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Abstract 9 

Prediction of phenotypes from genotypes is an important objective to fulfill the promises of 10 

genomics, precision medicine and agriculture. Although it’s now possible to account for the 11 

majority of genetic variation through model fitting, prediction of phenotypes remains a 12 

challenge, especially across populations that have diverged in the past. In this study, we 13 

designed simulation experiments to specifically investigate the role of genetic interactions in 14 

failure of polygenic prediction. We found that non-additive genetic interactions can 15 

significantly reduce the accuracy of polygenic prediction. Our study demonstrated the 16 

importance of considering genetic interactions in genetic prediction.  17 
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Introduction 18 

The problem of “missing heritability” has attracted much attention and controversy in 19 

quantitative genetics (Manolio et al., 2009), yet its definition remains ambiguous in the 20 

literature. A widely used definition is that genetic associations identified in large-scale 21 

genome-wide association studies (GWAS) cannot fully account for heritability estimates (e.g. 22 

from twin studies) in the sense that the model fitting can only capture a fraction of the total 23 

variance. As sample sizes for GWAS increase from thousands to hundreds of thousands, and 24 

advanced statistical methods are developed to fit all DNA variants in the model 25 

simultaneously, including those not significantly associated with the trait, the variance that 26 

can be explained by DNA variants also increase. For example, adult human height is a 27 

classical quantitative trait with a narrow sense heritability (h2) of approximately 0.8 based on 28 

twin studies (Silventoinen et al., 2003). However, early GWAS studies identified common 29 

variants explaining only a total of 2-4% phenotypic variance (Gudbjartsson et al., 2008; 30 

Lettre et al., 2008; Weedon et al., 2008) with sample sizes in the order of 20,000.  In 2010, a 31 

landmark study increased this proportion to about 45% by fitting ~300,000 SNP markers in 32 

the model for ~4,000 individuals with the covariance among individuals determined by 33 

genome-wide SNP similarity (Yang et al., 2010). Importantly, applying the same idea, the 34 

most recent study using whole genome sequences of ~20,000 individuals in the TOPMed 35 

almost entirely closed the gap between the genomic heritability and the presumed 36 

heritability (Wainschtein et al., 2019). The progress has been remarkable and it can be 37 

cautiously expected that the combination of large sample size and full genome sequences 38 

may finally capture all heritability. Perhaps more importantly, it also suggests that the failure 39 

to explain all heritability in early GWAS was due largely to low statistical power and 40 

incomplete variant coverage thus those with smaller effects, lower minor allele frequencies , 41 

and non-SNP variants were missed from the model fitting. 42 

A second, more implicit but more practical definition of missing heritability, is that the 43 

prediction accuracy of quantitative phenotypes based on genotypes (polygenic scores) is far 44 

less than the heritability of the trait. A perfect genetic model with precise effects and model 45 

specification should be able to predict unobserved phenotypes with an accuracy (measured 46 

by r2) equal to the heritability. But that’s not always the case. For example, a large GWAS on 47 

adult human height with almost 200,000 individuals identified over 180 loci, capturing only 48 

~10% of the phenotypic variation (Lango Allen et al., 2010). This proportion of variance was 49 

measured based on “leave-one-out” out-of-sample prediction (International Schizophrenia 50 

Consortium et al., 2009), i.e., the effects of the genetic loci were estimated in one subset of 51 

the sample and polygenic scores (genetic effects summed over all significant loci) was 52 

computed to predict phenotypes in another subset. The partition between the subsets 53 

conveniently followed sample origin from different European countries (Lango Allen et al., 54 

2010). In contrast to the mixed model genomic heritability approach, this method of 55 

estimating explained heritability was more akin to genomic prediction widely used in animal 56 

and plant breeding (Meuwissen et al., 2001; VanRaden, 2008), in which effects of genetic 57 
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markers across the whole genome, regardless of their statistical significance, are summed to 58 

compute genetic prediction. 59 

Both the genomic heritability and the prediction accuracy of polygenic scores (or polygenic 60 

breeding values) take the form of variance proportion, but have vastly different properties. 61 

One of the most contrasting differences is that prediction accuracy can be small even when 62 

the genomic heritability is large (Makowsky et al., 2011). Our discussion on the two 63 

definitions of missing heritability above is a clear example of this distinction. The 64 

implications of this distinction are profound. Most notably, even if there was no missing 65 

heritability based on genomic heritability, the utility of polygenic score would be very limited 66 

if prediction accuracy is low.  67 

Recently, there has been renewed interest in the application of polygenic score 68 

(International Schizophrenia Consortium et al., 2009) with the advent of large public data 69 

sets such as the UK biobank (e.g. Khera et al., 2018). In particular, many studies have 70 

observed poor prediction by polygenic scores across different ancestry groups (Martin et al., 71 

2019) or even within an ancestry group but with variable characteristics (Mostafavi et al., 72 

2019). In fact, earlier studies with smaller sample sizes observed similar patterns, but were 73 

interpreted as missing heritability (Lango Allen et al., 2010; Makowsky et al., 2011). In animal 74 

breeding, similar observations have also been made. Although genomic prediction works 75 

exceedingly well within a breed, cross-breed prediction generally fails (Hayes et al., 2009). 76 

The explanation is obvious, genetic effects are context dependent and heterogeneous 77 

between groups. Variable linkage disequilibrium (LD) patterns, environments, and other 78 

factors can all contribute to the variable genetic effects, manifesting as variable accuracy of 79 

polygenic prediction.  80 

Genetic interactions are pervasive, and an important type of context dependent effects 81 

(Mackay, 2014; Mackay and Moore, 2014). It has been previously shown that the presence of 82 

genetic interactions does not have a strong effect on genomic heritability (Hill et al., 2008; 83 

Huang and Mackay, 2016), therefore the magnitude of genomic heritability offers no 84 

indication of the genetic architecture. However, genetic interactions may influence genomic 85 

prediction accuracy and models taking into account the complexity improves prediction 86 

(Morgante et al., 2018). This clearly suggests that the simplification of genetic architecture to 87 

the additive infinitesimal model when the true model is not, although convenient and no 88 

comparable alternatives exist, can be risky. In this study, we specifically investigate the 89 

influence of genetic interactions on prediction of polygenic scores, with an emphasis on 90 

polygenic prediction across diverged populations. 91 

Results 92 

Experimental design 93 

Because it’s not yet possible to unambiguously know the true genetic architecture of a 94 

quantitative trait, all experiments in this study were performed using simulated data instead 95 
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of real data. This allows us to specifically ask simple questions while eliminating influence 96 

from other factors. We simulated a sample of 75,000 diploid individuals from three ancestry 97 

groups, where population A and B diverged 1,000 generations ago and their ancestors 98 

diverged from population C an additional 1,000 generations ago (Figure 1a). This 99 

specification is qualitatively similar to the global human population history where the 100 

ancestral population that went out of Africa were further split into multiple populations.  101 

 102 

 103 

 104 

 105 

 106 

 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

We considered three possible variant sets (Figure 1b), 1) causal: all and only causal variants; 118 

2) tag: all variants except causal variants; and 3) all: all variants including causal variants. 119 

These represent three simplified scenarios 1) a best case scenario where causal variants have 120 

been identified, 2) a realistic scenario where causal variants are tagged by genotyped 121 

variants, and 3) an achievable scenario in the near future with whole genome sequences. We 122 

did not consider variants that were rare (MAF < 0.01) in all three populations as they led to 123 

gross overestimation of genomic heritability approaching one, similar to findings in a 124 

simulation study using real genotypes (Evans et al., 2018). The three variant sets were used 125 

to compute genomic heritability and perform polygenic prediction. When performing 126 

polygenic prediction, we did not select variants based on association tests. This choice was 127 
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Figure 1. Simulation of genome sequences, population structure, and genetic 
architecture. (a) Three populations (A, B, C) were simulated with an effective population 
size of 20,000 each. A and B diverged 1,000 generations before present and A and C 
diverged 2,000 generations ago. (b) 1,000 independently inherited chromosomes were 
simulated, each containing one QTL. Three sets of variants were considered, including 
“causal”, “tag”, and “all” as illustrated. (c) Six different genetic architecture were 
simulated, each illustrated by one of the panels. 

	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/667162doi: bioRxiv preprint 

https://doi.org/10.1101/667162
http://creativecommons.org/licenses/by-nc-nd/4.0/


based on the consideration that selection of markers introduced another variable in the 128 

experiment to complicate the design and interpretation. Instead, we draw from the 129 

distinction between causal and all variants to represent the extreme scenarios where a 130 

perfect selection or no selection was performed. 131 

We simulated a quantitative trait controlled by 1,000 independently inherited QTLs (Figure 132 

1b) of broad sense heritability H2 = 0.8 but different types of genetic architecture. When the 133 

genetic architecture is strictly additive, the narrow sense heritability h2 = H2 = 0.8, whereas in 134 

other cases h2 < 0.8. Six simple models of genetic architecture were simulated, including 135 

additive, dominance, over-dominance, and pairwise additive by additive (A x A), additive by 136 

dominance (A x D), and dominance by dominance (D x D) (Figure 1c). No higher order 137 

interaction was simulated and effects across loci or across pairs were additive.  138 

Genomic heritability misses little heritability 139 

 140 
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 142 

 143 
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 146 
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 149 

 150 

We first recapitulated a result that has been consistently shown (Hill et al., 2008; Huang and 151 

Mackay, 2016). We fitted a linear mixed model in each of the three populations or combined 152 

samples using GREML implemented in the GCTA (Yang et al., 2011) using 20,000 153 

individuals. We found that hg
2 were uniformly high when the genetic architecture was 154 

additive, dominance, or additive by additive, accounting for nearly all heritability (Figure 2, 155 

Figure S1). Whether or not the variant sets included casual variants appeared to have little 156 

effects on hg
2; variant sets excluding causal variants performed as well as causal variants only 157 

and there was a slight tendency of upward bias (Figure 2). Similar results were obtained 158 

regardless of whether the samples were from a homogeneous population or a mixture of 159 

samples from two diverged populations (Figure S1). When the genetic architecture was 160 

entirely overdominance, additive by dominance, or dominance by dominance, hg
2 was lower, 161 
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Figure 2. Genomic heritability in the simulated populations. Box plot (median 
indicated on top) showing the genomic heritability (hg

2) estimated using GREML 
under different genetic architecture, where Add. = additive, Dom. = dominance, 
Over-dom. = over-dominance, A x A = additive by additive, A x D = additive by 
dominance, D x D = dominance by dominance, and random is a non-genetic model 
where the phenotypic variation was entirely due to random environmental variation. 
The population in which the genomic heritability was estimated was indicated in the 
top right corner. Genomic heritabilities in all populations were given in Figure S1. 
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but still consistently explained > 50% of the heritability (Figure 2, Figure S1). Taken together, 162 

these results suggest that as long as a large number of genome-wide markers were fitted, 163 

little heritability was missed, regardless of the genetic architecture. In other words, the 164 

magnitude of genomic heritability offers no discrimination of the underlying genetic 165 

architecture (Huang and Mackay, 2016). 166 

Accuracy of polygenic prediction with an additive genetic architecture 167 

We then asked a simple question. If genome-wide variants are able to capture the majority 168 

of heritability, are they able to predict phenotypes accurately? This question directly 169 

addresses the distinction between the two definitions of missing heritability as we outlined in 170 

the introduction. If there is no missing heritability based on mixed model fitting, is there 171 

missing heritability in polygenic prediction? Many illuminating results could be obtained by 172 

comparing different scenarios of simulations (Figure S2). 173 

 174 
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 182 

We first considered the simplest and best scenario, in which the genetic architecture was 183 

fully additive, and all causal and only causal variants were known. In this case, the statistical 184 

model took the form of the true model and only model parameters needed to be estimated. 185 

We trained the model in one population (n = 20,000, training population) and computed 186 

polygenic scores of new individuals (n = 5,000, test population) either in the same 187 

population or a different population. To test the performance of cross-population prediction, 188 

we considered three possible relationships between the training and test populations, 189 

representing a gradient of divergence between training and test data (Figure 3a). 190 

As expected, the accuracy of polygenic prediction was very high in this best case scenario, 191 

approaching the true heritability (‘causal’ in Figure 3b). There was a small decline in accuracy 192 

when cross-population prediction was performed and the degree of population divergence 193 
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negatively affected prediction accuracy. However, when non-causal variants were included 194 

to make predictions, accuracy plummeted from ~0.8 to ~0.4 (Figure 3b) even when training 195 

and test samples were from the same population. This was likely due to the inclusion of 196 

independent predictors whose number vastly exceeded that of the causal variants. As 197 

populations become more divergent, prediction accuracy further dropped, the rate of which 198 

was much more pronounced when tag or all variants were used. These results (in the cases 199 

of tag or all variant sets) largely agreed with the large body of empirical work that accuracy 200 

of polygenic prediction was substantially lower than genomic heritability and cross-201 

population prediction was poor (Lango Allen et al., 2010; Makowsky et al., 2011; Martin et 202 

al., 2019).  203 

One important lesson could be learned in this simple experiment. The facts that simply 204 

adding non-causal variants to the model drastically reduced prediction accuracy, and that 205 

the rate of decay in the accuracy of cross-population prediction was much greater in the 206 

presence of non-causal variants indicated that the agreement between model and true 207 

genetic architecture mattered. This is in sharp contrast to genomic heritability estimation, 208 

where including more variants generally improves model fit (compare (Yang et al., 2010) with 209 

(Wainschtein et al., 2019)).  210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

Accuracy of polygenic prediction in the presence of genetic interactions 222 

We then tested the influence of genetic interactions on the accuracy of polygenic prediction, 223 

which fits an additive model. In a favorable condition when all causal variants were known 224 
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graphs were summarized from Figure S2. 
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(but not their effects or interactions) and prediction was performed within the same 225 

homogenous population, polygenic prediction accuracy was highly dependent on the 226 

genetic architecture (A -> A in Figure 4a). In general, prediction accuracy was higher for 227 

genetic architecture with higher hg
2, such as additive, dominance, and additive by additive. 228 

In contrast, under overdominance, additive by dominance, and dominance by dominance 229 

genetic architecture, polygenic prediction performed substantially worse (A -> A in Figure 230 

4a). When all variants were used, including non-causal ones, the prediction accuracies 231 

decreased dramatically and their dependency on genetic architecture appeared to be 232 

stronger (A -> A in Figure 4b). 233 

We then asked how genetic interactions influence the rate of decay in prediction accuracies 234 

when the training and test populations diverge. We set the accuracy of within-population 235 

prediction as the baseline and compared cross-population prediction accuracies to this 236 

baseline. When all variants were used for polygenic prediction, the accuracy of cross-237 

population prediction dropped to about 40-60% of the accuracy of within-population 238 

prediction, depending on genetic architecture (Figure 4b). Additive, additive by additive, 239 

and dominance genetic architecture, those with the highest hg
2 and r2 retained the most 240 

prediction accuracy while over-dominance, additive by dominance, and dominance by 241 

dominance lost the most (Figure 4b). The more diverged the populations were, the more 242 

predictive ability of polygenic scores was lost (Figure 4b). 243 

There are many reasons why polygenic prediction failed when test population diverged from 244 

training population. In our simple simulation setting, genetic effects were the same across 245 

populations and were not sensitive to any non-genetic factors. The difference in the linkage 246 

disequilibrium structure between populations may in part explain the drop. Importantly, 247 

simulations allowed us to directly use causal variants for prediction, thus eliminating the 248 

influence of LD (Figure 4a). Remarkably, while the accuracy of cross-population prediction 249 

was lower for all genetic architecture, the rate of decay was much greater when the genetic 250 

architecture was over-dominance, additive by dominance, or dominance by dominance 251 

(Figure 4a, compare slopes of the different lines). These results clearly suggest that genetic 252 

interactions can not only cause cross-population polygenic prediction to fail, but also in a 253 

more severe manner compared to an additive genetic architecture. 254 

Discussion 255 

We demonstrate in this study through simulations that genetic interactions can influence the 256 

accuracy of polygenic prediction. In particular, cross-population polygenic prediction 257 

performed worse than intra-population prediction in all cases. For traits controlled by 258 

genetic interactions, the cross-population decay in prediction accuracy was far greater. The 259 

results make intuitive sense. For a statistical model to predict new data accurately, two 260 

conditions must be met. First, the model specification must be correct or at least sufficiently 261 

accurate to capture variation in the data. Second, parameters in the model must be precise. 262 
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When genetic interactions are present, the additive polygenic model clearly is not accurate. 263 

Previous studies have mostly focused on improving parameter estimation, through 264 

increasing sample size and methodological improvement. For example, increasing sample 265 

size substantially increased accuracy of polygenic prediction of height within individuals of 266 

European ancestry (Lello et al., 2018). Inclusion of samples of different backgrounds in the 267 

training data also helped (Martin et al., 2019, Figure S2). 268 

However, the complexity of the genetic architecture of a quantitative trait makes it nearly 269 

impossible to specify a model prior to modeling. As a consequence, the polygenic 270 

infinitesimal model or variants of it (Gianola et al., 2009) has been used as the default model. 271 

The infinitesimal model has been instrumental and allowed for many theoretical insights as 272 

well as applications to be developed. In particular, prediction of breeding values in animal 273 

and plant breeding relying on the infinitesimal model has been very successful (García-Ruiz 274 

et al., 2016). However, its limitations are also apparent. Cross-population and cross-breed 275 

polygenic prediction was low in accuracy (Hayes et al., 2009; Lango Allen et al., 2010; Martin 276 

et al., 2019). Although many factors may contribute to this limitation, our simulation results 277 

clearly indicated that genetic interactions unaccounted for was a major contributor. Indeed, 278 

if the correct genetic model could be specified, cross-population prediction can achieve very 279 

high accuracy (Figure 5). There have been attempts to explicitly model non-additive genetic 280 

effects in the context of polygenic prediction; some moderate improvement was observed 281 

(Varona et al., 2018). However, these studies modeled non-additive effects using genome-282 

wide markers, which added a large number of independent predictors as noise to the model 283 

and may negatively impact the performance.  284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

We did not analyze existing large data sets, some of which contained subjects from multiple 294 

ancestries. Previous work with real data has consistently shown that cross-population 295 

polygenic prediction generally fails (Martin et al., 2019). However, it is difficult to disentangle 296 

the different factors that may contribute to effect heterogeneity and the failure of prediction 297 
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in real data sets. Using simulations, we can focus on specific questions and our results clearly 298 

indicated a contribution of genetic interactions to the failure of cross-population polygenic 299 

prediction. While the additive infinitesimal model is the most sensible model when no other 300 

information is available, our study suggests that the development in the field should be 301 

expanded to include efforts to more explicitly model genetic interactions. Although it is 302 

challenging, recent advances in modeling (Boyle et al., 2017; Liu et al., 2019) and genomic 303 

assays informing regulatory networks (Gerstein et al., 2012) may finally offer new ways to 304 

develop biologically sensible models. 305 

Methods 306 

Population simulation 307 

We used the coalescent simulator MaCS (Chen et al., 2008) to simulate genome sequences 308 

of 75,000 individuals, with 25,000 in each of the populations, according to the demographic 309 

history in Figure 1a. We simulated 1,000 independently inherited chromosomes of 100,000 310 

base pairs in size and set mutation rate as 1.25 x 10-8 per bp and recombination as 1.25 x 10-311 
8 per bp. Effective population size was set to 20,000. The MaCS command for one 312 

chromosome was “macs 150000 100000 -s "$random_seed" -i 1 -h 1000 -t 313 
0.001 -r 0.001 -I 3 50000 50000 50000 0 -ej 0.0125 3 2 -ej 0.025 2 314 
1”. This simulation was performed once but the partition between samples were repeated 315 

20 time, which were summarized as box plots in figures.  316 

Simulation of quantitative phenotypes 317 

We simulated quantitative phenotypes according to the genetic architecture depicted in 318 

Figure 1c. For each of the three possible genotypes for a biallelic locus with alleles A and a, 319 

we used the additive coding aa = -1, Aa = 0, and AA = 1 and the dominance coding aa = 0, 320 

Aa = 1, AA = 0 to code genotypes. The simulation of phenotypes consisted of two steps. In 321 

the first step, the corresponding genotype coding for an individual or multiplication of 322 

genotype codings (in the case of between-loci interactions) were multiplied by a genetic 323 

effect randomly drawn from the standard normal distribution and summed over all loci or all 324 

pairs of loci to obtain the genetic values. In the second step, an environmental effect was 325 

added by drawing from a normal distribution with a computed variance such that the broad 326 

sense heritability H2 = 0.8. We performed this simulation in each of the 20 random partitions 327 

of populations and independently sampled causal variants and genetic effects. 328 

Fitting GREML 329 

We fitted the GREML model using GCTA (Yang et al., 2011) with 20,000 individuals from 330 

each of the A, B, and C populations and A + B and A + C. The GREML partitioned 331 

phenotypic variance into a genomic (s2
g) and an environmental component (s2

e). Genomic 332 

heritability was computed as h2
g = s2

g/(s2
g + s2

e).  333 

Polygenic score prediction 334 
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The BLUP estimates of SNP effects were obtained using GCTA and provided to PLINK2 335 

(https://www.cog-genomics.org/plink/2.0/credits) to compute a polygenic score in 5,000 336 

new individuals either from the same population as the fitted model or from a different 337 

population. Prediction accuracy of polygenic score was computed as the r2 of correlating 338 

predicted polygenic scores and the simulated true phenotypes. In the case of prediction 339 

using causal variants with the correct dominance by dominance model (Figure 5), we 340 

constructed pseudo-variants using the relevant genotype coding (for D x D, double 341 

heterozygotes were coded as one genotype class and all others another) and ran GREML 342 

and polygenic score prediction the same way as an additive model. 343 
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Figure S1. Genomic heritability in different simulated populations. Genomic 
heritability was plotted for different population samples. (a) population A; (b) 
population B; (c) population C; (d) population A + B; and (e) population A + C. 
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Figure S2. Polygenic prediction under different genetic architecture in different 
populations. Accuracies of polygenic prediction under different genetic 
architecture in (a) fit model in A, predict in A; (b) fit in A, predict in B; (c) fit in A, 
predict in C; (d) fit in A + B, predict in B; (e) fit in A + C, predict in C. 
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