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Abstract

Copy number variants (CNVs) are the gain or loss of DNA segments in the genome that

can vary in dosage and length. CNVs comprise a large proportion of variation in human

genomes and impact health conditions. To detect rare CNV association, kernel-based

methods have been shown to be a powerful tool because their flexibility in modeling the
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aggregate CNV effects, their ability to capture effects from different CNV features, and

their ability to accommodate effect heterogeneity. To perform a kernel association test,

a CNV locus needs to be defined so that locus-specific effects can be retained during

aggregation. However, CNV loci are arbitrarily defined and different locus definitions

can lead to different performance depending on the underlying effect patterns. In this

work, we develop a new kernel-based test called CONCUR (i.e., Copy Number profile

Curve-based association test) that is free from a definition of locus and evaluates

CNV-phenotype association by comparing individuals’ copy number profiles across the

genomic regions. CONCUR is built on the proposed concepts of “copy number profile

curves” to describe the CNV profile of an individual, and the “common area under the

curve (cAUC) kernel” to model the multi-feature CNV effects. Compared to existing

methods, CONCUR captures the effects of CNV dosage and length, accounts for the

continuous nature of copy number values, and accommodates between- and within-locus

etiological heterogeneities without the need to define artificial CNV loci as required in

current kernel methods. In a variety of simulation settings, CONCUR shows

comparable and improved power over existing approaches. Real data analyses suggest

that CONCUR is well powered to detect CNV effects in gene pathways associated with

phenotypes using data from the Swedish Schizophrenia Study and the Taiwan Biobank.

Author summary

Copy number variants comprise a large proportion of variation in human genomes.

Large rare CNVs, especially those disrupting genes or changing the dosages of genes,

can carry relatively strong risks for neurodevelopmental and neuropsychiatric disorders.

Kernel-based association methods have been developed for the analysis of rare CNVs

and shown to be a valuable tool. Kernel methods model the collective effect of rare

CNVs using flexible kernel functions that capture the characteristics of CNVs and

measure CNV similarity of individual pairs. Typically kernels are created by

summarizing similarity within an artificially defined ”CNV locus” and then collapsing

across all loci. In this work, we propose a new kernel-based test, CONCUR, that is

based on the CNV location information contained in standard processing of the variants

and removes the need for any arbitrarily defined CNV loci. CONCUR quantifies
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similarity between individual pairs as the common area under their copy number profile

curves and is designed to detect CNV dosage, length and dosage-length interaction

effects. In simulation studies and real data analysis, we demonstrate the ability of

CONCUR test to detect CNV effects under diverse CNV architectures with power and

robustness over existing methods.

Introduction 1

Copy number variants (CNVs) are unbalanced structural variants that are typically 1 2

kilobase pair (kb) in size or larger and lead to more or fewer copies of a region of DNA 3

with respect to the reference genome. CNVs are typically characterized by two 4

descriptive features. The first feature is CNV dosage, or the total number of copies 5

present, with > 2 copies corresponding to duplications and < 2 copies corresponding to 6

deletions. The second is the CNV length, typically measured in base pairs (bp) or 7

kilobase pairs. 8

CNVs are important risk factors for many human diseases and traits, including 9

Crohn’s disease, HIV susceptibility, and body mass index [1–3]. Large and rare CNVs 10

are particularly implicated in neuropsychiatric disorders including autism spectrum 11

disorder, schizophrenia, bipolar disorder, and attention deficit disorder [4]. For example, 12

multiple studies have confirmed a greater burden of rare CNVs in schizophrenia cases 13

compared with normal controls, both genome-wide and in specific neurobiological 14

pathways important to schizophrenia (e.g., calcium channel signaling and binding 15

partners of the fragile X mental retardation protein). 16

Typically, rare CNVs (e.g., < 1% frequency) in the genome are intractable to test 17

individually for disease association and instead are examined with collapsing methods. 18

Collapsing methods summarize variant characteristics across multiple variants in a 19

targeted region, typically a gene set or the whole genome, and perform a test of the 20

collective CNV effects. By accumulating information across multiple rare variants, 21

collapsing methods can have enhanced power to detect the effects of rare CNVs that are 22

hard to detect individually but collectively have a significant impact. Collapsing tests 23

for rare CNVs are primarily built on the foundation of rare single nucleotide 24

polymorphism (SNP) association tests but with additional complexity to accommodate 25
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the length and dosage features of CNVs. As with SNPs, the effects of CNVs can vary 26

between loci, but CNV collapsing tests must also account for within-locus heterogeneity 27

due to differential dosage effects or length effects within a CNV region. 28

Similar to SNP collapsing tests, there are also two families of tests for rare CNV 29

analysis: burden-based methods and kernel-based methods. Burden-based tests, e.g., 30

Raychaudhuri et al. [5], summarize the CNV features of an individual via the total CNV 31

counts or average length and model the CNV effects as fixed effects assuming etiological 32

homogeneity of features across multiple CNVs of a targeted region. Kernel-based tests, 33

e.g., CCRET [6] and CKAT [7], aggregate CNV information via genetic similarity based 34

on certain CNV features and model CNV effects as random effects to account for the 35

between-locus etiological heterogeneity. By design, burden tests are optimal when the 36

association signal is driven by homogeneous effects across CNVs, and kernel-based tests 37

are optimal in the presence of etiological heterogeneity. Burden tests often need to 38

subset CNVs by dosage (e.g., deletions only or duplications only) or size (e.g. > 100kb, 39

> 500kb) to increase homogeneity while kernel-based tests do not have such 40

requirements. 41

In this work, we focus on kernel-based methods because etiological heterogeneity is 42

becoming a more practically encountered scenario as high-resolution CNV detection 43

technologies permit the detection of CNVs with smaller length. In kernel-based 44

association tests, the association between CNVs and the trait is evaluated by examining 45

the correlation between trait similarity and CNV similarity quantified in a kernel. For 46

kernel construction, we can refer to kernel-based tests for SNPs; since SNPs are 47

evaluated at the same single base-pair position (referred to as a locus) across 48

individuals, it is natural to assess similarity locus-by-locus and aggregate the locus-level 49

similarity over all loci in the target region to obtain an overall SNP similarity. A locus 50

unit for CNVs, however, is not so obvious since CNVs span multiple base pairs and may 51

overlap partially between individuals. 52

To address this issue, standard CNV kernel-based tests construct CNV regions 53

(CNVR). For example, the CNV Collapsing Random Effects Test (CCRET) [6] creates 54

CNVR by clustering CNV segments of different individuals with some arbitrary amount 55

of overlap (e.g., 1 base pair overlap, 50% reciprocal overlap). With CNVRs, the CNV 56

similarity between an individual pair can be quantified first within each CNVR, and 57
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this CNVR-level similarity can be summed over all CNVRs in the target region to 58

characterize overall CNV similarity. However, a drawback of this approach is that 59

CNVRs defined in this fashion are contingent on the unique CNV overlapping patterns 60

among individuals in a study, and the defined CNVRs can vary from one study to 61

another. The arbitrary choice of overlapping threshold also impacts the formation of 62

locus units and consequently how the “between-locus” and “within-locus” heterogeneous 63

effects of CNVs are accounted for. 64

To avoid the issues introduced by arbitrarily defined CNVRs as in CCRET, the 65

CNV Kernel Association Test (CKAT) [7] adopts a different strategy to quantify CNV 66

similarity between two individuals. Specifically, CKAT allows users to define the CNVR 67

as a biologically relevant region, e.g., a chromosome. CKAT also introduces a new 68

kernel function to measure CNV similarity based on both dosage and length features 69

between two CNV events. This CNV-level similarity is then aggregated to derive a 70

measure of CNVR-level similarity using a shift-by-one scanning algorithm that “aligns” 71

CNVs in two profiles based on their ordinal position. A multiple-testing correction is 72

applied if multiple CNVRs are involved in the targeted region. Although the new 73

strategy bypasses the need of an arbitrarily defined locus unit, the scanning alignment 74

may yield unreliable results if CNVRs are too large and distant CNVs contribute to an 75

inaccurate model of profile similarity. In addition, there are computational 76

considerations with a scanning algorithm. Furthermore, CKAT aligns pairs of CNVs 77

based on their ordinal position rather than considering all possible pairs which may not 78

optimally capture similarity. 79

To address these challenges in quantifying CNV similarity using kernel-based 80

methods, in this work we propose a new approach called the Copy Number profile 81

Curve-based (CONCUR) association test. Based on the concept of copy number (CN) 82

profile curves (introduced below), the CONCUR association test naturally incorporates 83

both CNV dosage and length features and can capture their main effects as well as 84

dosage-length interactions. Additionally, building the kernel based on CN profile curves 85

permits the quantification of CNV similarity without the need for pre-specified locus 86

units. Moreover, CNV length may be incorporated flexibly in units which are supported 87

in good resolution by the sequencing technology or which are computationally stable. 88

Like CCRET and CKAT, the test is built in the framework of kernel machine regression 89
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and is powerful under heterogeneous signals and can adjust for confounders. In this 90

analysis, we use simulation studies to demonstrate the improved power CONCUR over 91

existing kernel-based methods in a variety of settings and illustrate the practical utility 92

of CONCUR by conducting pathway analysis on the Swedish Schizophrenia Study data 93

and the Taiwan Biobank data. 94

Results 95

Overview of CONCUR 96

CONCUR assesses the collective effects of rare CNVs on a phenotype in a kernel 97

machine regression framework where the kernel construction does not require a defined 98

CNV locus. As such, CONCUR is built on two major components: (a) the CN profile 99

curve, with which we describe an individual’s CNVs across the genome or a region of 100

interest; and (b) the common area under the curve (cAUC) kernel, with which we 101

measure CNV similarity between two individuals and characterize the CNV effects on 102

the phenotype. In a CN profile curve (e.g., Fig 1), CNV dosage is shown on the y-axis 103

as jumps or troughs diverging from a baseline of 2 copies; the start and end points of 104

the jumps and troughs correspond to the start and end locations of the CNV and are 105

shown on the x-axis. At genomic locations where there are no CNV events, the y-axis 106

(dosage) takes value 2 (i.e., the baseline value). CN profile curves are intended to be a 107

visualization of CNV activity and concurrence across samples and contribute to the 108

CONCUR method through the concept of cAUC. 109

By superimposing two CN profile curves, we identify regions of overlapping CNVs of 110

the same type (i.e., deletion or duplication) and propose to use the common area under 111

the curve (cAUC) to quantify CNV similarity between two individuals. To implement 112

the idea, first the raw dosage values in the CN profile curve are centered and scaled to 113

obtain the duplication profile curve and deletion profile curve. The scaling and centering 114

can be achieved by the dosage (DS) transform functions: aDup(DS) = (DS − 2)d for 115

duplications and 0 otherwise, and aDel(DS) = (2−DS)d for deletions and 0 otherwise, 116

where d is some pre-specified constant. Second, we superimpose the duplication profile 117

curves of two individuals and note the overlapping regions where both curves are 118
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non-zero. Third, for each overlapping region, we multiply the minimum of the two 119

respective transformed dosage values by the length of the overlap, and save this measure 120

of “area of commonality”. Finally, we calculate the cAUC between two individuals as 121

the sum of all such areas of commonality in their duplication profile curves plus the sum 122

of all areas in their deletion profile curves. In the special case with d = 1 in the dosage 123

transform functions aDup(DS) and aDel(DS), the cAUCs between various pairs of 124

individuals are illustrated in Fig 1. For individuals with overlapping CNVs of dosage 4 125

(for duplications; Fig 1 (b)) or dosage 0 (for deletions; Fig 1 (c)), the cAUC is the 126

overlapping length times 2. For individuals with overlapping CNVs of dosage 3 (for 127

duplications; Fig 1 (d)) or dosage 1 (for deletions; Fig 1 (e)), the cAUC is the 128

overlapping length times 1. The cAUC between individuals with overlapping CNVs of 129

the same type but different dosages (e.g., 3 versus 4), is the length of the overlap times 130

1 (Fig 1 (f)). If there are multiple overlaps in the individuals’ CN profile curves, the 131

cAUC between two individuals is the sum of all areas of commonality (e.g., sum of 132

shaded regions in Fig 1 (g)). The cAUC kernel measures similarity in both CNV length 133

and dosage and hence characterizes the joint dosage and length effects. Using the 134

semi-parametric kernel machine regression framework, CONCUR regresses the trait 135

values on CNV effects captured by the cAUC kernel and evaluates the association 136

between traits and CNV profiles via a score-based variance component test. 137

Fig 1. Diagram of copy number profile curves and common area under the curve. (a) Example of CNV data in
standard PLINK format describing profiles of individuals in a small region of chromosome 1. (b)&(c) Copy number (CN)
profile curves illustrating the cAUC between individuals with overlapping duplications of dosage 4 in (b) and individuals with
overlapping deletions of dosage 0 in (c). (d)&(e) CN profile curves illustrating the cAUC between individuals with
overlapping duplications of dosage 3 in (d) and individuals with overlapping deletions of dosage 1 in (e). (f) CN profile curves
illustrating the cAUC between individuals with overlapping duplications of dosage 3 and 4. (g) CN profile curves which
contain overlapping CNVs in multiple locations, so that the cAUC between the individuals is the sum of the two areas.

Simulation design 138

The simulations were based on the pseudo-CNV data of 2000 individuals which is 139

publicly available at 140

https://www4.stat.ncsu.edu/~jytzeng/Software/CCRET/software_ccret.php. 141

Autosome-wide pseudo-CNV data were simulated by mimicking the CNV profiles of 142

unrelated individuals in the TwinGene study [8], and details are described in Tzeng et 143
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al. [6]. Briefly, the TwinGene study used a cross-sectional sampling design and included 144

over 6,000 unrelated subjects born between 1911 and 1958 from the Swedish Twin 145

Registry [9, 10]. CNV calls were generated using Illumina OmniExpress beadchip for 146

72,881 SNP markers and using PennCNV (version June 2011) [11] as the CNV calling 147

algorithm with recommended model parameters. From the full callset, high quality rare 148

CNVs (frequency < 1% and size > 100kb) were extracted to form the simulation pool 149

for the pseudo-CNV data. By mimicking the CNV profiles observed in a population 150

dataset such as TwinGene, the pseudo-CNV data are appropriate for the simulation 151

studies in this work. The pseudo-CNV data are stored in PLINK format indicating 152

individual ID, CNV chromosome and starting and ending locations in base pairs (bp), 153

and CNV dosage (e.g., 0, 1, 2, 3, etc.). 154

For the purpose of simulations we constructed “CNV segments” based on the 155

pseudo-CNV profiles. The endpoints of the segments correspond to locations where a 156

CNV in any one of the samples begins or ends, resulting in segments that contain either 157

one or more intersecting CNVs. Within a segment, CNV dosage of an individual is a 158

constant, and CNVs across individuals may have different dosages but share the same 159

starting and ending positions. Note that different segments will naturally have different 160

lengths. In the simulation study, we built design matrices ZDup,ZDel, and ZLen which 161

codified CNV features by segment in the pseudo-CNV profile data. The dosage matrices 162

took value 0 for those individuals without CNVs in the segment and were coded as 1 or 163

2 according to the number of additional or missing copies comprising the CNV. Length 164

was the length of the CNV segment in kb for individuals with CNV events and was 0 for 165

individuals without CNVs in the segment. 166

A case-control phenotype was generated from the logistic model 167

logit(Pr(Yi = 1)) = γ0 + βXXi +
R∑
j=1

βDupj ZDupij +
R∑
j=1

βDelj ZDelij +
R∑
j=1

βLenj ZLenij

+
R∑
j=1

βDup∗Lenj ZDupij ZLenij +
R∑
j=1

βDel∗Lenj ZDelij ZLenij , (1)

where Zij
• is the (i, j) entry of matrix Z•, i = 1, · · · , N indexes individuals, and 168

j = 1, · · · , R indicates CNV segment. A binary covariate Xi was simulated from 169

Bernoulli(0.5) for each individual. βDupj and βDelj are the log-odds ratios of segment j 170
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for the presence of a CNV versus the absence. Likewise, βLenj controls the effect of CNV 171

length in segment j, and βDup∗Lenj and βDel∗Lenj allow the effects of CNV length to 172

differ by dosage. βj
• > 0 (or < 0) corresponds to a deleterious (or protective) CNV 173

effect, and βj
• was set to 0 in non-causal segments. We set βX = log(1.1) and γ0 = −2, 174

which corresponds to a disease rate of exp(−2) = 13.5% in baseline population. We also 175

fixed βLenj = 0 to reflect the observation that length tends to act like an effect modifier 176

of dosage effects. 177

Among the CNV segments across the genome, we selected 200 segments to be causal, 178

which consist of 100 causal “dup-segments” with at least one duplication and another 179

100 causal “del-segments” with at least one deletion. A causal dup-segment cannot be a 180

causal del-segment. These causal segments were chosen as a random draw of 50 pairs of 181

adjacent segments which both contained duplications, and another 50 pairs of adjacent 182

segments which both contained deletions. This adjacent causal segment approach was 183

designed to ensure that causal regions had more realistic lengths, since some segments 184

were very short by chance. 185

We compare the performance of CONCUR with CCRET and CKAT. To implement 186

CCRET, we used the functions from the CCRET package to convert the PLINK data to 187

CCRET design matrices and computed the dosage kernel matrix. For CKAT, following 188

Zhan et al. [7], we designated each chromosome as a CNVR and performed an 189

association test for each chromosome. We reported the Bonferroni-corrected p-value for 190

an overall association by multiplying the minimum p-value among the 22 association 191

tests by 22. CNV lengths within each chromosome were scaled to be in [0,1] by dividing 192

by the range of each chromosome, i.e., the maximal ending position minus the minimal 193

starting position of observed CNVs on each chromosome. The Gaussian kernel scaling 194

parameter was set to be 1. 195

We examined the methods’ performance under two signals: in Scenario I under a 196

dosage×length signal and in Scenario II under a dosage-only signal. We chose these 197

signals to roughly replicate the simulation settings applied to assess CKAT in [7] 198

(dosage×length signal) and to assess CCRET in [6] (dosage signal). Under each 199

scenario, we considered three sub-scenarios: (a) causal duplication effects only (referred 200

to as Scenario I.a or II.a); (b) causal deletion effects only (referred to as Scenario I.b or 201

II.b); and (c) both duplications and deletions to be causal (referred to as Scenario I.c 202
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and II.c). Within each sub-scenario, we varied the percentage of deleterious and 203

protective effects by letting a percentage of the causal segments be deleterious or 204

protective. We considered (1) 100% deleterious effects, (2) 50% deleterious and 50% 205

protective, and (3) 10% deleterious and 90% protective. The choice of asymmetric 206

heterogeneity settings was motivated by the rarity of 100% protective CNV effects in a 207

genome-wide analysis, whereas 100% risk-associated effects are not uncommon. The 208

power was evaluated in the range of odds ratios (exp(β)) 1.02-1.10 for Scenario I 209

(dosage×length effects) and 1.1-1.9 for Scenario II (dosage effects). Power estimates are 210

reported for a range of effect sizes such that the power ranges roughly from 0.2 to 0.8. 211

We implemented case-control sampling to obtain 2000 cases and 2000 controls for 212

each simulation replication. Type I error rates were evaluated based on 5000 213

replications, and power was estimated based on 300 replications at each effect size. For 214

all methods (i.e., CONCUR, CCRET and CKAT), we adjusted for a simulated binary 215

covariate as a fixed effect in the kernel machine regression. We employed the 216

small-sample variance components test of Chen et al. [12] and obtained p-values using 217

Davies’ method [13] as implemented in the CKAT R package. 218

Simulation Results 219

The type I error rates of the three tests were examined at nominal levels of 0.01, 0.05, 220

and 0.1 (Table 1). All methods had type I error rates roughly around the nominal level. 221

Table 1. Type I error rates. Type I error rates of three CNV tests evaluated based
on 5000 replications.

Nominal level CONCUR CCRET CKAT

0.01 0.010 0.008 0.009
0.05 0.045 0.047 0.049
0.10 0.096 0.093 0.092

Scenario I: Causal Dosage×Length Effects. Scenario I.a (I.b) considers 222

dosage-length interactions only from causal duplication (deletion) segments, and 223

includes three settings of mixed deleterious and protective effects which are labeled as 224

(D,P)=(100,0), (50,50) and (10,90); (D,P) indicates the proportion of deleterious (D) 225

and protective (P) segments among all causal segments. The results are displayed in 226

Fig 2, with the top row showing power under causal duplication effects and bottom row 227
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under causal deletion effects. The CONCUR method has the best or comparable power 228

with the second best method (CCRET) across different settings of deleterious-protective 229

effects. Both CONCUR and CKAT are designed to detect dosage×length signals, but 230

CKAT struggled to pick up this signal perhaps due to applying the method to very 231

large CNVRs (chromosomes) as well as the multiple testing penalty. We also observed a 232

difference in relative performance in the (D,P)=(50,50) setting between I.a (causal 233

duplications) and I.b (causal deletions). This is not unexpected because in the 234

simulated data, there are differences in the features of duplication and deletion events. 235

The proportion of the causal deletion sites out of all deletions was 9.5%, and is 6.9% for 236

duplications. In addition, the 100 causal duplication segments had higher median and 237

mean length compared to the 100 causal deletion segments (median 75kb vs. 32kb; 238

mean 81kb vs. 64kb). 239

Scenario I.c considers dosage-length interactions from both duplications and 240

deletions and includes four settings of mixed deleterious and protective effects. (Fig 3) 241

These settings are denoted as (DDup,PDup,DDel,PDel)=(100,0,100,0), (50,50,50,50), 242

(90,10,10,90), and (10,90,90,10), where DDup and PDup respectively are the proportions 243

of deleterious and protective segments among causal duplication segments, and DDel 244

and PDel are defined similarly for causal deletion segments. These settings allow the 245

assessment of the method performance under multiple sources of effect heterogeneity, 246

including between-locus heterogeneity due to the mixture of deleterious and protective 247

segments, between-locus heterogeneity due to duplication and deletion causal segments, 248

and within-locus heterogeneity due to duplications and deletions with a segment having 249

opposite effects. We observed that CONCUR has the best power among the three tests 250

across different settings, followed by CCRET and then by CKAT. 251

Fig 2. Power comparison between CONCUR, CCRET, and CKAT under Scenario I (causal dosage×length
effects). The top panel shows results from Scenario I.a (causal duplication effects) and the bottom panel from Scenario I.b
(causal deletion effects). In each sub-scenario, three different proportions of deleterious vs. protective effects are considered as
indicated by (D,P), with D representing the proportions of deleterious segments and P the protective segments among causal
segments.

Fig 3. Power comparison between CONCUR, CCRET, and CKAT for Simulation I.c (causal dosage×length
effects from both duplications and deletions). Four different proportions of deleterious vs. protective effects are
considered as indicated by (DDup,PDup,DDel,PDel) with DDup and PDup reflecting the proportions of deleterious and protective
segments among causal duplication segments, and with DDel and PDel defined similarly for causal deletion segments.
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Scenario II. Causal Dosage Effects. Scenario II.a (II.b) considers dosage effects 252

from causal duplication (deletion) segments, and includes three settings of mixed 253

deleterious and protective effects, i.e., (D,P)=(100,0), (50,50) and (10,90). The results 254

are shown in Fig 4. As expected, the dosage-based CCRET kernel performs the best, 255

with CONCUR following CCRET or having comparable power. Similar results are 256

observed under Scenario II.c (Fig 5), where causal dosage effects are from both 257

duplications and deletions and four varying mixtures of deleterious and protective 258

effects are considered. 259

Fig 4. Power comparison between CONCUR, CCRET, and CKAT under Scenario II (causal dosage
effects). The top panel shows results from Scenario II.a (causal duplication effects) and the bottom panel from Scenario II.b
(causal deletion effects). In each sub-scenario, three different proportions of deleterious vs. protective effects are considered as
indicated by (D,P), with D representing the proportions of deleterious segments and P the protective segments among causal
segments.

Fig 5. Power comparison between CONCUR, CCRET, and CKAT for Simulation II.c (causal dosage effects
from both duplications and deletions). Four different proportions of deleterious vs. protective effects are considered as
indicated by (DDup,PDup,DDel,PDel) with DDup and PDup reflecting the proportions of deleterious and protective segments
among causal duplication segments, and with DDel and PDel defined similarly for causal deletion segments.

Real data application 260

In real data applications, we first, as a proof of concept, applied the proposed CONCUR 261

test on a previously analyzed CNV dataset from the Swedish Schizophrenia Study. We 262

next conducted a CNV-triglyceride (TG) association analysis using CONCUR on data 263

from the Taiwan Biobank. 264

CNV analysis on schizophrenia in the Swedish Schizophrenia Study 265

We conducted pathway-based CNV analysis on data from the Swedish Schizophrenia 266

Study [14]. The Swedish Schizophrenia Study used a case-control sampling design. 267

Genotyping was done in six batches using Affymetrix 5.0 (3.9% of the subjects), 268

Affymetrix 6.0 (38.6%), and Illumina OmniExpress (57.4%). PennCNV [11] was used to 269

generate CNV calls. After quality control, we obtained a high quality rare CNV 270

(frequency < 1% and size > 100kb) dataset in 8,547 subjects (3,637 cases and 4,820 271

controls) [15]. All procedures were approved by ethical committees at the Karolinska 272

Institutet (Dnr No. 04/-449/4 and No. 2015/2081-31/2) and University of North 273
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Carolina (No. 04-1465 and No. 18-1938). All subjects provided written informed 274

consent (or legal guardian consent and subject assent). Previous analyses of this 275

data [15] indicated significant associations of large rare CNVs with schizophrenia risk 276

for both genome-wide dosage effects and gene intersecting effects of selected gene sets. 277

To evaluate the practical utility of the three kernel-based tests, we performed 278

analysis on the gene sets previously examined in [6], excluding the PSD pathway as it 279

overlaps the other three PSD-related pathways considered. In the eight gene sets, large 280

(> 500kb) rare CNVs were found to be associated with schizophrenia by Szatkiewicz et 281

al. [15], and these associations were corroborated by Tzeng et al. [6] in a 282

gene-interruption analysis with CNVs > 100kb. In each pathway analysis, we performed 283

association tests for joint dosage and length effects of rare CNVs > 100kb, using a fixed 284

effect term to adjust for batch effects. CONCUR and CKAT kernels were constructed 285

from the raw PLINK data and the CCRET dosage kernel was created using the 286

functions available on the CCRET website. For CKAT, we used pathways as the CNVR 287

unit instead of chromosomes because there were multiple chromosomes with only one 288

gene. The results were evaluated against a Bonferroni-adjusted threshold of 0.05/8 = 289

0.00625. 290

Table 2. Association test results for the effects of CNVs with > 100kb in length on schizophrenia risk in
the Swedish Schizophrenia Study. Pathways are ordered by the number of tests that found significance (3 tests, 2 tests,
1 test) and then by pathway name. Significant p-values (at threshold 0.05/8=0.00625) are shown in bold.

Gene-sets P-values

Gene-set Name # Genes # Genes Interrupted # Genes Interrupted CONCUR CCRET CKAT
in Cases in Controls

FMRP targets (Darnell et al. [16]) 810 149 152 2.29E-05 0.00044 0.00026
PSD/PSD-95 (Kirov et al. [17]) 65 13 10 0.00052 0.00144 0.00903
Synaptic Proteome (G2Cdb) 1023 121 106 0.00067 0.00010 0.00736
Cytoplasm (Kirov et al. [17]) 266 28 32 0.00124 0.01408 0.00030
Mental Retardation 503 67 63 0.00164 0.10200 0.00350
PSD/mGluR5 (Kirov et al. [17]) 38 4 7 0.00040 0.10540 0.00129
PSD/NMDAR (Kirov et al. [17]) 61 12 12 0.00102 0.00922 0.00046
Synaptic genes (Ruano et al. [18]) 718 154 164 5.45E-06 0.02005 0.00766

CONCUR found significant associations in all pathways, while CCRET and CKAT 291

had alternating significance in some of the pathways (Table 2). In the FMRP pathway, 292

all three tests were significant, and in the remaining seven gene sets, one or both of 293

CCRET and CKAT were significant or near significant. The analyses suggest significant 294
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CNV effects from dosage and/or length affecting schizophrenia risk, and the relative 295

performance of these methods suggest some implications about the underlying effect 296

patterns. CKAT, which is more sensitive to dosage-length interactive effects, found 297

slightly more and different significant associations compared to CCRET, which is more 298

sensitive to dosage effects, while CONCUR appeared to be more encompassing. We also 299

observed stronger power of CKAT in the analysis here compared to the power observed 300

in the simulation studies, which may partially be due to the lack of multiple testing 301

penalty here. 302

CNV analysis on triglycerides in the Taiwan Biobank 303

We applied the proposed CONCUR test to the Taiwan Biobank (TWB) data 304

https://www.twbiobank.org.tw/new_web/ and conducted CNV association analysis 305

with triglyceride (TG) levels on lipid-related pathways. The nationwide biobank project 306

was initiated in 2012 and has recruited more than 15,995 individuals. The study has 307

been approved by the ethical committee at Taichung Veterans General Hospital (IRB 308

TCVGH No. CE16270B-2). The consent was not obtained because the data were 309

analyzed anonymously. Peripheral blood specimens were extracted from healthy donors 310

and genotyped using the Affymetrix Genomewide Axiom TWB array, which was 311

designed specifically for a Taiwanese population. The TWB array contains 653,291 312

SNPs and was used to generate calls for genome-wide CNVs in the following process. 313

First, Affymetrix Power Tools version 1.18.0 was used to produce a summary file of the 314

intensity values of all probes, and the file was input into the Partek Genomic Suite 315

version 6.6 to call CNVs based on the following criteria: at least 35 consecutive SNP 316

markers, p-values of different CN values between two consecutive segments < 0.001, and 317

signal-to-noise ratio (SNR) ≥ 0.3. A duplication was called if its copy number was 318

> 2.3, whereas a deletion was called if its copy number was < 1.7. Several previous 319

studies [19] [20] have demonstrated appropriate CNV calls with these parameters. After 320

quality control, we obtained CNV data in 14,595 unrelated individuals. Our CNV 321

association analyses focused on a subset of 11,664 individuals who had non-missing TG 322

levels. 323

We referenced the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 324

database [21] to identify lipid-related pathways. Among the 17 pathways related to 325
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Table 3. Association test results for the effects of CNVs on triglyceride levels in the Taiwan Biobank.
Pathways are ordered by the number of tests that found significance (3 tests, 2 tests, 1 test, and no tests) and then by
pathway name. Significant p-values (at threshold of 0.05/15 = 0.00333) are shown in bold.

Gene-sets P-values

Gene-set Names # Genes # Genes Interrupted CONCUR CCRET CKAT
hsa00120
(Primary acid bile biosynthesis)

17 17 0.00019 0.00314 0.00274

hsa00061
(Fatty acid biosynthesis)

13 12 0.00171 0.01187 0.00197

hsa00140
(Steroid hormone biosynthesis)

60 58 0.00030 0.00623 0.00159

hsa00564
(Glycerophospholipid metabolism)

97 86 0.00322 0.00398 0.00209

hsa00590
(Arachnidonic acid metabolism)

63 62 0.00212 0.00883 0.00211

hsa00591
(Linoleic acid metabolism)

29 29 0.00080 0.01799 0.00291

hsa01040
(Biosynthesis of unsaturated fatty acids)

27 23 0.00012 0.00394 0.00158

hsa00062
(Fatty acid biosynthesis)

30 26 0.00031 0.01591 0.00508

hsa00072
(Synthesis and degradation of ketone
bodies)

10 10 0.00008 0.00459 0.00383

hsa00561
(Glycerolipid metabolism)

61 50 0.00430 0.00494 0.00198

hsa00565
(Ether lipid metabolism)

47 43 0.00018 0.00859 0.00439

hsa00592
(alpha-Linolenic acid metabolism)

25 25 0.00581 0.00927 0.00273

hsa00071
(Fatty acid degradation)

44 43 0.00406 0.01088 0.00631

hsa00100
(Steroid biosynthesis)

19 16 0.01641 0.00618 0.00906

hsa00600
(Sphingolipid metabolism)

47 43 0.00382 0.00512 0.00789
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“Lipid metabolism”, 15 pathways included genes intersected by the TWB CNV data and 326

were selected. For each pathway we performed the CONCUR test, CCRET, and CKAT. 327

We adjusted for sex, age, BMI, and the top 10 principal components representing the 328

population structure as covariates with fixed effects. As before, CKAT was performed 329

with each pathway comprising a single CNVR. We compared the test results to a 330

Bonferroni threshold of 0.05/15 = 0.00333. 331

Out of the 15 pathways, ten pathways were identified as significantly associated with 332

TG by CONCUR, nine pathways by CKAT, and one pathway by CCRET (Table 3). 333

There were a total of 12 pathways found significant by one or more methods, among 334

which one pathway, hsa00120 (primary bile acid biosynthesis), was significant for all 335

methods. Compared to the Swedish Schizophrenia Study analysis, CCRET suffered 336

from lower power and CKAT showed greater power, while the performance of CONCUR 337

was relatively stable. The power loss in CCRET might be due to more dominant length 338

or dosage×length signals and perhaps also a consequence of the stricter significance 339

threshold here. CKAT demonstrated much better power than in the simulation study, 340

which is likely attributable to the treatment of each pathway as a CNVR and hence the 341

absence of multiple testing adjustment needed for multiple CNVRs. However, although 342

CONCUR and CKAT were significant in a roughly equal number of pathways (ten 343

versus nine, respectively), the CONCUR p-values tended to be much smaller than the 344

CKAT p-values. To illustrate, if a more stringent significance threshold was adopted to 345

adjust for the total of 45 tests (15 pathways × 3 methods) at a Bonferroni threshold of 346

0.05/45=0.0011, then CONCUR would maintain significance in seven pathways while no 347

CKAT p-value would meet the threshold. This behavior somewhat echoes the 348

performance of CKAT in the simulation study. 349

The relative performance of CONCUR, CKAT and CCRET seems to suggest that 350

CNV length or dosage×length effects dominate in the 12 significant pathways. To 351

illustrate possible CONCUR post hoc analyses so to probe the potential sources of the 352

pathway-level signal, we looked more closely at one pathway, hsa01040 (biosynthesis of 353

unsaturated fatty acids), for which both CONCUR and CKAT were significant while 354

CCRET was borderline significant. Previous studies have reported that 355

monounsaturated fat acids or polyunsaturated fatty acids can effect TG levels [22,23]. 356

Given the major function of the genes in hsa01040 (i.e., the biosynthesis of unsaturated 357
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fatty acids), it is not unexpected that CNVs in these genes were significantly associated 358

with TG levels. We calculated summary statistics describing CNV length and dosage in 359

hsa01040 for individuals with different levels of TG. Based on the TG quantiles from 360

the sample data, we classified individuals as having high TG (>75th percentile [>140 361

mmHg]), medium TG (25th−75th percentile [68-140 mmHg]) and low TG (<25th 362

percentile [<68 mmHg]). We applied ANOVA to detect differences in CNV length and 363

in dosage characteristics, and applied chi-squared tests to assess differences in the 364

proportion of individuals with CNVs across TG levels. In addition, we examined CNV 365

features in all CNVs together and in duplications and deletions separately. 366

Table 4. Descriptive statistics for hsa01040 pathway. TG values are classified as Low (<the 25th percentile [<68
mmHg]; n=2,931), Medium (the middle 50% [68 - 140 mmHg]; n=5,844), and High (>the 75th percentile [>140 mmHg];
n=2,889). The percent of individuals with CNVs is with respect to the total number of individuals in each TG category. The
mean number of CNVs per individual and mean total length of CNVs (bp) per individual are reported, as well as the mean
lengths (bp) and mean dosage per CNV. “Promising” associations with TG are marked with ?? to indicate p-value< 0.01 and
with ? to indicate p-value< 0.05.

CNV Type TG Level Pct
Individuals
with CNV

Mean #
CNVs per
Individual

# Genes
Interrupted

Mean Total
CNV Length

per Individual (bp)

Mean CNV
Length (bp)

Mean CNV
Dosage

All
Low 6.18% 3.33 23 25143.71 2433.58 1.63
Medium 6.07% 3.52 23 24447.30 2473.48 1.63
High 7.17% 3.48 23 31091.65 2471.43 1.64

Deletion
Low 2.8% 5.84 16 29630.62 2590.55? 1.41
Medium 2.74% 6.24 17 28107.36 2593.05? 1.40
High 3.32% 5.79 16 32039.63 2067.96? 1.39

Duplication
Low 3.62% 1.17 20 7811.20 1827.24?? 2.50?

Medium 3.54% 1.22 23 10009.61 2001.81?? 2.52?

High 4.15% 1.38 22 27897.23 3831.02?? 2.49?

Taking p-values < 0.05 as a suggestive “promising” association with TG, we did not 367

observe any CNV associations when all CNVs were analyzed together, but for 368

duplications only, there were promising differences in CNV length (p-value=0.0063) and 369

weaker differences in dosage (p-value=0.0255) across TG levels. There were also some 370

weak significance in CNV length for deletions (p-value=0.0423). We were cautious to 371

not over-interpret these “promising” associations since this stratified analysis reflected 372

only marginal associations of a CNV feature, and the tests did not account for the effect 373

heterogeneity that motivates the application of kernel-based methods. We also 374

proceeded with testing using CONCUR on duplications and deletions separately, and 375

found a very significant association with TG in duplications (p-value < 1× 10−8) and a 376
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weaker signal in deletions (p-value=0.0313). 377

To further explore the signal from duplications, we visualized CNVs in the 23 genes 378

in hsa01040 (Fig 6). Fig 6 displays duplications and deletions in the CNV profiles of 379

individuals categorized by their TG level (low, medium, and high), with profiles 380

clustered so that shared patterns across profiles become apparent. For exploration 381

purposes, we applied CONCUR to duplications in each gene and found that several 382

genes had strong association p-values (i.e., < 10−4), BAAT, ELOVL4, ELOVL6, 383

ELOVL5, HSD17B4, and SCD5 (S1 Table). Notably, BAAT is an amino acid 384

N-acyltransferase for bile acid. Previous studies have demonstrated that bile acids are 385

important regulators for TG level through crosstalk with farnesoid X receptor 386

(FXR) [24,25]. Since conversion of cholesterol to bile acid is an essential step in 387

preventing the accumulation of TG, copy number duplications in BAAT may directly 388

affect TG levels in the blood. Three ELO genes had significant CNV associations. Since 389

the major functions of these genes focus on the elongation of fatty acids, CNV events in 390

these genes are likely to affect the production and metabolism of TG. For example, one 391

study showed that hepatic steatosis was observed in ELOVL5 -knockout mice due to the 392

activation of SREBP-1c and its target genes [30]. HSD17B4 is a dehydrogenase, which 393

is able to inhibit the production of DHEA [26]. A previous study showed that TG levels 394

were inversely correlated to DHEA levels in men with type 2 diabetes [27], suggesting a 395

potential link between CNVs in HSD17B4 and TG levels. SCD5 serves as a critical 396

enzyme providing a double bond to construct complex lipid molecules such as 397

TG [28,29], and thus dysregulation of SCD5 expression may impact TG levels. Further 398

analyses are required to formally localize the sources of the CNV association signal in 399

this pathway and others, but this exploratory analysis nonetheless serves to enrich our 400

understanding of the association in pathway hsa01040 through examination of 401

CNV-level and gene-level features. 402

Fig 6. Visualization of CNV activity in pathway hsa01040 by level of triglycerides (TG). CNV activity in genes
in hsa01040 is shown by level of TG (Low, Medium, and High), with duplications in red and deletions in blue. Columns
represent clustered individuals, and genes shown here are the 23 genes in the pathway that contain CNVs, ordered by the
number of CNVs contained therein.
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Discussion 403

We introduce CONCUR to leverage the strength of kernel-based methods to access the 404

collective effects of rare CNVs on disease risk and incorporate several desired features. 405

First, CONCUR permits the quantification of CNV similarity in an CNVR-free manner, 406

avoiding the need of arbitrarily defining CNVRs as in current practice. Second, 407

CONCUR incorporates both length and dosage information via the cAUC kernel, and is 408

capable of detecting dosage, length and length-dosage interaction effects. Third, as the 409

technology for detecting smaller CNVs improves, we expect to observe more length 410

variation in CNVs and an increasing need to accommodate length effects in CNV 411

association studies. However, there exist shortcomings in the standard kernel choices for 412

handling CNV length. For example, a linear (or polynomial) kernel, which scores length 413

similarity in a multiplicative fashion, cannot always reflect the true level of length 414

similarity between an individual pair, e.g., a pair of CNVs of length 20kb would be 415

equally similar to two CNVs with lengths 1kb and 400kb (as 20×20 = 1×400). The 416

alternative, e.g., Gaussian kernel as in CKAT, would still require a pre-specified scaling 417

factor. CONCUR addresses these issues by using the common AUC of the CN profile 418

curves of an individual pair and quantifies CNV similarity in dosage and length 419

simultaneously. Finally, unlike current kernel methods, which require discretized copy 420

numbers, CONCUR is directly applicable to continuous and discrete copy numbers. We 421

provide the R functions that perform the CONCUR test at 422

https://www4.stat.ncsu.edu/~sthollow/JYT/CONCUR/. 423

CONCUR shares some philosophy with several CNV analysis strategies in the 424

literature. For example, Aguirre et al. [31] characterized the copy number changes in the 425

pancreatic adenocarcinoma genome by detecting the minimum common regions (MCR) 426

of recurrent copy number changes across tumor samples and using MCRs to prioritize 427

genes that might be involved in pancreatic carcinogenesis. Harada et al. [32] also 428

examined the minimal overlapping/common regions of frequent CNV activities among 429

pancreatic cancer samples and among normal samples to identify candidate regions that 430

might contain critical oncogenes or tumor suppressor genes. Furthermore, Mei et al. [33] 431

proposed algorithms for identifying common CNV regions across individuals of 432

homogeneous phenotypes for downstream association analysis. Built on similar concepts 433
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to these “common regions”, CONCUR quantifies CNV similarity between sample pairs 434

based on the “size” of the common regions as reflected in congruent location and 435

dosage, and provides an association test to evaluate dosage and length effects. 436

In the analyses performed in this study, we calculated the cAUC using CNV dosage 437

values transformed by the functions aDup(DS) = (DS − 2) for duplications and 0 438

otherwise, and aDel(DS) = (2−DS) for deletions and 0 otherwise. That is, we used 439

copy number 2 as a reference value, and defined CNV similarity as the overlapping CNV 440

length scaled linearly according to the magnitude of dosage deviation from the reference 441

value. However, CONCUR can be flexibly extended to accommodate other schemes of 442

quantifying common area by adopting different a(·) functions in the calculation of the 443

cAUC. For example, instead of a linear scaling with a•(DS) = |DS − 2|), one may 444

consider a non-linear scaling by setting a•(DS) = |DS − 2|d, with d < 1 deflating and 445

d > 1 enhancing the contributions of CNVs of more extreme gains/losses. Additionally, 446

one can impose reference values other than 2, such as using 2.3 for duplications (e.g., by 447

setting aDup(DS) = (DS − 2.3) for duplications and 0 otherwise), and using 1.7 for 448

deletions (e.g., by setting aDel(DS) = (1.7−DS) for deletions and 0 otherwise). 449

Finally, overlapping area may be further weighted by inverse frequencies when needed, 450

to augment the contribution of overlap in regions of rare CNV activity or of CNVs with 451

uncommon dosage. 452

Materials and methods 453

CONCUR method 454

For individual i, i = 1, · · · , n, denote Yi the phenotype of individual i. Codify the CNV 455

information in matrix Zi with dimension Pi × 4 as in the standard PLINK format of 456

CNV data, where Pi is the number of CNVs that individual i has, and each row of Zi 457

records four features of CNV p, p = 1, · · · , Pi: dosage (denoted as DSp), chromosome 458

(denoted CHRp), start location (denoted as BP1p), and end location (denoted as 459

BP2p). The dosage DSp can be integer or continuous values. Finally let 460

Xi = (Xi1, · · · , Xir)
T be the r covariates. Under the kernel machine regression 461

framework, we model the association between phenotypes and CNVs as follows 462
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g(µi) = β0 +XT
i βX + h(Zi), (2)

where µi = E(Yi|Xi, Zi), g(·) is the canonical link, and h(Zi) is an unknown smooth 463

function of the variant features characterized by a kernel function K(·, ·). For 464

continuous responses, g(µi) = µi; for binary responses, g(µi) = log[(µi/(1− µi)]. 465

Profile curves 466

The proposed cAUC kernel is built on the concept of a CN profile curve. For a given 467

chromosome k = 1, 2, · · · , 22 and individual i = 1, 2, · · · , n, we conceptualize a function 468

fCNik (x) which returns the copy number of a CNV if x falls in a CNV and returns 2 (i.e., 469

no CNV events) otherwise, e.g., examples shown in Fig 1. Given the CN profile curve, 470

we further define two curves called the duplication profile curve and deletion profile 471

curve, which recenter and rescale the CN values in CN profile curves through the 472

“dosage transform functions” as described below, and allow us to compute cAUC 473

similarity from duplications and from deletions in a more flexible manner. 474

We further use q = 1, · · · , Pik to index the CNV features (DSq, BP1q, BP2q)

occurring on chromosome k of individual i for k = 1, · · · , 22. Then we construct

duplication and deletion profile curves respectively describing duplications and deletions

on chromosome k for individual i as follows:

fDupik (x) =

Pik∑
q=1

I(BP1q ≤ x ≤ BP2q)a
Dup(DSq) (3)

fDelik (x) =

Pik∑
q=1

I(BP1q ≤ x ≤ BP2q)a
Del(DSq) (4)

(5)

where x is a location on the genome on the same scale as BP1q and BP2q; I is the 475

indicator function such that I(·) = 1 if the condition contained within is satisfied and 476

equals 0 if otherwise; and a•(DS) is a dosage transform function which determines the 477

reference copy number value and controls how different copy number values contribute 478

more or less to similarity in profiles. If an individual has no CNVs in chromosome k, 479

then their duplication and deletion profile curves are identically equal to zero, i.e., 480
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fDupik (x) = fDelik (x) ≡ 0 for all x. Although not explicitly shown, fDupik and fDelik are 481

functions of Zi as the information of DSq, BP1q, BP2q and chromosome k for subject i 482

is obtained from Zi. 483

In this study, we designated aDup(DSq) = (DSq − 2) if DSq is from a duplication 484

and 0 otherwise and aDel(DSq) = (2−DSq) if DSq is from a deletion and 0 otherwise. 485

That is, for a given chromosome k and individual i, the function fDupik (x) equals the 486

magnitude of the duplication (i.e., number of additional copies compared to the 487

reference copy number 2) for x inside a duplication and equals 0 otherwise, with 488

analogous logic for fDelik (x). Other options of the dosage transform functions are 489

described in the discussion section. 490

cAUC kernel 491

We propose to quantify the similarity between individuals i and j by comparing fDupik 492

vs. fDupjk and fDelik vs. fDeljk over chromosomes k = 1, · · · , 22 using the following kernel 493

function 494

kcAUC(Zi, Zj) =
22∑
k=1

∫
N

[
min

(
fDupik (x), fDupjk (x)

)
+ min

(
fDelik (x), fDeljk (x)

)]
dµ(x) (6)

where min
(
f•ik(x), f•jk(x)

)
captures the minimum of the two functions evaluated at x 495

and µ(x) is the counting measure. We refer to the kernel function as the cAUC kernel 496

as it computes the minimal common area under the two individuals’ duplication and 497

deletion profile curves. The cAUC kernel function is a valid kernel as shown in S1 498

Appendix. 499

The intuition of the cAUC kernel is to quantify similarity using the length of 500

overlapping CNVs between two individuals, with dosage information of the two 501

overlapping CNVs determining how the overlapping length is scaled. The similarity 502

between CNVs of different types (i.e., duplication vs. deletion) is 0, and the similarity 503

between CNVs of the same type depends on the copy number values and the dosage 504

transform function a•(DS). For legal choices of a•(DS), the similarity between a 505

shared duplication (or deletion) event of larger magnitude will be higher than the 506

similarity between a duplication of smaller magnitude, while the minimum operator 507
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enforces that the overlapping length is scaled by the CNV of smaller magnitude in a 508

pair with different magnitudes. 509

Legal choices of a•(DS) will upweight the contribution from similar CNVs of greater 510

magnitude in duplication or deletion, which are often more rare and have higher impact. 511

As proposed in the Discussion section, the family of dosage transform functions 512

a•(DS) = |DS − 2|d provides a spectrum of weighting schemes, with d < 1 513

down-weighting and d > 1 upweighting the contribution of higher magnitude CNVs. 514

Across copy number data of varying types and varying sample-level characteristics, the 515

a•(·) dosage transform function allows for flexible scaling of dosage to appropriately 516

customize the cAUC measure of similarity. 517

Association test 518

The association between phenotype and CNVs is examined by testing the hypothesis 519

H0 : h(·) = 0. To do so, we define the vector of subject-specific CNV effects 520

H = (h(Z1), · · · , h(Zn)) and treat H as random effects which follow N(0, τK), where 521

τ ≥ 0 is a variance component and K is a n× n kernel matrix with its (i, j)th entry 522

being K(Zi, Zj). Following Liu et al. [34] [35], testing H0 : h(·) = 0 is equivalent to 523

testing τ = 0 under a generalized linear mixed model. As in [7] [6], we use a score-based 524

test, which has the form of 525

T =
(Y − µ0)∆WKW∆(Y − µ0)

2

∣∣∣∣
τ=0,µ0=µ̂0,φ=φ̂

(7)

where Y is n× 1 vector of responses; µ0 = E(Y ) under H0; φ is a dispersion factor 526

parameterizing the variance of Y ; ∆ ∈ Rn×n is a diagonal matrix with its ith diagonal 527

element being δi = 1/g′(µi); W ∈ Rn×n is a diagonal weight matrix with its ith 528

diagonal element being wi = [v(µi)]
−1δ2i where v(·) comes from Var(Yi) = v(µi)φ per 529

the exponential dispersion family of probability density functions. The score statistic 530

asymptotically follows a weighted chi-square distribution [34] [35]. Recently, Chen et 531

al. [12] derived the corresponding small-sample distribution, which is used to calculate 532

the p-value in this work. 533
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