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Abstract 
 

 

Background Neoantigens that arise as a consequence of tumour-specific mutations 

can be recognized by T lymphocytes leading to effective immune surveillance. In 

colorectal cancer (CRC) and other tumour types, a high number of neoantigens is 

associated with patient response to immune therapies. The molecular processes 

governing the generation of neoantigens and their turnover in cancer cells are poorly 

understood.  We exploited CRC as a model system to understand how alterations in 

DNA repair pathways modulate neoantigen profiles over time. 

 

Methods We performed Whole Exome Sequencing (WES) and RNA sequencing 

(RNAseq) in CRC cell lines, in vitro and vivo, and in CRC patient-derived xenografts 

(PDXs) to track longitudinally genomic profiles, clonal evolution, mutational signatures 

and predicted neoantigens.  

 

Results The majority of CRC models showed remarkably stable mutational and 

neoantigen profiles, however those carrying defects in DNA repair genes continuously 

diversified. Rapidly evolving and evolutionary stable CRCs displayed characteristic 

genomic signatures, and transcriptional profiles. Downregulation of molecules 

implicated in antigen presentation occurred selectively in highly mutated and rapidly-

evolving CRC.   

 

Conclusions These results indicate that CRC carrying alterations in DNA repair 

pathways display dynamic neoantigen patterns that fluctuate over time.  We define 

CRC subsets characterized by slow and fast evolvability and link this phenotype to 

downregulation of antigen-presenting cellular mechanisms.  Longitudinal monitoring 

of the neoantigen landscape could be relevant in the context of precision medicine.   

 

Keywords: Colorectal cancer, neoantigen, DNA repair, immune response, mutational 

signature 
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Background 

 

Anticancer therapies based on immune-checkpoint blockade are often remarkably 

effective but benefit only a minor fraction of cancer patients (1). Several biomarkers of 

response and resistance to immune modulators have been proposed (2) (3). Among 

these, the overall mutational burden (number of somatic variants per megabase (Mb)) 

and the number of predicted neoantigens were highlighted in multiple studies (4) (5) 

(6). The predictive values of mutational and antigen burdens are still being evaluated 

in the clinical settings. Both parameters are presently assessed on DNA extracted 

from individual tissue samples and are typically measured only once in the clinical 

history of each patient. Alterations in DNA repair pathways, including mutations or 

promoter hypermethylation of mismatch repair (MMR) effectors (MLH1, MSH2, etc) or 

DNA polymerases (polymerase ε and δ) (7) are known to increase the mutational 

burden and the neoantigen profiles of cancers (8). Whether, and to what extent, 

neoantigen profiles evolve over time as a result of the inherent genomic instability of 

individual tumours is largely unknown. We recently reported that in mouse models, 

inactivation of DNA mismatch repair increases the mutational burden and leads to 

dynamic mutational profiles resulting in effective cancer immune response (9). Here 

we exploit CRCs as a model system to understand whether mutational burden and 

neoantigen profile of human tumours evolve over time as a result of their distinctive 

genomic landscapes.   

 

Methods 

 

CRC cell culture conditions 

All cell lines were maintained in their original culturing conditions according to supplier 

guidelines. Cells were ordinarily supplemented with FBS 10%, 2mM L-glutamine, 

antibiotics (100U/mL penicillin and 100 mg/mL streptomycin) and grown in a 37°C 

and 5% CO2 air incubator. To study evolution of cell populations, cell lines were not 

cloned prior to the experiment or at any subsequent timepoint. Cell lines were thawed 

in a 10 cm dish. After thaw-recovery, each cell line was screened for the absence of 

Mycoplasma contamination and checked for its identity, referred below as Quality 

Control (QC)). To preserve heterogeneity, upon thawing individual lines were 
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expanded to at least 108 cells.  At this point for each model, cells were counted, and 

the percentage of alive/dead cells was calculated. At the beginning of the experiment 

(T0), 4 x107 live cells were distributed as follows: (A) 2 x106 cells were re-plated in a 

10cm dish for in vitro propagation, (B) 3x107 cells were used for in vivo experiments, 

(C) 2 x106 cells were frozen, (D) 3 pellets (2x106 cells each) were frozen for DNA, 

RNA and protein extraction.  Cells plated as in A were kept in culture changing 

medium twice a week and dividing them at constant splitting rate, determined before 

initiating the experiment.  In details, splitting was performed before full confluency 

was achieved. The number of cells that were split and the number of passages and 

days of culture were recorded for each cell model to calculate the doubling time.  

During in vitro culture, cell populations were collected at the following pre-determined 

time points: 30 days (T30), 60 days (T60) and 90 days (T90) days from T0. At each 

time point a fraction of the cells were put aside (note that this did not affect the rate of 

passaging described below) and pellets (2x106 each) were collected for DNA, RNA 

and protein extraction. QC was repeated at each time point.  

 

Cell quality control (QC) 

Cells were screened for absence of Mycoplasma contamination using the 

Venor®GeM Classic kiy (Minerva biolabs). The identity of each cell line was checked 

before starting each experiment and after every genomic DNA extraction by 

PowerPlex® 16 HS System (Promega), through Short Tandem Repeats (STR) at 16 

different loci (D5S818, D13S317, D7S820, D16S539, D21S11, vWA, TH01, TPOX, 

CSF1PO, D18S51, D3S1358, D8S1179, FGA, Penta D, Penta E, and amelogenin). 

Amplicons from multiplex PCRs were separated by capillary electrophoresis (3730 

DNA Analyzer, Applied Biosystems) and analysed using GeneMapper v 3.7 software 

(Life Technologies). 

 

Microsatellite instability (MSI) status 

The MSI status was assessed with the MSI Analysis System kit (Promega). The 

analysis requires a multiplex amplification of seven markers including five 

mononucleotide repeat markers (BAT-25, BAT-26, NR-21, NR-24 and MONO-27) and 

two pentanucleotide repeat markers (Penta C and Penta D). The products were 

analysed by capillary electophoresis in a single injection (3730 DNA Analyzer, ABI 
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capillary electrophoresis system (Applied Biosystems). Then the results were 

analysed using GeneMapper V5.0 software. 

 

DNA extraction and exome sequencing 

Genomic DNA (gDNA) was extracted from CRC cell lines, xenografts, and PDXs 

using Maxwell® RSC Blood DNA kit (AS1400, Promega).  DNA was sent to 

IntegraGen SA (Evry, France) that performed library preparation, exome capture, 

sequencing, and data demultiplexing. Final DNA libraries were pair-end sequenced 

on Illumina HiSeq4000 as paired end 100b reads.  

 

Mutational analysis in cell lines 

When cell lines were passaged in mice or when analysing patient derived xenografts, 

Fastq files were first processed with Xenome (10) to remove reads of mouse origin. 

Reads files were aligned to the human reference hg38 using BWA-mem algorithm 

(11) and then the “rmdup” samtools  command was used to remove PCR duplicates 

(12). On the resulting aligned files, we observed a median depth of 138x with 98% of 

targeted-region covered by at least one read. Bioinformatic modules previously 

developed (13) (9) by our laboratory were used to identify single nucleotide variants 

(SNVs) and indels. The mutational characterization of the 64 cell lines at time point 0 

was assessed by calling the alterations against the hg38 reference annotation. Then 

a series of filters were used to remove germline variants and artifacts: alleles 

supported by only reads with the same strand, excluding start and end read positions 

from the count, were discarded; variants called with allelic frequency lower than 10% 

as well a p-value greater than 0.05 (binomial test calculated on allele count and depth 

of each sample) were excluded; common dbSNP version 147 and a panel of normal 

(40 samples) from previous sequencing were used to annotate and filter germline 

variants and sequencing artifacts. The variant calls of 45 cell lines at time point 90 

and the 18 cell lines explanted from mice were performed using the allele comparison 

strategy between the same cell line at time 0 and time point 90 and xenograft 

respectively. Only variants present at time point 90 (or in xenograft) were kept. 

Artifact removal was employed as described above. To calculate the tumour 

mutational burden (number of variants/Mb), only coding variants were considered. 

Those variants were used to predict neoantigens using previously published methods 

(14) (9). Briefly, RNAseq data were used as input of “OptitypePipeline”  (15) to assess 
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the HLA status of each samples at time point 0, then NetMHC 4.0 software (16) was 

employed to analyse mutated peptides derived from variants calls using kmer of 8-11 

length. Next, for each SNV we modified the corresponding cDNA in the selected 

position and we examined the 5’ and 3’ context. The latter was set taking into account 

the length (in terms of aminoacids) with which the putative antigen could bind HLA. 

We translated the cDNA and feed mutant peptide to netMHC with the proper HLA(s). 

For frameshifts, we applied the same approach considering every possible peptide 

generated by the new frame. Finally, RNAseq data were used to annotate and then 

filter according to expression values (Fragments Per Kilobase Million (FPKM) > 10). 

Only predicted neoantigens with a strong binding affinity (Rank < 0.5) were 

considered for further analysis. 

 

Mutational analysis of patient-derived xenograft 

WES of patient-derived xenografts was performed at IntegraGen SA (Evry, France). 

Sequenced samples included a microsatellite stable (MSS), a microsatellite unstable 

(MSI), and a POLE mutant case (5, 7, and 6 respectively). Samples were analysed 

with the same bioinformatic pipeline applied to cell lines and murine reads were first 

removed using Xenome (10). A median depth of 130x and with 98% of targeted-

region covered by at least one read was observed. All 18 PDXs samples were 

characterized by calling alterations against the hg38 reference annotation. For each 

generation, with the exception of first one, the mutational evolution was inferred by 

subtracting the mutations of the previous generation. Second generation samples 

were compared to the first-generation samples, samples from the 3rd generation 

were compared to the 2nd generation samples, and so on.  

 

Ploidy Estimation  

Gene copy-number (GCN) was calculated in a two-steps approach: initially we treated 

the cell line as diploid and considered the median read depth of all coding regions as 

the level for 2N ploidy. We also calculated the median read depth for every gene.  

The ratio between the two median values was then considered as the relative GCN. 

In the second step, to estimate the overall ploidy we segmented all chromosomes 

using a custom script that implements circular binary segmentation. Finally, we 

exploited the distribution of allelic frequencies for individual segments to assess the 
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absolute GCN. This was necessary since distinct ploidy levels have different 

expected distributions. For example, a 2N ploidy status has a bell-shaped curve with 

a peak on 50%, a 3N ploidy is expected to have two peaks on 33% and 66%, etc. 

 

 

Mutational Signature 

Mutational signatures were calculated using the web application ‘Mutational 

Signatures in Cancer’ (MuSiCa) (17). The profile of each signature is calculated using 

the six substitution subtypes: C>A, C>G, C>T, T>A, T>C, and T>G (all substitutions 

are referred to by the pyrimidine of the mutated Watson–Crick base pair). Information 

on nucleotides 5’ and 3’ to each mutated base are incorporated to generate 96 

possible mutation types. For each sample, a tab-separated values file was created 

with chromosome, position, reference, and alternate alleles. Only samples with at 

least 10 mutations were included. The output file of MuSiCa, that includes the 

contribution values of 30 signatures (18), was used to create a clustermap with 

seaborn, a Python data visualization library, setting Euclidean metric and the average 

linkage method.  

 

Doubling time 

Cell lines were passaged in vitro for a minimum of 85 to a maximum of 103 days. 

Each passage was performed before full confluency was achieved and the total 

number of doublings was annotated for each cell model. Two parameters, number of 

passages (n), and days of culture (t), were used to estimate the growth rate (GR) and 

the doubling time (DT) assuming that: every division is an independent random event; 

probability distribution of division is equal for all cells and it is an exponential 

distribution; the number of cells in each plate before confluence is fixed (K). The 

growth rate is defined as GR=logn(2)÷DT (19). The estimated number of cells at time t 

is defined as N(t)=N(0)×e(GR×t) where N(0) is the  number of cells at time 0. Therefore 

GR=logn(N(t)÷N(0))÷t where N(t)÷N(0)=(K×2n)÷(K×20)=2n and so GR=logn(2
n)÷t. 

Finally, DT=t×logn(2)÷ logn(2
n). 

 

RNA extraction and RNAseq analysis 

Total RNA was extracted from a pellet of CRC cells (2×106 cells) using Maxwell® 

RSC miRNA Tissue Kit (AS1460, Promega), according to the manufacturer’s 
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protocol. The quantification of RNA was performed by Thermo Scientific Nanodrop 

1000 (Agilent) and Qubit 3.0 Fluorometer (LifeTechnologies). RNA integrity was 

evaluated with the Agilent 2100 Bioanalyzer using the Agilent RNA 6000 Nano Kit. 

Total RNA (800 ng) with RNA integrity number (RIN) score between 9 and 10 was 

used as input to the Illumina TruSeq RNA Sample Prep Kit v2-Set B (48Rxn), 

according to the manufacturer’s protocol. The standard RNA fragmentation profile 

was used (94 °C for 8 min for the TruSeq RNA Sample Prep Kit). PCR-amplified 

RNA-seq library quality was assessed using the Agilent DNA 1000 kit on the Agilent 

2100 BioAnalyzer and quantified using Qubit 3.0 Fluorometer (LifeTechnologies). 

Libraries were diluted to 10 nM using Tris-HCl (10 mM pH 8.5) and then pooled 

together. Diluted pools were denatured according to standard Illumina protocol and 

1.8 pM were run on NextSeq500 using high output Reagent cartridge V2 for 150 

cycles. A single-read 150-cycle run was performed. FastQ files produced by Illumina 

NextSeq500 were aligned using MapSplice2 (20) transcriptome-aware aligner using 

hg38 assembly as reference genome. The resulting BAM files were post-processed to 

translate genomic coordinates to transcriptomic ones and to filter out alignments 

carrying insertions or deletions (which RSEM does not support) or falling outside the 

transcriptome regions. The post-processed BAM alignment was given as input to 

RSEM (21) for gene expression quantification using GENCODE v22 as gene 

annotation. 

Differential expression analysis 

The abundance quantification generated with RSEM provides the FPKM and the 

expected counts for each gene. The latter was used to perform genes differential 

expression analysis with DESeq2 R package (library Bioconductor) (22) given two 

distinct groups of interest, one of which considered as the reference. Genes were 

considered as differentially expressed if the adjusted p-value was less than 0.05, and 

the log2 fold change was less or equal to -1 (if median FPKM value of the reference 

group was greater or equal to 10) or the log2 fold change was greater or equal to 1 (if 

median FPKM of the target group was greater or equal to 10). The analyses were 

performed between the following groups: MSI vs MSS (reference); hypermutated vs 

non-hypermutated (reference); “EVOLVING-CRC” vs “STABLE-CRC” (reference).  

Hypermutated group included MSI and MSS POLE mutated cell lines (18 samples). 

“EVOLVING-CRC” group included all samples with at least 10 alterations acquired 
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per day. A multi-factor configuration of the expression analysis was designed 

including extra variables of interest such as growth rates or the number of mutations 

normalized to doubling time. 

 

 

Pathway analysis 

Genes differentially expressed were then analysed with g:Profiler (23), an online 

pathway analysis tool that takes a list of genes and assigns them to different families 

of biological functions. We set the query options to select significant biological 

processes only and we retained (for further analysis) only the top most families of the 

hierarchy (depth 1). 

 

Xenograft mouse model 

Each CRC cell line (5×106 cells) was injected subcutaneously into both flanks of two 

6-week-old female NOD (nonobese diabetic)/SCID (severe combined 

immunodeficient) mice (Charles River Laboratory). Tumour size was measured twice 

a week and calculated using the formula: V = ((d)2 × (D)) ÷2 (d = minor tumour axis; 

D = major tumour axis). Tumours were explanted when they reached a volume of 

1000mm3. The investigators were not blinded, and measurements were acquired 

before the identification of the cages. 

 

Patient-derived mouse model 

Tissue from hepatic metastasectomy of CRC patients was collected at surgery and 

implanted in NOD-SCID mice as described previously (24). When reaching a volume 

of 1500-2000mm3, the tumours were explanted, fragmented, and serially passaged in 

new mice. At each passage, part of the material was frozen for molecular analyses. 

Samples' genetic identity was determined by Sequenom-based analysis of 24 highly 

variable SNPs of germline DNA (Table 5), confirmed by analysing pre-implantation 

tumour material, and then validated every second passage in mice. The study 

population consisted of matched tumour and normal samples from 3 CRC patients 

that underwent surgical resection of liver metastases at the Candiolo Cancer Institute 

(Candiolo, Torino, Italy) and at the Mauriziano Umberto I Hospital (Torino) between 
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2009 and 2013. Patients signed informed consent, and the study was approved by 

the relevant institutional Ethics Committees. 

 

Western blotting analysis 

Proteins were extracted by solubilizing the cells in boiling SDS buffer (50 mM Tris-HCl 

[pH 7.5], 150 mM NaCl, and 1% SDS). Samples were boiled for 5 minutes at 95°C 

and sonicated for 10 seconds. Extracts were clarified by centrifugation, normalized 

with the BCA Protein Assay Reagent kit (Thermo). Equal amounts of proteins (20μg) 

were loaded in each lane. Proteins were separated by PAGE and transferred to 

nitrocellulose sheets. Western blot detection was performed with enhanced 

chemiluminescence system (GE Healthcare) and peroxidase conjugated secondary 

antibodies (Amersham). The following primary antibodies were used for western 

blotting: anti-beta2 Microglobulin [EP2978Y] (ab75853, Abcam), anti-MLH1 (ab92312, 

Abcam), anti-MSH2 (ab70270), Abcam), anti-MSH6 [EPR3945],(ab92471, Abcam), 

anti-MSH3 PA527864, Invitrogen, anti-PMS2 EPR3947 (Cell Marque Corporation, 

USA), anti-actin (I-19) (sc1616, Santa Cruz), anti-HSP 90α/β (H-114, sc-7947, Santa 

Cruz). Images were acquired with Chemidoc (Biorad) and western blot band intensity 

was analysed using Image Lab software (Biorad). 

 

 

Results 

 

We selected from our database 64 CRC cell lines designed to recapitulate clinically 

relevant characteristics of CRC patients (Table 1 and Suppl. Fig. 1a). Whole exome 

sequencing and RNAseq were performed on all models. Using previously developed 

computational tools and bioinformatic algorithms (13) (25) (14) (26), we measured 

mutational burden (alterations per Mb) assessing both SNVs and frameshifts (Fig. 

1a,b) Scrutiny of genomic alterations highlighted that MSI cell lines and those carrying 

known POLE hotspot mutations had higher number of mutations per Mb as compared 

to MSS cell lines (Fig. 1a). The type of DNA repair alterations occurring in each model 

affected the nature of mutations: MSI cells displayed higher number of frameshifts 

and indels than POLE mutant cell lines, the opposite was true for SNVs (Fig. 1c, d).  
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Alterations in MMR and POLE genes are listed in Table 2 and Suppl. Fig. 1b. The cell 

line with the highest number of variants (SNU1040) carried inactivating alterations in 

both MLH1 and POLE (Suppl. Fig. 1b).  Altogether, these results are consistent with 

what has been reported in CRC patients carrying alterations in the MMR DNA repair 

pathway, indicating that the cell models included in this study broadly recapitulate 

what is observed in clinical  specimens (27). 

 

To assess whether, and to what extent the basal mutational profiles (Time 0: T0) 

evolved over time, we passaged 45 cell lines for 90 days and collected a second set 

of samples (Time 90: T90) (Suppl. Fig. 2). These were subjected to WES and 

analysed using the computational pipeline described above. Across all cell lines 

globally, the total mutational burden was similar between T0 and T90 (Suppl. Fig. 3). 

However, when the T0 and T90 mutational profiles were compared, prominent 

differences were detected among models sharing specific DNA repair defects (Fig. 

2a). Specifically, the mutational landscapes of most MSI and POLE mutant cells 

evolved very rapidly through the generation of novel SNVs and frameshifts (Fig. 2a). 

On the contrary, the majority of MSS models showed more stable profiles (Fig. 2a). 

We sought to minimize confounding effects due to differences in cell-intrinsic doubling 

times (Table 1), we therefore calculated the doubling time of all cell models (Table 1, 

Suppl. Fig. 4). Notably, evolvability trends remained apparent after normalization for 

doubling time (Suppl. Fig.  5). We designated rapidly evolving CRC cells as 

“EVOLVING-CRC” and evolutionary stable CRC cell as “STABLE-CRC” (Table 1).  

 

We empirically define EVOLVING-CRCs as those cells that acquire 10 alterations (or 

more) per day after normalizing mutation data to the doubling time of cell lines (Table 

1). Moreover, EVOLVING-CRCs often carried alterations in multiple genes involved in 

distinct DNA repair functions, suggesting that defects in several DNA damage 

response pathways might be co-selected (Suppl. Fig. 1b).  The expression of MMR 

genes was assessed by western blot at T0 and T90 and no differences were 

observed (Suppl. Fig. 6).   

 

The genome of four CRC lines classified as MSS (SNU1235, COCM1, HDC142, and 

SNU1411) exhibited dynamic mutational profiles (Fig. 2). In an attempt to decipher 

the molecular basis of these findings, whole exome data of the outliers were carefully 
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examined, focusing on genes previously implicated in DNA repair pathways that are 

not routinely subjected to scrutiny in CRC patients. We found that SNU1235 and 

HDC142 models carried biallelic alterations in the EXO1 (S510*) and MUTYH 

(S179C) genes, respectively. The exonuclease EXO1 is implicated in both MMR (it 

binds MLH1) and base excision repair (28), while MUTYH encodes a DNA 

glycosylase that is involved in oxidative DNA damage repair and is part of the base 

excision repair pathway (29). Germline mutations in MUTYH cause MUTYH 

Associated Polyposis (MAP) (30). Scrutiny of the COCM1 exome revealed a POLE 

variant (A629D). A629 is localized in a region of POLE highly conserved during 

evolution (Suppl. Fig. 7). The A629D change is potentially damaging according to the 

SIFT (31) and Polyphen (32) algorithms, which predict the putative impact of amino 

acid substitutions on human proteins using structural and comparative evolutionary 

considerations. 

 

We next addressed how longitudinal evolution of CRC cell genomes affected their 

predicted neoantigen profile. To this end, WES, RNAseq, and HLA prediction data 

were combined as previously described (9). In detail, we identified genomic variants 

that satisfied three criteria: (i) emerged over time, (ii) occurred in transcribed genes, 

and (iii) scored positively when HLA I matching algorithms were applied. The variants 

that emerged after deploying the above computational pipeline were classified as 

putative neoantigens (Fig. 2b). Hypermutated and “EVOLVING-CRC” cells displayed 

higher levels of putative neoantigens compared to slowly evolving CRC cells (Fig. 

2b). Moreover, and consistent with their predicted effects on antigenicity, a high 

prevalence of indels and associated frameshifts, which occur in MSI CRCs, translated 

into higher numbers of predicted neoantigens in this subset (Fig. 2b).  

 

Next, we studied whether in parallel to mutation’ gains we could also detect loss of 

variants over time. For this reason, we tracked lost and gained alteration in ‘evolving’ 

cell lines over time. As expected, variants that did not change over time showed high 

allelic frequency, likely reflecting their clonal (trunk) status. Mutations that emerged or 

were lost showed lower allelic frequency (Fig. 3). 

 

Mutational signatures are characteristic combinations of mutation types arising from 

mutagenesis processes such as alterations in DNA replication, exposure to DNA 
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damaging agents, tissue culture conditions, and DNA enzymatic editing (18). In 

human tumours, over 30 mutational signatures have been identified, a subset of 

which are linked to defective DNA repair pathways. For example, signatures 6, 15, 

20, and 26 are associated with MMR defects, signature 10 is linked to inactivating 

mutation in the proofreading domain of DNA polymerases, while signature 18 appears 

to explain the rise of 8-oxoG:A mismatches due to MUTYH biallelic alteration (33). 

 

We reasoned that the remarkable evolvability observed in a subset of CRC cells 

might be reflected in their mutational signatures. To test this, we first identified 

mutational signatures at T0. As expected, MSI cells displayed signatures 6, 15, 20, 

and 26, while POLE mutant cells showed primarily mutational signature 10 (Suppl. 

Fig. 8).  

 

We next assessed which signatures were acquired (remained active) during 

replication of the cells in vitro by comparing samples collected at T0 and T90. We 

found that in most instances, DNA alterations linked to MMR and POLE defects 

continued to occur over time, indicating that the corresponding DNA repair 

capabilities were permanently disabled (Fig. 4a).  

 

Replication of cancer cell populations in 2D is thought to encounter little or no 

selective pressure as the cells are cultured in the same conditions for many 

generations before the experiment is started. To monitor mutational and neoantigen 

evolution under more stressful (selective) conditions, CRC cells including MSS, MSI, 

and POLE models were transplanted in immunodeficient (NOD SCID) mice and 

allowed to grow until they reached approximately 1000mm3 in size, after which 

tumours were excised. Although NOD SCID mice have no adaptive immunity, the 

mouse stromal microenvironment and elements of cellular innate immunity are known 

to affect the growth of human cancer cells in vivo (34). DNA samples were obtained 

before implantation and at the end of the experiment. WES was performed, and the 

data were analysed with the same bioinformatic pipeline applied to cells grown in 

vitro. The mutational profiles revealed higher evolutionary rates in vivo than in vitro 

(Suppl. Fig. 9a,b). This translated in increased levels of predicted neoantigens in vivo, 

(Suppl Fig 9c). Notably, mutational signatures linked to MSI status and POLE 

mutations were more marked in vivo than in vitro (Fig. 4b, Suppl Fig 10). 
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Next, we asked whether the evolutionary trajectories observed in CRC cells with 

alterations in DNA repair pathways also occurred in human CRC with analogous 

molecular profiles. To this end, we selected MMR proficient, MMR deficient, and 

POLE mutant cases (Table 3) from our extensive patient-derived CRC xenograft 

biobank (35). Each model was serially transplanted for at least four generations in 

immunodeficient mice as described in the phylogenetic tree (Fig. 5a). Samples 

collected at each transplantation were subjected to WES. In some instances, 

simultaneous transplantation of the same tumour in two animals allowed acquisition 

of independent measurements for each generation. NGS data were analysed with the 

bioinformatic pipeline applied to cells grown in vitro. These experiments revealed 

remarkable differences in the evolvability of MSS, MSI, and POLE CRC models in 

vivo, and indicated that these characteristics also occurred in patient-derived CRC 

samples (Fig. 5b, c). As expected, high frequency (clonal-trunk) variants were 

conserved across generations. Interestingly, the in vivo results differ from those 

obtained in cell models in vitro. We find that in PDX models, not only sub-clonal but 

also clonal populations can emerge in subsequent generation of colorectal cancers 

with DNA repair defects (Fig 6).  

 

Furthermore, in MSI and POLE patient-derived xenografts, the mutational signatures 

were continuously (re)generated and could be clearly recognized (Suppl. Fig. 11 and 

12). In non-mutator (slow evolving) cell lines very few mutations emerged over time, 

and thus the possibility to assess mutational signatures was limited. Because of this, 

in the slowly-evolving models we were unable to reliably generate mutational 

signatures.  

 

Distinct subsets of CRCs can be recognized based on histological characteristics, as 

well as their genomic, epigenetic, and transcriptional profiles. As a result, CRC can be 

classified into specific subsets, which are often correlated with divergent clinical 

outcomes (36) (37). The rate of genomic evolution and the dynamics of neoantigen 

profile have not yet been systematically explored as a method to classify CRC. We 

therefore asked whether any molecular traits (beyond alterations in DNA repair 

genes) could distinguish “EVOLVING-CRC” and “STABLE-CRC”. To address this 

question, we performed unbiased gene copy and transcriptional comparative 
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analyses of CRC cell lines. As previously reported, MSI CRC cells typically carried a 

close to diploid chromosomal status, while MSS showed elevated aneuploidy (Fig. 7) 

(38). Interestingly, the most rapidly evolving POLE mutant lines, SNU81 and 

HDC114, also displayed a diploid prevalent phenotype. Nonetheless, copy number 

and ploidy status could not distinguish “EVOLVING” and “STABLE” CRC models. 

 

Next, we performed RNAseq on the entire dataset to explore whether transcriptional 

profiles could classify rapidly evolving CRC lines.  Differential analysis of RNAseq 

data was initially performed comparing the MSS and MSI sample groups. The list of 

differentially expressed genes was consistent to results previously reported in this 

setting, and 168 genes were differentially expressed between these two groups 

(Table 4) (39). Next, we evaluated genes differentially expressed in hypermutated 

versus non-hypermutated cells, grouping together MSI and POLE mutated cell lines 

and comparing them to the MSS lines (Fig. 8a). Notably, proteins associated with 

immune response and predominantly with antigen-presenting and antigen recognition 

functions were consistently downregulated in cell lines with high mutational burden 

(Fig. 8b). Next, we compared “EVOLVING” and “STABLE” CRC models. The number 

of genes differentially expressed with significant p-value was smaller due to the 

reduced number of available samples (Fig. 9a). Beta-2 microglobulin (B2M) was 

downregulated in most “EVOLVING” as compared to “STABLE” CRCs (Fig. 9b, c). 

Downregulation of B2M was confirmed at the protein level (Fig. 9c) and was 

frequently associated with premature stop codons in the B2M gene (Fig. 9d). 

Interestingly, the four MSS models (COCM1, SNU1235, SNU1411, and HDC142) 

with low mutational burden but dynamic mutational profile also displayed low levels of 

B2M (Fig.9b, c). Comparison of “EVOLVING” and “STABLE” CRC models pinpointed 

other genes differentially expressed including CPNE1, IRF1, and PMSB10. These 

genes are also involved in immune-related processes and their downregulation might 

similarly reduce immune surveillance of “EVOLVING” CRCs (Fig. 9a and Suppl. Fig. 

13). We next performed the analysis showed in Fig 9a in a multivariate fashion taking 

into account the growth rates of the cells or the number of mutations normalized to 

the doubling time. The number of statistically significant genes in the multivariate 

analyses (Suppl Fig 14) was lower but consistent with the findings of Fig 9a. In the 

future it would be interesting to assess whether the differential expression of genes in 
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fast evolving CRC models has a functional impact. This aspect cannot be causally 

predicted at this stage. 

 

 

Discussion   

 

In the past decade it has become clear that most human tumours are highly 

molecularly heterogeneous, and this affects prognosis and the emergence of 

therapeutic resistance (40). How tumour-specific somatic variations can lead to 

distinct neoantigen profiles and ultimately to immune surveillance has also been 

partially elucidated. The number of neoantigens depends on several factors. For 

example lung cancers associated with smoking habits have high levels of mutations 

(41) (42), whereas the development of skin melanomas is correlated with UV light 

mediated mutagenicity (43). Both smoking and UV exposure occur during defined 

periods and their mutagenicity is transient, leading to high -but relatively stable- 

mutational profiles (44) (45). Another class of tumours with high mutational burden is 

characterized not by exposure to external carcinogens, but rather by the intrinsic 

inability of tumour cells to efficiently repair DNA. The latter is due to epigenetic or 

genetic alterations in key effectors of DNA repair pathways, rather than acute or 

chronic carcinogen exposure. In this work, we used CRC as a model system to 

understand whether, and to what, extent alterations of DNA repair pathway 

components modulate neoantigen profiles over time in vitro and in vivo. Tumours 

carrying alterations affecting DNA repair genes maintained their molecular 

characteristics over time and, in most instances, the functional consequence of those 

alterations is continuous and propagated at every generation. An exception was 

represented by two POLE mutant CRC cell lines (HROC69 and HCC2998) which 

despite having high mutational burden did not appreciably evolve over time.  The 

reason(s) for this phenotype are presently unclear. Interestingly these two POLE 

mutant cells that evolved poorly over time had less marked mutational signatures, 

possibly suggesting that, in these models, polymerase defects may undergo some 

form of functional compensation.  

 

The longitudinal analysis of cell and PDX models highlighted several aspects. For 

example, MSI and POLE mutated tumours tended to acquire SNV or short 
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insertions/deletions over time. These alterations can lead to novel putative 

neoantigens potentially trigger the host immune system.  In addition to well-known 

DDR genes (MLH1, MSH2, MSH6, PMS2, POLE), our study, indicate that other 

genes involved in DNA repair pathway may lead to accumulations of mutations 

possibly translating in novel epitopes. EXO1 and MUTYH are two of such examples. 

Profiling of these genes in the clinical setting may help to intercept tumours not 

classified as unstable or with hypermutator phenotype but nevertheless continuously 

evolving and accumulating mutations. 

 

Our analysis suggests that in parallel to mutations gains, loss of variants also occurs 

during cell propagation. Our data indicate that in hypermutated CRCs, including MSI 

and POLE mutated models expanded in vitro, these events are mainly confined to 

subclones. A limitation of this study is that longitudinal characterization of lost and 

gained mutations in vitro could be influenced by sampling of cell populations during 

cell passaging. We also report that in the propagation of PDX, possibly due to 

selection imposed by the microenvironment, not only subclonal but also clonal 

variants emerge de novo over time. Based on these results, we speculate that in CRC 

patients with DNA repair defects metastatic seeding or therapeutic debulking can lead 

to the emergence of new subsets of clonal neoantigens. This could have implications 

for the development of therapies relying on the presence of clonal neo antigens, such 

as ICP, CAR-T and vaccines. 

 

Both cell lines and PDX have been widely employed to test anticancer compounds 

(46-48), however experimental reproducibility has occasionally been questioned (49, 

50). The molecular evolvability that we find to occur during serial passaging of cells 

and PDX may partly account for the discrepant results obtained with these models 

(51-53). 

 

A limitation of the present study is that it examined the evolution of cell lines and 

xenografts but cannot address the impact of the immune system in the evolutionary 

dynamics due to intrinsic limitations of the models we used. 

 

Our data indicate that alterations in DNA repair genes facilitate acquisition of 

neoantigens. These novel putative epitopes can be recognized by the immune 
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system. Accordingly, we confirm that CRCs with high number of mutations 

(hypermutated CRCs) selectively downregulate components of the neoantigen 

presentation process, such as B2M, thus restricting the ability of the host immune 

system to detect them. Our results further suggest that non hypermutated CRCs, that 

display fast evolving mutational and antigen profiles, also show downregulation of 

components implicated in neoantigen presentation. The differences in expression of 

molecules involved in immune functions we observed in the CRC models could have 

originated from adaption previously experienced in the patient as a mechanism of 

escape from negative pressure of the immune system related to the elevated 

neoantigens’ production rate. 

 

 

Conclusions  

In summary, we identified, and functionally highlighted CRC subsets characterized by 

slow and fast genome evolvability. CRCs carrying alterations in genes involved in 

DNA repair (including MLH1, MSH2, MSH6, MUTYH, EXO1, and POLE) display 

dynamic neoantigen patterns that fluctuate over time. Furthermore, we find that in 

CRC cells and patient-derived tumour xenografts, DNA repair defects leading to high 

mutational burden and neoantigen evolvability are associated with inactivation or 

downregulation of antigen-presentation functions. Longitudinal monitoring the 

neoantigen landscape of CRC and other tumour types may have clinical implications.  

While tracking time-dependent neoantigen evolution in the tissue of cancer patients 

might be difficult or impossible to achieve, monitoring predicted neoantigens in 

circulating tumour DNA is already within reach. Accordingly, longitudinal liquid 

biopsies could be deployed to assess whether and how time and/or therapeutic 

regimens affect the mutational burden and the neoantigen profiles in individual 

patients. Neoantigen clonality profiles could be valuable to develop specific vaccines 

and deploy immunomodulatory molecules in the context of precision oncology. 
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Figures and Table legends 

 

Fig. 1 Analysis of mutational burden in a panel of 64 CRC cell lines 

Mutational characterization and comparison of SNVs and frameshifts among MSS (46 

samples), MSI (12 samples) and POLE mutated (6 samples) of CRC models. a) The 

distribution of SNVs per Mb of coding DNA at time 0 is shown for each cell line. b) 

The number of frameshift mutations at time 0 is shown for each cell line. c) The 

number of SNVs per each group is shown (‘MSS’ refers to MSS cells without POLE 

mutations; ‘MSI’ includes MSI cells, as well as the SNU1040 cell line which is both 

MSI and POLE mutated; ‘POLE’ includes only MSS cell lines carrying a POLE 

mutation). d) The number of frameshifts per group is shown. The center line of each 

box plot indicates the median. P < 0.0001. 
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Fig. 2 In vitro evolution of mutational landscape in 45 CRC cell lines 

 Mutational characterization of CRC cells after 90 days of culture (T90) in vitro. a) Bar 

charts show the number of novel alterations (SNVs and frameshifts) acquired at T90 

(not present at T0) for each cell line. b) The number of predicted neoantigens (see 

Methods) is shown. Each bar represents putative neoepitopes derived from SNVs 

and frameshifts. 

 

Fig. 3 Lost and gained mutations across ‘evolving’ CRC cell lines 

For each CRC model the allelic frequency of SNVs at T0 and T90 are shown. 

Mutations were called against the reference genome (hg38) with allelic frequency > 1. 

The y-axis reports all the mutations found in each cell line, whereas the time points 

data are reported on x-axis. 

 

 Fig. 4 Mutational signatures associated with alterations emerging during in 

vitro or in vivo CRC propagation 

Analysis of 30 validated cancer associated mutational signatures in 

hypermutated/rapidly evolving CRC cell lines. Signatures associated to MMR-

deficient (6, 15, 20 and 26), POLE-dependent (10) and MUTYH-associated polyposis 

(18) are highlighted. Analysis and clustering were performed as reported in Methods. 

a) Heatmap of signature contributions during replication of CRC cells in vitro by 

analysing alterations acquired at T90. b) Heatmap of signature contributions during 

replication of the CRC cells in vivo by comparing xenograft tumours to the 

corresponding cells at T0 (See Methods for detailed information).  

 

 Fig. 5 Genomic evolution in patient-derived xenografts 

Phylogeny of the indicated patient-derived xenograft and their molecular 

characterization. a) MSS, MSI and POLE mutant samples were serially transplanted 

for at least four generations (F1-F4) in NOD/SCID mice as shown. Samples collected 

at each passage were subjected to WES. b) WES data of each generation were 

compared with those obtained from the previous generation. Bar graphs show de 

novo acquired SNVs and frameshifts at each generation. c) The number of predicted 

neoantigens in each PDX is shown. Each bar represents putative neoepitopes 

derived from SNVs and frameshifts. (See Methods for detailed information). 
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Fig. 6 Lost and gained mutations across the indicated PDX generations 

The color code defines allelic frequencies of acquired SNVs at each generation (with 

allelic frequency > 1). The y-axis lists all SNV identified in each branch, the mouse 

generation (genealogy) are reported on the x-axis. 

 

Fig. 7 Analysis of cell ploidy in a panel of 64 CRC cell lines 

Heatmap showing distribution of ploidy for every segmented region in each cell line. 

Samples are sorted from most to less mutated as reported in Fig. 1. The percentage 

(ploidy) is calculated as described in detail in the Methods. 

 

Fig. 8 Transcriptional analysis of CRC cell lines 

Differential expression analysis between hypermutated and non-hypermutated cells. 

a) 183 unique genes differentially expressed between hypermutated (MSI/POLE) 

versus non-hypermutated CRC cells (MSS). Log2 expression values, along with the 

mean change in expression are shown. b) Pathway analysis of genes differentially 

expressed between hypermutated versus non-hypermutated CRC cells using 

g:Profiler application (see Methods). 

 

Fig. 9 Beta2 microglobulin (B2M) expression is downregulated in EVOLVING-

CRC  

Transcriptional and protein levels of the B2M gene. a) Genes differentially expressed 

in EVOLVING-CRC relative to STABLE-CRC with a significant p-value (P < 0.05). b) 

Waterfall chart showing B2M expression at RNA level across a panel of 45 CRC cell 

lines. c) Western blot analysis of B2M expression. In gray are highlighted samples for 

which T90 sequencing were not available. Blots were reprobed with anti-HSP90 

antibody to confirm equal loading. d) B2M gene alterations on 64 CRC cell lines at T0 

(upper panel) and codon affected (lower panel).  

 

Supplementary Fig. 1 Genomic features of 64 CRC cell lines 

Molecular characterization of the indicated CRC models at T0 using cbioportal 

oncoprint graphic representation. a) Schematic diagram showing BRAF, KRAS, 

NRAS and Microsatellite/POLE status of CRC cell lines. b) Schematic diagram 
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showing genetic alterations in MMR genes and DNA proofreading polymerase POLE 

in CRC cell lines. 

 

 

Supplementary Fig. 2 Outline of the experimental workflow to assess evolution 

of CRC cell lines in vitro and in vivo 

CRC cell lines were thawed and kept in culture for 90 days. WES and RNAseq were 

performed at the beginning of the experiment (T0) for 64 cell lines. Forty-five samples 

collected at T90 were also subjected to WES. In a few instances at T0 an equal 

number of cells was injected in two immunodeficient mice. When tumours reached 

approximately a volume of 1000m3 in size, they were excised and sequenced.  

 

Supplementary Fig. 3 Genetic alterations in CRC cell lines at T0 and T90 

Bar chart showing the number of alterations at the beginning of experiment (T0) and 

after 90 days of culture (T90). All the variants are called against the hg38 reference. 

 

Supplementary Fig. 4 Doubling time of MSS, MSI and POLE mutated cell lines 

Cell doubling time in MSS, MSI and MSS POLE mutant cells.  The number of days 

per group is shown. The centre line of each box plot indicates the median. 

 

Supplementary Fig. 5 In vitro evolution of mutational landscape in CRC cell line 

normalized to the doubling time 

Mutational characterization of CRC cells after 90 days of culture (T90) normalized to 

the doubling time. a) The bar chart shows the number of new alterations acquired at 

T90 (absent at T0) normalized to the cell doubling time. b) The number of predicted 

neoantigens per cell doubling (see Methods) is shown. Each bar represents putative 

neoepitopes derived from SNVs and frameshifts. c) The bar chart shows the number 

of new alterations per day acquired at T90 (absent at T0). d) The number of predicted 

neoantigens acquired per day (see Methods) is listed. Each bar represents putative 

neoepitopes derived from SNVs and frameshifts.  

 

Supplementary Fig. 6 MMR proteins expression in cell models 

Western blot analysis on hypermutated samples (MSI and/or POLE mutant cell lines) 

to assess the status of the MMR proteins at Time 0 (T0) and Time 90 (T90).  
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Supplementary Fig. 7 POLE protein sequence alignment across species 

The yellow box indicates alanine (A) 629, which is highly conserved across species 

but is mutated to aspartic acid (D) in the COCM1 cell line. 

 

Supplementary Fig. 8 Analysis of mutational signatures in CRC cell lines  

Heatmap and clustering of 30 cancer associated signatures across 64 CRC cell lines 

at T0. Signatures associated with MMR-deficiency (6, 15, 20 and 26), POLE 

mutations (10) and MUTYH-associated polyposis (18) are highlighted. Analysis and 

clustering were performed as reported in Methods. 

 

Supplementary Fig. 9 Comparison of mutational profiles in cell lines grown in 

vitro and in vivo 

Alterations acquired by the indicated cell lines after 90 days in cell culture and upon 

transplantation in mice. a) Number of SNVs/Mb acquired in vitro (blue) and in vivo 

(yellow). b) Number of frameshifts acquired in vitro (blue) and in vivo (yellow) c) 

Number of predicted neoantigens in CRC cell lines after injection in mice (See 

Method for details). 

 

Supplementary Fig 10 Comparison of signatures contribution between CRCs 

models propagated in vitro and in vivo. 

The contributions of the associated signatures based on the molecular status 

detected in vitro and in vivo were compared in each model. For the MSI samples we 

compared the maximum contribution provided by signatures 6, 15, 20 or 26 (linked to 

MMRd). For the MSS POLE mutant cells, contribution was from signature number 10. 

For the cell line carrying MUTYH biallelic alterations contribution was from signature 

18. 

 

Supplementary Fig. 11 Analysis of mutational signatures in patient-derived 

xenograft 

Contributions of 30 cancer associated signatures in patient-derived CRC xenografts. 

(a) Clustered heatmap according to signatures contribution in the indicated PDXs. (b) 
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Signature profiles in PDXs using the six substitution subtypes: C>A, C>G, C>T, T>A, 

T>C, and T>G. Analysis and clustering were performed as reported in Methods. 

 

Supplementary Fig. 12 Mutational signatures acquired during propagation of 

patient-derived xenografts  

Contributions of 30 cancer-associated signatures and signature profiles across 

evolving PDXs. Genomic variants of the individual PDXs were compared to the 

corresponding previous generation to infer signatures contributions. a) Clustered 

heatmap of signature contributions during evolution of the indicated PDX generations. 

b) Signature profiles acquired in each PDX generation using the six substitution 

subtypes: C>A, C>G, C>T, T>A, T>C, and T>G. Alterations of each sample were 

inferred comparing two consecutive generations (see Method for detailed 

information). 

 

Supplementary Fig. 13 Gene differentially expressed in EVOLVING-CRC  

Waterfall charts show the z-score expression values of IRF1, CPNE1 and PSMB10 

across a panel of 45 CRC cell lines. 

 

Supplementary Fig. 14 Gene differentially expressed in EVOLVING-CRC in 

univariate and multivariate analyses.  Log2 fold-change of the genes listed in Fig 

9a according to univariate and multivariate analyses considering the mutator status or 

the growth rates of the cells. 

 

Table 1 Molecular and functional characteristics of the indicated cell lines 

 

Table 2 POLE mutations in CRC cells. 

 

Table 3 Molecular characterization of patient-derived xenografts 

 

Table 4 List of genes differentially expressed in the indicated cell lines 

 

Table 5 List of SNPs used to identify patient-derived xenografts 
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Table 1 

SAMPLE 
Microsatellites

Status 

Altered 
MSI 

Markers 

Genome 
Evolvability  

Split 
ratio  

In vitro 
Doubling 

Time 

Growth 
rate 

C10 Stable - Stable 0.34 2.33 0.30 

C106 Stable - Stable 0.35 2.50 0.28 

C125PM Stable - Stable 0.34 2.37 0.29 

C32 Stable - Stable 0.18 1.54 0.45 

C70 Stable - Stable 0.4 2.76 0.25 

C75 Stable - Stable 0.36 2.46 0.28 

C99 Stable - NA NA NA NA 

CACO2 Stable - Stable 0.26 1.83 0.38 

CAR1 Stable - Stable 0.36 2.47 0.28 

CCK81 Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

Evolving 0.34 2.53 0.27 
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CL14 Stable - NA NA NA NA 

COCM1 Stable - Evolving 0.3 2.34 0.30 

COGA1 Unstable 
bat26-
mono27-
nr24 

NA NA NA NA 

COGA2 Stable - Stable 0.32 2.22 0.31 

COGA5 Stable - Stable 0.20 1.69 0.41 

COGA8 Stable - Stable 0.22 1.67 0.41 

COLO201 Stable - NA NA NA NA 

COLO94H Stable - Stable 0.45 2.81 0.25 

DIFI Stable - NA NA NA NA 

DLD1 Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

Evolving 0.07 0.98 0.71 

HCA24 Stable - Evolving 0.33 2.22 0.31 

HCA46 Stable - Stable 0.4 2.41 0.29 

HCC2998 Stable - Stable 0.34 2.33 0.30 

HDC114 Stable - Evolving 0.23 1.69 0.41 

HDC142 Stable - Evolving 0.35 2.42 0.29 

HDC82 Stable - NA NA NA NA 

HRA16 Stable - NA NA NA NA 

HROC24 Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

Evolving 0.16 1.23 0.56 

HROC32 Stable - Stable 0.62 6.07 0.11 

HROC334 Stable - Stable 0.45 2.83 0.24 

HROC39 Stable - Stable 0.5 3.92 0.18 

HROC69 Stable - Stable 0.33 2.26 0.31 

HT115 Stable - Evolving 0.24 1.78 0.39 

HT29 Stable - Stable 0.16 1.38 0.50 

HT55 Stable - Stable 0.33 2.21 0.31 

LIM1215 Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

Evolving 0.15 1.24 0.56 

LIM2099 Stable - Stable 0.33 2.26 0.31 

LOVO Unstable 

nr21-
bat25-
mono27-
nr24 

NA NA NA NA 

LS180 Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

Evolving 0.25 1.90 0.37 

LS411N Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

Evolving 0.32 2.29 0.30 

MDST8 Stable - Stable 0.15 1.31 0.53 
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NCIH716 Stable - NA NA NA NA 

OUMS23 Stable - Stable 0.26 1.70 0.41 

OXCO3 Stable - Stable 0.23 1.76 0.39 

RW7213 Stable - Stable 0.4 2.60 0.27 

SNU1040 Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

Evolving 0.54 4.14 0.17 

SNU1181 Stable - Stable 0.62 4.65 0.15 

SNU1235 Stable - Evolving 0.35 2.33 0.30 

SNU1411 Stable - Evolving 0.44 2.76 0.25 

SNU1460 Stable - NA NA NA NA 

SNU1684 Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

NA NA NA NA 

SNU175 Unstable 

bat26-
nr21-
bat25-
mono27 

NA NA NA NA 

SNU283 Stable - NA NA NA NA 

SNU479 Stable - NA NA NA NA 

SNU81 Stable - Evolving 0.42 2.33 0.30 

SNU977 Stable - Stable 0.42 2.71 0.26 

SNUC1 Stable - NA NA NA NA 

SW1417 Stable - NA NA NA NA 

SW1463 Stable - NA NA NA NA 

SW480 Stable - Stable 0.18 1.64 0.42 

SW837 Stable - Stable 0.27 2.07 0.34 

V411 Stable - Stable 0.22 1.91 0.36 

V481 Unstable 

bat26-
nr21-
bat25-
mono27-
nr24 

NA NA NA NA 

WIDR Stable - NA NA NA NA 

Table 2 
Time point 0 

SAMPLE Coord (HG38) 
AA 

Change 

DNA RNA 

Normal 
allele 

counts 

Altered 
allele 

counts 

Allelic 
Frequency 

Normal 
allele 

counts 

Altered 
allele 

counts 

Allelic 
Frequency 

HCA24 chr12:132673261 p.S459F 33 26 44,07% 9 9 50,00% 

HCC2998 chr12:132676598 p.P286R 54 44 44,90% 27 25 48,08% 

HDC114 chr12:132673271 p.A456P 33 36 52,17% 17 28 62,22% 

HROC69 chr12:132673703 p.V411L 88 64 42,11% 31 16 34,04% 

HT115 chr12:132673703 p.V411L 100 62 38,27% 24 10 29,41% 

SNU1040 chr12:132675740 p.F367L 34 16 32,00% 25 37 59,68% 

SNU81 chr12:132676598 p.P286R 40 30 42,86% 22 26 54,17% 

Time point 90 

SAMPLE Coord (HG38) AA DNA RNA 
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Change Normal 
allele 

counts 

Altered 
allele 

counts 

Allelic 
Frequency 

Normal 
allele 

counts 

Altered 
allele 

counts 

Allelic 
Frequency 

HCA24 chr12:132673261 p.S459F 33 27 45,00% 17 20 54,05% 

HCC2998 chr12:132676598 p.P286R 37 32 46,38% 11 17 60,71% 

HDC114 chr12:132673271 p.A456P 37 20 35,09% 30 37 55,22% 

HROC69 chr12:132673703 p.V411L 83 44 34,65% 49 23 31,94% 

HT115 chr12:132673703 p.V411L 146 38 20,65% 18 4 18,18% 

SNU1040 chr12:132675740 p.F367L 24 17 41,46% 11 33 75,00% 

SNU81 chr12:132676598 p.P286R 65 56 46,28% 15 22 59,46% 

           MSS 
         MSI 
        

 
Table 3 

Sample 
MSI 

Status 
BRAF KRAS NRAS MLH1 MSH2 MSH3 MSH6 PMS2 POLE 

CRC106 MSI V600E WT WT WT WT WT 
R577H / 
p.T1085Tfs7* 

WT WT 

CRC542 MSS WT WT WT WT WT WT WT WT WT 

CRC371 MSS WT WT E132K R265C WT WT E946* WT V411L 

           *Only non-synonymous variants present in COSMIC database are 
reported 

    
 
 
 
 
 
 
 
 
 
 
 
Table 4 (MSS vs MSI) 

gene_id log2FoldChange padj 

ABCB6 -1,12 0,01 

ACAD11 1,18 0,00 

ACOT8 -1,04 0,00 

AHCYL2 1,12 0,02 

ALDH6A1 1,34 0,00 

AMACR -1,54 0,01 

AOC1 -1,57 0,04 

APBB3 1,04 0,00 

ARHGAP18 -1,01 0,02 

ATOX1 -1,00 0,01 

ATP5E -1,22 0,00 

ATP9A -1,77 0,00 

B2M -1,58 0,00 
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B4GALT5 -1,14 0,00 

BCL2L15 -1,73 0,01 

BCL9L -1,09 0,02 

BPTFP1 1,09 0,03 

C15orf52 -1,28 0,05 

C20orf24 -1,14 0,00 

C6orf48 1,05 0,01 

CAPG -1,30 0,02 

CCDC71L -1,08 0,02 

CCND3 -1,26 0,00 

CCPG1 1,16 0,02 

CD59 -1,01 0,03 

CD82 -1,37 0,03 

CDKN2A -3,20 0,00 

CEACAM1 -1,89 0,00 

CEACAM6 -1,71 0,05 

CGN -1,06 0,02 

CHKA -1,13 0,00 

CHMP4B -1,16 0,00 

CLDN1 -1,37 0,05 

CLDN3 -1,58 0,01 

COL17A1 -1,61 0,03 

COTL1 -1,61 0,00 

CPNE1 -1,05 0,00 

CPT1B 1,13 0,00 

CTSA -1,10 0,00 

CTSD -1,02 0,03 

CTSH -1,22 0,03 

CTSS -2,46 0,00 

CTSV -1,81 0,00 

CTSZ -1,08 0,01 

CUEDC1 -1,33 0,02 

CXXC5 -1,24 0,01 

CYB5D1 1,24 0,00 

CYFIP2 1,37 0,03 

DAB2IP -1,14 0,00 

DCBLD2 -2,43 0,00 

DDX27 -1,02 0,00 

DNTTIP1 -1,25 0,00 

DPEP1 -1,88 0,04 

DYNLRB1 -1,04 0,00 

EDN1 -1,79 0,01 

EMP1 -1,47 0,03 

EPB41L1 -1,09 0,01 

EPB41L4A-AS1 1,04 0,01 

EPS8L1 -1,13 0,03 

FCGRT -1,69 0,00 

FECH 1,07 0,00 

FKBP1A -1,02 0,01 

FZD7 -1,02 0,03 

GABBR1 1,70 0,01 

GABRE -1,83 0,00 
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GCAT 1,39 0,00 

GLS2 1,38 0,00 

GNE -1,13 0,04 

GSN -1,30 0,03 

HELZ2 -1,14 0,01 

HIST1H2AC -1,36 0,01 

HIST1H2BD -1,92 0,00 

HIST1H2BK -1,48 0,00 

HIST2H2AA3 -1,13 0,03 

HIST2H4A -2,11 0,00 

HSPA1A -1,83 0,02 

HSPB1 -1,41 0,03 

HSPH1 -1,43 0,00 

IDH2 -1,01 0,04 

IDS -1,30 0,02 

IFI6 -1,76 0,03 

IRF1 -1,02 0,01 

KRT20 -1,73 0,04 

KRT23 -4,08 0,00 

LAMC2 -1,77 0,00 

LFNG -1,19 0,02 

LGALS1 -2,88 0,00 

LINC01089 -1,05 0,01 

LIPG 1,38 0,00 

LPCAT2 -1,11 0,01 

LRRC75A-AS1 1,01 0,04 

LRRC8A -1,23 0,00 

LTBP3 -1,37 0,01 

LY6E -1,41 0,02 

LY75 -1,60 0,01 

MACF1 -1,23 0,01 

MALL -1,20 0,03 

MAP7D1 -1,03 0,02 

MAPRE3 -1,11 0,02 

MDM2 1,37 0,00 

MGLL -1,35 0,01 

MIR4435-2HG -1,09 0,05 

MMP14 -1,53 0,02 

MOCOS 1,18 0,01 

MORC4 1,15 0,00 

MUC20 -1,64 0,02 

MYBL2 -1,13 0,01 

MYL5 1,04 0,01 

NABP1 -1,35 0,01 

NDUFC2 -1,22 0,00 

OXR1 -1,12 0,01 

PDP1 -1,01 0,03 

PEA15 -1,29 0,00 

PFDN4 -1,04 0,00 

PIGT -1,00 0,00 

PLA2G6 1,17 0,00 

PLS3 -1,21 0,03 
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PMEPA1 -2,81 0,00 

PML -1,04 0,00 

POLE4 -1,01 0,01 

PPM1M 1,46 0,00 

PPP1R14D -1,98 0,01 

PPP1R18 -1,27 0,01 

PRADC1 -1,19 0,01 

PRAP1 -1,79 0,04 

QPCT -1,89 0,02 

QPRT -2,16 0,00 

REG4 2,81 0,00 

ROMO1 -1,14 0,01 

RPL22L1 1,62 0,00 

RPL32P29 1,31 0,00 

S100A11 -1,62 0,00 

S100A2 -2,35 0,00 

S100A4 -2,70 0,00 

SDC4 -1,30 0,00 

SESN2 1,23 0,01 

SGK2 -1,40 0,04 

SLC20A2 -1,07 0,01 

SLC2A1 -1,22 0,04 

SLC39A5 -1,93 0,02 

SLC6A6 -1,40 0,00 

SNHG8 1,01 0,01 

SNORA73B 1,12 0,02 

SPINK1 -2,25 0,01 

STAT1 -1,06 0,01 

SULT2B1 -1,78 0,01 

SUPT4H1 1,22 0,00 

SYT7 -1,82 0,00 

TCF7 -1,03 0,04 

TFF1 2,17 0,02 

TGFBI -2,43 0,00 

TIMP2 -2,16 0,01 

TM4SF1 -1,70 0,01 

TMEM52 1,08 0,03 

TMPRSS4 -1,35 0,04 

TNFSF9 2,01 0,00 

TRIM7 1,24 0,05 

TSPAN6 -1,49 0,00 

TUBA4A -1,11 0,00 

TUBE1 1,12 0,01 

TXNDC9 -1,04 0,00 

UCA1 -1,79 0,03 

UCP2 -1,38 0,03 

UNC13D -1,81 0,01 

VAMP8 -1,09 0,00 

VOPP1 -1,13 0,01 

ZMYND8 -1,11 0,00 

ZNFX1 -1,08 0,00 
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Table 4 (Hypermutated vs Non-hypermutated) 

gene_id log2FC padj 

ABHD12 -1,10 0,00 

ACOT8 -1,09 0,00 

AHCYL2 1,00 0,01 

AKR1C3 -1,52 0,02 

ALDH6A1 1,30 0,00 

AMN 1,06 0,04 

ANXA6 -1,94 0,00 

AOC1 -1,96 0,00 

ARHGEF10 1,15 0,04 

ARL4C -1,56 0,01 

ATOX1 -1,12 0,00 

ATP5E -1,31 0,00 

ATP8B1 1,09 0,00 

ATP9A -1,77 0,00 

B2M -1,82 0,00 

BCAS4 -1,06 0,00 

BCL2L1 -1,02 0,00 

BNIP3 1,31 0,02 

C15orf52 -1,10 0,04 

C20orf24 -1,21 0,00 

C2orf54 -2,00 0,00 

C7orf50 -1,20 0,00 

CAPG -1,02 0,03 

CCDC71L -1,00 0,01 

CD59 -1,13 0,00 

CD82 -1,31 0,01 

CDKN2A -1,43 0,03 

CEACAM1 -1,42 0,00 

CFD 1,65 0,00 

CHKA -1,17 0,00 

CHMP4B -1,25 0,00 

CLDN3 -1,45 0,00 

COL17A1 -1,33 0,03 

COTL1 -1,67 0,00 

CPNE1 -1,09 0,00 

CST3 -1,29 0,00 

CTSA -1,01 0,00 

CTSD -1,27 0,00 

CTSH -1,31 0,00 

CTSS -2,26 0,00 

CTSV -2,11 0,00 

CTSZ -1,05 0,00 

CUEDC1 -1,59 0,00 

CXXC5 -1,01 0,01 

CYB5D1 1,17 0,00 

CYTOR -1,42 0,00 

DBNDD2 -1,06 0,00 

DCBLD2 -2,20 0,00 

DGAT2 -1,04 0,01 
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DHRS3 -1,09 0,01 

DNTTIP1 -1,23 0,00 

DYNLRB1 -1,25 0,00 

EDN1 -1,27 0,03 

EHD1 -1,01 0,00 

EMP1 -1,60 0,00 

EPB41L1 -1,06 0,00 

EPS8L1 -1,20 0,00 

FAH -1,28 0,00 

FAM84B -1,10 0,02 

FCGRT -1,60 0,00 

FECH 1,27 0,00 

FKBP10 -1,41 0,04 

FKBP1A -1,16 0,00 

FUNDC2 -1,04 0,00 

FUNDC2P1 -1,08 0,00 

FZD7 -1,19 0,00 

GABARAPL1 -1,35 0,01 

GABRE -1,53 0,00 

GCAT 1,01 0,01 

GNE -1,03 0,02 

GPC1 -1,01 0,05 

GSN -1,75 0,00 

HELZ2 -1,02 0,01 

HIST1H2BD -1,04 0,01 

HIST2H4A -1,38 0,00 

HSD11B2 -1,11 0,03 

HSPB1 -1,20 0,02 

IDS -1,60 0,00 

IFI27 -1,48 0,03 

IFI27L2 -1,03 0,03 

IFI6 -1,86 0,00 

IGFBP4 -1,15 0,02 

IL33 1,58 0,04 

IRF1 -1,28 0,00 

ISG15 -1,13 0,04 

ITGA3 -1,23 0,01 

ITGB5 -1,09 0,00 

KIFC3 -1,20 0,04 

KLK6 -2,00 0,00 

KRT20 -1,56 0,02 

KRT23 -3,88 0,00 

KRT80 -1,58 0,00 

LAMC2 -1,57 0,00 

LFNG -1,23 0,00 

LGALS1 -2,44 0,00 

LIPG 1,38 0,00 

LITAF -1,20 0,01 

LTBP3 -1,63 0,00 

LTBP4 1,17 0,00 

LY6E -1,74 0,00 

LY6G6D -2,03 0,01 
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LY75 -1,60 0,00 

MAPRE3 -1,23 0,00 

MBOAT2 -1,03 0,02 

MCRIP1 -1,02 0,00 

MDK -1,36 0,01 

MDM2 1,09 0,00 

MELTF -1,18 0,01 

MGLL -1,20 0,00 

MIR4435-2HG -1,47 0,00 

MMP14 -1,64 0,00 

MOCOS 1,13 0,00 

MOSPD1 -1,01 0,00 

MUC20 -1,58 0,00 

MYBL2 -1,06 0,00 

NABP1 -1,05 0,01 

NDUFC2 -1,11 0,00 

PDP1 -1,16 0,00 

PEA15 -1,30 0,00 

PFDN4 -1,20 0,00 

PHLDB1 -1,05 0,05 

PLAUR -1,18 0,00 

PLTP -1,53 0,03 

PMEPA1 -2,92 0,00 

PML -1,03 0,00 

POLD4 -1,06 0,00 

PPP1R14D -2,05 0,00 

PRDX5 -1,09 0,00 

PRR15 -1,06 0,03 

PRSS23 -1,09 0,02 

PSMA7 -1,00 0,00 

PSMB10 -1,27 0,00 

QPCT -2,23 0,00 

QPRT -1,32 0,05 

RASL11A -1,19 0,04 

REG4 2,99 0,00 

RGCC -2,97 0,00 

RGMB 1,49 0,00 

RHOD -1,22 0,01 

ROMO1 -1,28 0,00 

RPL22L1 1,12 0,01 

RTFDC1 -1,04 0,00 

S100A11 -1,65 0,00 

S100A2 -2,87 0,00 

S100A4 -1,55 0,02 

SDC4 -1,30 0,00 

SLC20A2 -1,01 0,00 

SLC2A1 -1,42 0,00 

SLC2A4RG -1,04 0,00 

SLC2A8 -1,04 0,00 

SLC39A5 -1,70 0,01 

SLCO1B3 1,46 0,05 

SMAD3 -1,08 0,00 
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SMIM22 -1,19 0,01 

SNORA73B 1,00 0,01 

SPINK1 -2,72 0,00 

SULT2B1 -1,60 0,00 

SYT7 -1,55 0,00 

TACSTD2 -2,32 0,00 

TCF7 -1,18 0,00 

TGFBI -2,28 0,00 

TIMP2 -2,59 0,00 

TM4SF1 -1,78 0,00 

TMEM176A -2,16 0,00 

TMEM176B -1,85 0,01 

TMEM185A -1,07 0,00 

TMPRSS4 -1,35 0,01 

TNFRSF14-AS1 1,19 0,02 

TNFRSF1B -1,44 0,00 

TRIB1 -1,11 0,02 

TRIM7 1,08 0,04 

TSC22D1 -1,01 0,01 

TUBA4A -1,01 0,00 

TUBB2A -1,49 0,00 

TUBE1 1,12 0,00 

UCA1 -1,49 0,03 

UCP2 -1,16 0,02 

VAMP8 -1,10 0,00 

VEGFB -1,25 0,00 

VOPP1 -1,27 0,00 

VSIR -1,68 0,00 

ZFP90 1,13 0,00 

ZMYND8 -1,07 0,00 

 
 
 
 
 
 
 
Table 4 (EVOLVING-CRC vs STABLE-CRC) 

gene_id log2FoldChange padj 

ABCB6 -1,00 0,04 

AHI1 1,04 0,02 

ANXA6 -1,83 0,02 

ATOX1 -1,07 0,01 

B2M -1,57 0,00 

CPNE1 -1,12 0,00 

FAT1 1,09 0,04 

GTF3A -1,09 0,03 

IGFBP6 -2,01 0,02 

IRF1 -1,05 0,02 

LGALS1 -2,45 0,00 

LY6E -1,47 0,02 

PAM -1,27 0,03 
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PEA15 -1,12 0,01 

PLA2G2A 2,56 0,01 

PSMB10 -1,05 0,02 

S100A2 -1,96 0,00 

SDC4 -1,04 0,05 

SLC7A11 1,63 0,01 

TGFBI -1,50 0,04 

TIMP2 -1,82 0,03 

TUBA1A -1,71 0,05 

TUBB2A -1,55 0,03 

TUBE1 1,27 0,01 

VEGFA 1,08 0,05 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5 

Probe SNP GENE  Chr Functional Consequence 

AMG_mid100         

rs11017876 [A\G] DOCK1 10:127402700 intron variant 

rs1106334 [C\T]   8:70100576   

rs1155741 [C\T] ITGA9 3:37585621 intron variant 

rs11655512 [A\G] LOC339260 17:20948422 intron variant 

rs11940551 [G\T]   4:27160856   

rs1210110 [A\G] PRDM2 1:13770326 intron variant 

rs1364054 [C\T] LINC00299 2:8038605 intron variant 

rs1528601 [C\G]   16:51064516   

rs161792 [A\T] LOC101928166 3:152181915 intron variant 

rs17272796 [C\T] PLCL2 3:17035776 intron variant 
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rs242076 [C\T] SYN3 -  TIMP3 22:32833844 intron variant 

rs4775699 [C\T] SEMA6D 15:47581352 intron variant 

rs4793172 [A\T] DCAKD 17:45054112 intron variant 

rs4905366 [A\G]   14:95636762   

rs6603251 [C\T] PPP2R3B Y:359845 intron variant 

rs6734275 [A\G] LOC105374785 2:67014042 intron variant 

rs685449 [A\T] RGS17 6:153023396 intron variant 

rs7555566 [A\G] KAZN 1:14478378 intron variant 

rs7584993 [A\C]   2:222981224   

rs7808249 [A\G] CROT 7:87354399 intron variant 

rs9293511 [C\T] LOC105379072 5:89120537 intron variant 

rs9352613 [A\G]   6:78714716   

rs9572094 [C\T] LOC105370159 13:34678745 intron variant 
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