figure 8B). 

Again, reactions carrying higher flux have less absolute deviation in their FCCs between the pairs of 

models. We analyzed FCCs individually in terms of absolute deviation (S5 Table), for both pairs D1 

and D2 as well as, D2 and D3. PGI, TPI and PFK were the top three central carbon enzymes that 

resulted in the most absolute difference in flux control across the network. From the PPP enzymes, 

RPI resulted in the most absolute deviation in flux control. We also recall that RPI had sign-wise 

opposing control on cellular growth in the comparison of D1 and D2 (Figure 4A). Due to the highly 

non-linear nature of the studied systems, it is difficult to make direct conclusions on the causality of 

the observed deviations in control patterns of the networks. Most of the deviations were observed 

amongst peripheral transport reactions, rather than central carbon metabolism (S5 Table). 

Nevertheless, we could still find metabolic engineering decisions relevant to our study, independent 

of the complexity based on MCA outputs (Figure 4).

Figure 8. Comparison of flux and absolute deviations in FCCs for PPP reactions for (A) D1 versus D2, and (B) 

D2 versus D3. The absolute deviations computed per subsystem correspond to the sum of the absolute 

deviations in FCCs of reaction i with respect to all enzymes of subsystem j. The reactions contained in a 
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subsystem are as defined in the original GEM that was reduced [15]. The flux values shown did not deviate by 

more than 1% between pairs of models. 

Conclusions

This work studied the impact of model complexity on the metabolic engineering decisions derived 

from MCA outputs. The redGEM and the lumpGEM algorithms were used to consistently reduce the 

E.coli iJO1366 GEM. Omics data for the physiology of optimally grown E.coli was integrated into the 

reduced stoichiometric models. The modularity of the reduced models assisted us in the 

development of a workflow allowing to preserve maximum equivalence between the flux profile and 

metabolite concentration steady-states. The ORACLE framework was used to generate populations 

of stable kinetic models around these reduced stoichiometric models. Our workflow ensured that 

we preserve equivalency amongst the populations of the kinetic parameters for the stable kinetic 

models. The MSCs were computed within the ORACLE framework for the populations of stable 

kinetic models. Analysis of the MSCs, revealed that we can derive context-specific metabolic 

engineering conclusions that are independent of the model’s complexity, as long as the reduction is 

performed consistently. 

The “usefulness” of a kinetic model is highly dependent on the objectives of the study being 

undertaken. We selected the subsystems for the GEM reduction such that we: (1) cover the essential 

biomass precursor metabolites according to Neidhart as we focused primarily on cellular growth 

control and, (2) that we capture the ETC essential to account for redox potentials. The addition of 

reactions around D-fructose 6-phosphate when expanding from D1 to D2 appeared to significantly 

affect growth control patterns (Figure 4A). However, the expansion from D2 to D3 had considerably 

less impact as top cellular growth FCCs are consistent (Figure 4B). As D-fructose 6-phosphate is an 

essential precursor for cell wall fabrication, a network expansion affecting flux distribution around it 

can be expected to have significant impact on cellular growth control structure. Hence, it is essential 

to consider the importance of certain metabolic nodes with respect to the study goals in order to 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 10, 2019. ; https://doi.org/10.1101/666859doi: bioRxiv preprint 

https://doi.org/10.1101/666859
http://creativecommons.org/licenses/by/4.0/


18

ensure no information is lost in the reduction. Again, importance of a metabolic node is strongly 

influenced by the nature and the objectives of the analysis. 

The MCA summation theorem was used to postulate a deviation index (DI) that gave a numerical 

indication on the consistency of the FCCs with respect to a reaction. Most of the reactions around 

central carbon metabolism, carrying a higher carbon flux, appeared to have lower DIs. Flux control 

for reactions with larger fluxes were more robust, particularly if the number of connecting reactions 

did not change between models for the metabolites participating in the reaction.  The larger DIs 

were noted in the ETC and peripheral reactions. Nevertheless, the consistency in the control 

patterns across reduced models allows us to make conclusions that are independent of the network 

complexity. In fact, we may not need full genome-scale kinetic models when the model reduction is 

done consistently as the essential, study-specific, information is accounted for by the reduced 

model. 

This study demonstrates that systematic and modular model reduction algorithms ease the scale-up 

of kinetic models of metabolism. Our workflow describes an MILP formulation for insuring maximum 

equivalence between models when transferring steady-states. Furthermore, the workflow ensures 

that the kinetic parameters are kept as similar as possible between the populations of stable kinetic 

models built around the reduced stoichiometric models. To our knowledge, this is the first 

publication to date demonstrating transferability of steady-states between large-scale kinetic 

models, whilst obtaining consistent, study-specific, metabolic engineering decisions. As systematic 

model reduction algorithms gain momentum in the field, we hope to pave a path towards building 

more robust and transferable kinetic models for the community. 

Methods

We developed a workflow for building consistently reduced kinetic models from a genome-scale 

metabolic model (Figure 9). We used the redGEM algorithm to construct core models of increasing 

network size from the E.coli iJO1366 genome-scale model. The lumpGEM algorithm was used to 
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generate lumped reactions for the biosynthesis of biomass building blocks (BBBs) for these models. 

We used thermodynamic-based variability analysis (TVA) [22] to study the flexibility of the models. 

We proposed a procedure for scaling up the flux and concentration steady-states from one model to 

another one using the MILP formulation. The ORACLE framework was enhanced, allowing us to keep 

parametric equivalency between the populations of kinetic models around the steady-states of the 

reduced models. These steps are further detailed below.

Fig 9. Workflow for building consistent reduced kinetic models. The various steps are discussed with further 

detail within the manuscript.

Model reduction

The stoichiometry of the core networks was defined with the redGEM algorithm, which reduces 

systematically genome-scale model reconstructions of metabolism [7]. The E. coli iJO1366 genome-

scale model was reduced, with aerobic minimal media, glucose as the sole carbon source, and the 

selected starting subsystems corresponding to central carbon metabolism 

(glycolysis/gluconeogenesis, citric acid cycle, pentose phosphate pathway, pyruvate metabolism, 

and glyoxylate metabolism). We incorporated all the reactions that use metabolites of the 

quinone/quinol pools (ubiquinone, ubiquinol, menaquinone, menaquinol, 2-dimethyl menaquinone 

and 2-dimethyl menaquinol) as the electron transport chain subsystem in order to account for the 

energy metabolism of the system. redGEM allows the user to define a degree of connection, D, to 

define the level of connectivity of the core. D is an input parameter of the redGEM and lumpGEM. D 

corresponds to the number of reaction required to connect the pairs of metabolites between 

starting subsystems, as defined in [7]. We generated core networks with a D of 1,2 and 3, which gave 

rise to models D1, D2 and D3 respectively. The lumpGEM algorithm [12] was used to generate 

lumped reactions for the biosynthesis of the BBBs for these core networks. Lumped reactions are 

sub-networks of reactions composed of non-core reactions that can be used to produce a BBB. 
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Alternative lumped reactions were kept for each of the BBBs. Reactions that could not carry flux 

were considered as blocked and were removed.

For some of intracellular metabolites, a corresponding transport reaction has not been biochemically 

characterized and does not appear in the E. coli iJO1366 and in our reduced model. However, these 

metabolites, unless they are highly polar or very large, are subject to passive diffusive transport 

through the cell membrane. Therefore, we explicitly added transport reactions for these metabolites 

that operate at least at basal level (10^-6 mmol/(gDW*h)). 

Flux directionality assumptions

We make the following directionality assumptions for several  bi-directional reactions:

1. Fructose-biphosphate aldolase (FBA) that is part of mid-lower glycolysis is set towards 

catabolism [18]. 

2. The bi-directional transports of magnesium and phosphate are both set towards uptake [19, 

20]. 

3. Acetate kinase (ACKr) and phospho-transacetylase (PTAr) are both set towards the acetate 

production, because acetate is one of the main by-products [14]. 

4. The succinyl-CoA synthetase (SUCOAS) is set towards the production of succinate [14]. 

The polyphosphate kinases (PPK2r, and PPKr) are set towards the polyphosphate polymerization 

[21]. 

Thermodynamic analysis

The available fluxomics and metabolomics data for the optimal growth of E.coli under aerobic 

conditions and minimal media was integrated in our models. The MILP formulation of the 

thermodynamics-based flux analysis was used to implement these data into D1, D2 and D3. Since 

the models were used to build kinetic models, it was undesirable for reactions to be at 
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thermodynamic equilibrium, which would result in them having equal backward and forward fluxes. 

We imposed MILP constraints to ensure that the thermodynamic displacement, Γ [23, 26, 30], is not 

at equilibrium. For reactions near equilibrium Γ ≈ 1. 

Maximum equivalency between steady-states

We sampled the flux space of D1 in order to characterize the solution space without violating 

physiological, thermodynamic and directionality constraints. The convexity of the solution space 

enabled us to efficiently sample using the Artificial-Centering Hit-and-Run sampler in the COBRA 

Toolbox [31, 32]. We sampled flux vectors and used Principal Component Analysis (PCA) [33] to 

select a mean reference state. Similarly, we sampled and selected the reference state with PCA for 

the concentration solution space of this selected flux profile. 

In order to make the comparison of the models equitable, we wanted to maintain most similar 

steady-states between the models. For instance, for D2 we would like the flux vector to be the equal 

possible to the one from D1. Topological differences in the models make it impossible to have 

numerically exactly the same flux distribution in larger model for the same reactions. Hence, we take 

the representative flux from D1 and apply it with percentage relaxation with upper and lower 

bounds, Fub
rxn,i and Flb

rxn,i respectively, into D2. Consequently, we use an MILP formulation to 

minimize the number of violations of flux boundaries that we are trying to impose. For each 

intracellular reaction that is shared between the two models we create a binary variable zrxn, i so that 

when it is equal to 1, the constraints that we impose become inactive.  We add for each of these 

reactions the following constraints:

NFrxn,i + (Fub
rxn,i -UB rxn,i)* zrxn, i < Fub

rxn,i

NFrxn,i + (Flb
rxn,i -LB rxn,i)* zrxn, i > Flb

rxn,i
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where, UB and LB are the upper and lower bounds of the net fluxes NF of the reactions. We 

minimize the sum of the binaries, zrxn, i , in order to have minimal violation of the flux 

constraints:

Minimize:
#𝐹𝑙𝑢𝑥𝑒𝑠

∑
𝑖

𝑧𝑟𝑥𝑛, 𝑖 

Subject to:

𝑆.𝑣 = 0

We implied a 1% relaxation to apply and test how many flux constraints we can impose 

without violation (minimal number of active binary variables zrxn, i). After applying the 

constraints that are not violating model boundaries of D2, we proceed to sampling the 

solution space. We selected a sample based on mean PCA as with the representative flux of 

D1. We then implied in a similar manner the concentration profile from D1 into D2 with a 

1% relaxation and sampled the concentration space for this flux profile. We repeat this 

procedure when scaling up the flux and concentration steady-states from D2 into D3.

Constructing kinetic models

We used the ORACLE framework to build 50’000 kinetic models around the steady-states for D1, D2 

and D3. Available kinetic properties of enzymes from the literature [34] and the databases [35, 36] 

were incorporated. Reversible Hill kinetics [37] and convenience kinetics [38] were used for 

reactions with unknown kinetic mechanism (S6 Supporting information). Kinetic mechanisms with 

no or partial information about their parameter values were sampled within the space of kinetic 

parameters in the form of degree of saturation of enzyme [23]. We parameterized a population of 

kinetic models and performed consistency tests [23, 39, 40]. We then computed the flux and 
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concentration control coefficients [23, 41]. For further details on the ORACLE workflow the reader is 

referred to [2, 3, 23-25, 30, 40, 42]. 

We preserved equivalency between populations of kinetic models for D1-3 by fixing the degree of 

saturation of enzymes from less complex models into the more complex models. We wanted to 

preserve model equality so that we can fairly compare MCA outputs of the models. Within the 

ORACLE framework, we added a feature for fixing the degree of saturation of enzymes. For the 

parameters that were common between D1 and D2, we fixed the degrees of enzyme saturations 

from D1 models into D2 models and we sampled the rest of the D2-specific parameters uniformly, 

until we found a stable model. Hence, we preserved equivalency of the kinetic parameters between 

D1 and D2. Analogously, we repeated this procedure to imply the degrees of enzymes saturations 

from D2 into D3.

Control coefficient deviation index

In MCA the FCCs conform with the summation theorem defined in [26, 27]. The theorem implies 

that all the metabolic fluxes are systemic properties of the model and that their control is shared by 

all the reactions within the system. The summation theorem makes the assumptions that: (1) the 

parameters for which we compute flux control coefficients are of first order with respect to the flux, 

and that (2) the sum of a flux’s control coefficients with respect to all the parameters of the system 

is equal to one. We proposed a deviation index (DI) derived from the summation theorem to 

quantify the discrepancies in control patterns of a flux between two different models (Figure 10). 

Fig 10. Derivation of the deviation index (DI) from the summation theorem. 

Supplementary

S1 Table. Fluxomics and metabolomics data incorporated in the model. Table with the fluxomics data in 
mmol/gDW/h and the concentration data in log(M).
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S2 Table. Thermodynamics-based variability analysis of models. Spreadsheet with the list of metabolites and 
reactions inside the models with variability analysis of metabolic flux and metabolite concentrations. 

S3 Table. Flux and concentration steady-states. Spreadsheet providing metabolic flux and concentration 
reference steady-states across the models with a comparative study. 

S4 Figure. Flux control coefficients of (a) glucose uptake, (b) formate excretion and (c) acetate excretion 
across the models. Pairwise illustration of the union of the top 7 enzymes across the models in terms of 
absolute control over cellular growth for D1 versus D2, and D2 versus D3. The whiskers give the upper and 
lower quartiles of the FCC populations and the bars give the means.  

S5 Table. Analysis of absolute deviations in means of flux control coefficients for the entire systems.  Further 
assessment of deviations in flux control coefficients between model expansions from D1 to D2 and from D2 to 
D3. 

S6 Supporting information. Kinetic mechanisms used for the models.  
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