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ABSTRACT  

Rotational dynamics are observed in neuronal population activity in primary motor cortex (M1) when 

monkeys make reaching movements. This population-level behavior is consistent with a role for M1 as 

an autonomous pattern generator that drives muscles to produce movement. Here, we show that M1 

does not exhibit smooth dynamics during grasping movements, suggesting a more input-driven circuit. 

MAIN TEXT  

Populations of neurons in primary motor cortex (M1) exhibit smooth dynamics in their responses when 

animals make reaching or cycling movements 
1–4

. One interpretation of this population-level behavior is 

that M1 acts a pattern generator that drives muscles to give rise to movement. A major question is 

whether smooth population dynamics reflect a general principle of M1 function, or whether they 

underlie some behaviors but not others. To address this question, we examined the degree to which M1 

exhibits smooth rotational dynamics during grasping movements, which involve a plant with a different 

function, more joints, and different mechanical properties than the arm, and which is subserved by a 

different portion of M1.  

To this end, we recorded the neural activity in M1 and somatosensory cortex (SCx) using chronically 

implanted electrode arrays as monkeys performed a grasping task, restricting our analysis to responses 

before object contact (Figure S1). Animals were required to hold their arms still at the elbow and 

shoulder joints as a robotic arm presented each object to their contralateral hand. This task limits 

proximal limb movements and isolates grasping movements. For comparison, we also examined the 

responses of M1 populations during a center-out reaching task 
5
. 

First, we characterized the population dynamics in M1 during reaching and grasping movements (Figure 

1). We used jPCA to search for rotational dynamics in a low-dimensional manifold of M1 population 

activity 
1
. Replicating previous findings, reaching evoked multiphasic activity in single M1 neurons 

(Figure 1A) and strong rotational dynamics in the population (Figure 1C). During grasp, individual M1 

neurons again exhibited strong, multiphasic modulation (Figure 1B), but rotational dynamics were weak 

or absent (Figure 1D,E).  

Given the poor fit of rotational dynamics to neural activity during grasp, we assessed whether activity 

could be described by a linear dynamical system of any kind. To test for linear dynamics, we fit a 

regression model using the first 10 principal components of the M1 population activity (x(t)) to predict 

their rates of change (dx/dt). We found x(t) to be far less predictive of dx/dt in grasp than in reach, 

suggesting much weaker linear dynamics in the neural representation of grasp than reach (Figure 1F). 

We verified that these results were not an artifact of data alignment, analysis interval, peak firing rate, 

or population size (Figure S2). 

The possibility remains that dynamics are present in M1 during grasp, but that they are higher-

dimensional than during reach, or that they are nonlinear. Indeed, previous work analyzing neural state 

spaces in M1 during a reach-grasp-manipulate task found that neural activity is higher-dimensional than 

that observed during reach movements alone 
6
. As a first test of these possibilities, we examined the 

relationship between movement and neural activity from the standpoint of decoding. We used a 

powerful recent technique, latent factor analysis via dynamical systems (LFADS), which infers and 
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exploits latent dynamics to improve estimation of single-trial firing rates. Naturally, this benefit is only 

realized if the neural population acts like a dynamical system. Importantly, such dynamics are minimally 

constrained and can, in principle, be arbitrarily high dimensional and/or highly nonlinear. We then used 

a standard Kalman filter to decode joint angle kinematics from the inferred latent factors (Figure 2). If 

latent dynamics are present in the system, LFADS should substantially improve kinematic decoding 

relative to simple Gaussian-smoothed spike trains. Replicating previous results, decoding accuracy was 

substantially improved for reaching when inferring firing rates using LFADS (Figure 2A,C). However, 

LFADS offered no accuracy improvement when decoding grasping kinematics (Figure 2B,C), even though 

grasp was decoded just as well as reach under Gaussian smoothing of spike trains. These effects were 

consistent across all 30 degrees of freedom of the hand (Figure S3). These decoding results demonstrate 

that the strong dynamical structure seen in M1 population activity during reaching is not observed 

during grasp, even when dimensionality and linearity constraints are lifted. 

As a separate way to gauge the presence of nonlinear dynamics in grasping responses, we computed a 

neural ‘tangling’ metric, which assesses the degree to which network dynamics are governed by a 

smooth and consistent flow field 
3
. In a smooth, autonomous dynamical system, neural trajectories 

passing through nearby points in state space have similar derivatives. The tangling metric (Q) assesses 

the degree to which this is the case over a specified (reduced) number of dimensions (Figure S4). During 

reaching, muscle activity and movement kinematics have been shown to exhibit more tangling than 

does M1 activity, presumably because the neural system acts as a pattern generator while muscles are 

input-driven 
3
. We replicated these results for reaching: neural activity was much less tangled than the 

corresponding arm kinematics (position, velocity, and acceleration of joint angles)(Figure 3A). For grasp, 

however, M1 activity was somewhat more tangled than were the corresponding hand kinematics (Figure 

3B). Next, we compared tangling in M1 to tangling in SCx, which, as a sensory area, is expected to exhibit 

tangled activity 
3
. Surprisingly, M1 and SCx activity was similarly tangled during grasp (Figure 3C). In 

summary, then, M1 responses during grasp do not exhibit the properties of an autonomous dynamical 

system but rather resemble sensory responses (Figure 3D). 

We speculate that the similar level of tangling observed in SCx and M1 may reflect greater interplay 

between these areas during grasp than during proximal limb movements. Indeed, sensory feedback can 

obscure the intrinsic dynamics in neuronal circuits 
7
 and sensory representations are highly tangled 

3
. 

Additionally, the relatively greater importance of sensory feedback during grasp as opposed to reach is 

well-documented: monkeys can perform pointing movements with reasonable accuracy even in the 

absence of sensory input 
8
, whereas substantial deficits in finger coordination during grasp are observed 

when inactivating SCx 
9
. Furthermore, orderly dynamics have been observed during a single-finger 

pointing task in human subjects with ALS 
10

, a condition wherein neuronal loss characterizes both M1 

and SCx 
11

. That orderly M1 dynamics during hand and finger movements emerge after such loss is 

broadly consistent with SCx-M1 communication playing a role in tangling the M1 activity. Moreover, 

quick reaching movements are associated with a stereotyped triphasic muscle activation pattern 
12

 that 

is observed regardless of sensory feedback. To our knowledge, similar patterns of muscle activity have 

not been documented during grasping movements. Finally, projections between primate somatosensory 

and motor cortices support communication between the two 
13–15

, demonstrating a pathway by which 
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M1 and SCx dynamics might be directly linked rather than driven by parallel inputs. While this pathway 

is not unique to the hand, it may be more engaged during grasp than reach.  

In conclusion, we show that the lawful dynamics observed in M1 during reaching are not observed 

during grasping, and propose that this difference may be due to increased interplay between 

somatosensory and motor cortices during grasp. 
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FIGURES 

 

Figure 1. M1 rotational dynamics during reaching and grasping. A| Normalized peri-event histograms

aligned to movement onset (black square) for 4 representative neurons during the reaching task. Each

shade of gray indicates a different reach direction. B| Normalized peri-event histograms aligned to

maximum aperture (black square) for 4 representative neurons during the grasping task. Each shade of

blue indicates a different object group (see supplementary materials). C| Rotational dynamics in the

population response during reaching along the first jPCA plane. Different shades of gray denote different

reach directions. D| M1 rotational dynamics during grasping. Different shades of blue indicate different

object groups. E| FVE (fraction of variance explained) in the rate of change of neural PCs (dx/dt

explained by the optimal rotational dynamical system. Difference is significant (two-sample two-sided

equal-variance t-test, t(16) = -19.44, p=4.67e-13). Error bars denote standard error of the mean, and

data points represent cross-validated results for 2 monkeys. F| FVE in the rate of change of neural PCs

(dx/dt) explained by the optimal linear dynamical system. Difference is significant (two-sample two-

sided equal-variance t-test, t(16) = -21.37 p=1.57e-14). Error bars denote standard error of the mean,

and data points represent cross-validated results for 2 monkeys.  
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Figure 2. Accuracy of Kalman filter decoders of kinematics using neural data pre-processed with

Gaussian smoothing or with the assumption of underlying latent dynamics (LFADS). A,B| Example

kinematic traces reconstructed with and without the assumption of dynamics. A| Angles of arm joints

(gray) along with angles decoded when neuronal responses are preprocessed with Gaussian kerne

(green) and with LFADS (pink). B| Angles of hand joints (blue) along with their decoded counterparts

(Gaussian smooth in green, LFADS in pink). C| Mean performance of decoders for the arm (2 DoF) and

the hand (22 DoF), 10-fold cross-validated using a population of 44 neurons. Individual joint data shown

in Supplementary Figure 3. LFADS leads to substantial improvements over typical pre-processing of

neural data (Gaussian smoothing) for decoding reaching but not hand kinematics. 
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Figure 3. Tangling in reach and grasp. A| Tangling metric (Q) for population responses in motor cortex

during reaching vs. Q for reaching kinematics. Kinematic tangling is higher than neural tangling,

consistent with motor cortex acting as a pattern generation during reach. B| Q-M1 population vs. Q-

kinematics for grasping.  Neural tangling is higher than kinematic tangling, which argues against pattern

generation as the dominant drive during grasp. C| Q-M1 population vs. Q-SCx population. Neura

tangling is similar in M1 and SCx, suggesting that M1 is as input driven as a sensory area. D| Summary

results for two monkeys: Log of Q-motor/Q-kinematics of the arm during reach (KA), Q-motor/Q-

kinematics of the hand during grasp (KH), and Q-motor/Q-sensory during grasp (Ns). Black bars denote

mean. Differences are significant to reaching (two-sample two-sided equal-variance t-test: KH | t(2978)=-

43, p=1.03e-130 ; Ns |t(2978)=-39 p=1.87e-121). 
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METHODS 

Behavior and neurophysiology for grasping task 

We recorded single- and multi-unit responses in both the primary motor and somatosensory cortices 

(M1 and SCx) of two monkeys (Macaca mulatta) (M1: N1 = 53, N2 = 58 | SCx: N1 = 28 N2 = 26), and from 

M1 of a third monkey (M1: N3 = 80), as they grasped each of 35 different objects an average of 10 times. 

We only used neural responses from Monkey 3 in the decoding analysis (from M1 responses) because 

we did not obtain enough data from this animal’s SCx. Neural recordings were obtained using semi-

chronic electrode arrays (SC96 arrays, Gray Matter Research, Bozeman, MT) 
16

 across six and nine 

sessions for Monkeys 1 and 2, respectively. Electrodes, which were individually depth-adjustable, were 

moved to different depths on different sessions to capture new units. Units from Monkey 3 were 

recorded across two sessions from Utah electrode arrays (UEAs, Blackrock Microsystems, Inc., Salt Lake 

City, UT) and floating microelectrode arrays (FMAs, Microprobes for Life Science, Gaithersburg, MD) 

targeting rostral and caudal subdivisions of the hand representation of M1, respectively. Single units 

from all sessions (treated as distinct units) were extracted manually using an Offline Sorter (Plexon Inc., 

Dallas TX). Units were identified based on inter-spike interval distribution and waveform shape and size.  

Hand joint kinematics, namely the angles and angular velocities about all motile axes of rotation in the 

joints of the wrist and digits, were tracked at a rate of 100 Hz by means of a 14-camera motion tracking 

system (MX-T series, VICON, Los Angeles, CA). The VICON system tracked the three-dimensional 

positions of the markers, and joint angle kinematics were computed using inverse kinematics based on a 

musculoskeletal model of the human arm (https://simtk.org/projects/ulb_project) 
17–23

 implemented in 

Opensim (https://simtk.org/frs/index.php?group_id=91) 
24

 with segments scaled to the sizes of those in 

a monkey limb. Task and kinematic recording methods are similar to previously reported ones 
25

, but 

with a greater number of objects (35) and more detailed kinematic reconstructions (30 joints) 
26

. 

All surgical, behavioral, and experimental procedures conformed to the guidelines of the National 

Institutes of Health and were approved by the University of Chicago Institutional Animal Care and Use 

Committee. 

Behavior and neurophysiology for reaching task 

To compare grasp to reach, we analyzed previously-published single- and multi-unit responses from M1 

of two additional monkeys (Macaca mulatta) (M1: N4 = 76, , N5 = 107) operantly trained to move a 

cursor in a variable-delay center-out reaching task 
5
. The monkey’s arm rested on cushioned arm 

troughs secured to links of a two-joint exoskeletal robotic arm (KINARM system; BKIN Technologies, 

Kingston, Ontario, Canada) underneath a projection surface. The shoulder and elbow joint angles were 

sampled at 500 Hz by the motor encoders of the robotic arm, and the x and y positions of the hand were 

computed using the forward kinematic equations. The center-out task involved movements from a 

center target to one of eight peripherally positioned targets (5 to 7 cm away). Targets were radially 

defined, spanning a full 360 degree rotation about the central target in 45 degree increments. Each trial 

comprised two epochs: first, an instruction period lasting 1 to 1.5 s, during which the monkey held its 

hand over the center target to make the peripheral target appear; second, a “go” period, cued by 

blinking of the peripheral target, which indicated to the monkey that it could begin to move toward the 
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target. Single- and multi-unit activity from each monkey was recorded from a UEA implanted into the 

upper limb representation of contralateral M1. 

All surgical, behavioral, and experimental procedures conformed to the guidelines of the National 

Institutes of Health and were approved by the University of Chicago Institutional Animal Care and Use 

Committee. 

Data Analysis  

Rotational Dynamics  

Data pre-processing 

For both the reach and grasp datasets, neuronal responses were aligned to the start of movement, 

resampled at 100 Hz so that reach and grasp data were at the same time resolution, averaged across 

trials, then smoothed by convolution with a Gaussian (20 ms S.D.). We then followed the same data pre-

processing steps as outlined in Churchland et al. 2012: normalization of individual neuronal firing rates, 

subtraction of the cross-condition mean peri-event time histogram (PETH) from each neuron’s response 

in each condition, and applying principal component analysis (PCA) to reduce the dimensionality of the 

population response. We used 10 dimensions instead of six (cf. Churchland et al. 2012) as a compromise 

between the lower-dimensional reach data and the higher-dimensional grasp data. 

jPCA 

We then applied to the population data (reduced to 10 dimensions by PCA) a published dimensionality 

reduction method, jPCA 
1
, which finds orthonormal basis projections that capture rotational structure in 

the data. Specifically, the neural state is compared with its derivative and the strictly rotational 

dynamical system that explains the largest fraction of variance in that derivative is identified. The delay 

periods between the presentation/go-cue for the datasets varied, along with the reaction times, so we 

analyzed over time intervals (~500 ms) that maximized rotational variance for each dataset. For the 

reach data, data were aligned to the start of movement and the analysis window was centered on this 

event, whereas for the grasp data, data were aligned to maximum hand aperture, and we analyzed the 

interval centered on this event. In some cases, the center of this 500-ms window was shifted between -

250 ms to +250 ms relative to the alignment event to obtain an estimate of how rotational dynamics 

change over the course of the trial (e.g., Figure S2). These events were chosen for alignment as they 

were associated with both the largest peak firing rates and the strongest rotational dynamics. Other 

alignment events were also tested, to validate robustness (Figure S2B). 

Object clustering 

Each of the 35 objects was presented 10 times per session, which yields a smaller number of trials per 

condition than were used to assess jPCA during reaching (at least 40). To permit pooling across a larger 

number of trials when visualizing and quantifying population dynamics with jPCA (Figure 1), objects in 

the grasp task were grouped into eight object clusters on the basis of the trial-averaged similarity of 

hand posture across all 30 joint degrees of freedom 10 ms prior to grasp (i.e., object contact). Objects 

were hierarchically clustered into 8 clusters on the basis of the Ward linkage function (MATLAB 

clusterdata). Eight clusters were chosen to match the number of conditions in the reaching dataset. 
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Cluster sizes were not uniform; the smallest comprised 2 and the largest 9 different objects, with the 

median cluster comprising 4 objects. 

As the clustering method just described yielded different cluster sizes, we assessed an alternative 

clustering procedure (Figure S2E) that guaranteed objects were divided into 7 equally-sized clusters (5 

objects per cluster). Rather than determining cluster membership on the basis of a linkage threshold, 

cluster linkages were instead used to sort the objects on the basis of their dendrogram placements 

(MATLAB dendrogram). Clusters were obtained by grouping the first five objects in this sorted list into 

a common cluster, then the next five, and so on. This resulted in slightly poorer performance of jPCA 

(see Quantification). 

For completeness, we also assess jPCA without clustering (Figure S2E). This also resulted in slightly 

poorer performance of jPCA and, by virtue of comprising 35 distinct neural trajectories instead of just 8, 

was considerably more difficult to visualize.  

Quantification 

In a linear dynamical system, the derivative of the state is a linear function of the state. We wished to 

assess whether a linear dynamical system could closely describe the neural activity. To this end, we first 

produced a denoised low-dimensional neural state (X) by reducing the dimensionality of the neuronal 

responses to 10 using PCA. Second, we numerically differentiated X to produce the empirical 

derivative, �� . Next, we used regression to fit a linear model, predicting the derivative of the neuronal 

state from the current state: �� � ��. Finally, we computed the fraction of variance explained (FVE) by 

this model: 

 ��� � 1 	 
�� 	 ��

���

�

�� 	 ��� �


���

�

  (1) 

M was constrained to be skew-symmetric (�����) unless otherwise specified; �·� indicates the mean of a 

matrix across samples, but not across dimensions; and �·����  indicates the Frobenius norm of a matrix. 

Reaching data was 4-fold cross-validated, while grasp data was 5-fold cross-validated. 

Control comparisons between arm and hand data  

We performed several controls comparing arm and hand data to ensure that our results were not an 

artifact of trivial differences in the data or pre-processing steps.  

First, we considered whether alignment of the data to different events might impact results. For the arm 

data, we aligned each trial to target onset and movement onset (Figure S2A). For the hand data, we 

aligned each trial to presentation of the object, movement onset, and the time at which the hand 

reached maximum aperture during grasp (Figure S2B). Rotational dynamics were strongest (though still 

very weak) when neuronal responses were aligned to maximum aperture so this alignment is reported 

throughout the main text. 

Second, we assessed whether rotations might be obscured due to differences in firing rates in the hand 

vs. arm responses. To this end, we compared peak firing rates for trial-averaged data from the arm and 

hand after pre-processing (excluding normalization) to directly contrast the inputs to the jPCA analysis 

given the two effectors/tasks (Figure S2C). Peak firing rates were actually higher for the hand than the 
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arm, eliminating the possibility that our failure to observe dynamics during grasp was an artifact of weak 

responses. 

Finally, we assessed whether differences in the sample size might contribute to differences in variance 

explained. To this end, we took five random samples of 55 neurons from the reaching data set – chosen 

to match the minimum number of neurons in the grasping datasets – and computed the cross-validated 

fraction of variance explained by the rotational dynamics. The smaller samples yielded identical fits as 

the full sample. 

Tangling 

We computed tangling of the neural population data (reduced to 15 dimensions by PCA) using a 

published method 
3
. In brief, the tangling metric estimates the extent to which neural population 

trajectories are inconsistent with what would be expected if they were governed by an autonomous 

dynamical system, with smaller values indicating consistency with such dynamical structure. Specifically, 

tangling measures the degree to which similar neural states, either during different movements or at 

different times for the same movement, are associated with different derivatives. This is done by 

finding, for each neural state (indexed by �), the maximum value of the tangling metric ���� across all 

other neural states (indexed by ��): 

 
���� �

max
��

���	 	 ��	
�� 
��	 	 �	
�� � �

 
(2) 

Here, �	  is the neural state at time t (a 15 dimensional vector containing the neural responses at that 

time), �	�  is the temporal derivative of the neural state, and �·� is the Euclidean norm, while � is a small 

constant added for robustness to noise 
3
. This analysis is not constrained to work solely for neural data; 

indeed, we also apply this same analysis to trajectories of joint angular kinematics to compare with the 

tangling of neural trajectories. 

The neural data were pre-processed using the same alignment, trial averaging, smoothing, and 

normalization methods described above. Joint angles were collected for both hand and arm data. For 

this analysis, joint angle velocity and acceleration were computed (six total dimensions for arm, 90 

dimensions for hand). For reaching, we analyzed the epoch from 200 ms before to 100 ms after 

movement onset. For grasping, we analyzed the epoch starting 200 ms before to 100 ms after maximum 

aperture. Neuronal responses were binned in 10 ms bins to match the sampling rate of the kinematics.  

We tested tangling at different dimensionalities and selected the dimensionality at which Q had largely 

leveled off for both the population neural activity and kinematics (Figure S4), namely 6 for reach 

kinematics (the maximum) and 15 for grasp kinematics and for the neuronal responses.  

Decoding 

We analyzed the extent to which we can decode kinematics of the hand and the arm using neural 

population activity recorded from primary motor cortex and compared performance with and without 

the assumption of underlying dynamics. To this end, we used the responses from monkey 3 (2 sessions 

with 44 and 36 M1 neurons and 20 kinematic DoF) performing the grasping task, and monkey 4 (64 M1 

neurons and 2 kinematic DoF) performing the reaching task. We analyzed 800 ms of neural data 
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preceding maximum aperture of the hand in the grasping task, and neural data from 600 ms before to 

200 ms after movement onset in the reaching task. 

Preprocessing 

For decoding, we preprocessed the neural data using one of the two methods: smoothing with a 

Gaussian kernel (σ = 20 ms) or latent factor analysis via dynamical systems (LFADS, Pandarinath et al., 

2018). 

LFADS is a generative model that assumes that observed spiking arises from an underlying dynamical 

system and approximates this system by training a sequential autoencoder. We fixed the number of 

factors in the model to 20 for both the arm and the hand datasets. We then performed PCA on the 

preprocessed neural activity and kept the components that cumulatively explained 90% of variance in 

the neural data.  

Kalman Filter 

To predict hand and arm kinematics, we applied the Kalman filter 
28

, commonly used for kinematic 

decoding 
29,30

. In this approach, kinematic dynamics can be described by a linear relationship between 

past and future states: 

 �	 � ��	�� � �	  (3) 

where  �	  is a vector of joint angles at time �, � is a state transition matrix, and �	  is a vector of random 

numbers drawn from a Gaussian distribution with zero mean and covariance matrix �. The kinematics �	  

can be also explained in terms of the observed neural activity �	�∆: 

 �	 � ��	�∆ �  	 (4) 

Here, �	�∆ is a vector of instantaneous firing rates across a population of M1 neurons at time � 	 ∆, � is 

an observation model matrix, and  	 is a random vector drawn from a Gaussian distribution with zero 

mean and covariance matrix ". We tested multiple values of the latency, ∆, and report decoders using 

the latency that maximized decoder accuracy (150 ms). 

We estimated the matrices �, �, �, " using linear regression on each training set, and then used those 

estimates in the Kalman filter update algorithm to infer kinematics of each corresponding test set (see 

Faragher 2012 and Okorokova et al. 2015 for details) 
31,32

. Briefly, at each time �, kinematics were first 

predicted using the state transition equation (3), then updated with observation information from 

equation (4). Update of the kinematic prediction was achieved by a weighted average of the two 

estimates from (3) and (4): the weight of each estimate was inversely proportional to its uncertainty 

(determined in part by � and " for the estimates based on xt-1 and zt-Δ, respectively), which changed as 

a function of time and was thus recomputed for every time step. 

To assess decoding performance, we performed 10-fold cross-validation in which we trained the 

parameters of the filter on a randomly selected 90% of the trials and tested the model using the 

remaining 10% of trials. Performance was quantified using the average coefficient of determination ($�) 

for the held-out trials across test sets. We report performance for each degree of freedom separately 

(Figure S3) and also the performance averaged across all degrees of freedom (Figure 2). 
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Data availability 

The data that support the findings of this study are available from the corresponding author upon 

reasonable request. 

Code availability 

The custom analysis code used in this study is available from the corresponding author upon reasonable 

request. 
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SUPPLEMENTAL MATERIALS 

Figure S1 Grasp Task Behavior and Neurophysiology. A| Task Intervals: Start of Movement, Maximum

Aperture, and Grasp epochs were manually scored from video. Arrows indicate motion of the robot

presenting the object or of the hand. B| Multi-electrode arrays were used to record neuronal activity

The array spanned M1 and SCx, but only M1 units were used for this study except when explicitly noted

(i.e., in the tangling analysis).  
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Figure S2: Control analyses for reaching and grasping. A| For reaching: Cross-validated FVE (fraction of

variance explained) in the rate of change of neural PCs (dx/dt) explained by the optimal linear dynamica

system, with data aligned to target presentation (target) or movement onset (movement). B| For

grasping: Cross-validated FVE in the rate of change of neural PCs (dx/dt) explained by the optimal linear

dynamical system, when the data are aligned to object presentation (present), movement onset (mov)

and maximum aperture (max aperture). C| Peak firing rate for arm (gray) and hand (blue) responses. D|

Bootstrapped arm responses (55 neurons) vs. full arm dataset. E| Cross-validated fraction of variance

explained (FVE) in the rate of change of neural PCs (dx/dt) explained by the optimal linear dynamica

system when the objects are clustered into fewer categories for the hand (see methods). Difference

between 8 clusters and 35 clusters is significant (p=.0008) while difference between 7 clusters and 35

clusters is not significant (p=0.57). However, for both clustering methods, difference between hand and

arm remains highly significant (8 clusters| p=2.5e-18; 7 clusters | p=2.08e-19). For all figures, error bars

represent standard error of the mean, and data points represent cross-validated results across 2

monkeys.  
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Figure S3: Decoding performance is consistent across joints. Mean performance of separate joints

(individual points) derived from decoders with Gaussian smoothing or LFADS preprocessing for 1 arm

dataset (grey: N = 44; 2 joints) and 2 hand datasets (light blue: N=44, dark blue: N = 36; 30 joints). For al

joints, LFADS leads to substantial improvement in decoding for the arm but not for the hand. 
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Figure S4: Tangling vs. dimensionality. A| Tangling metric (90
th

 percentile of Q) vs. number of 

dimensions used to compute Q for reaching. Q values derived from motor cortical responses are shown 

in dark gray, Q values derived from kinematics are shown in light gray. Arm kinematics exhibit 

consistently higher tangling than do the corresponding population responses in motor cortex. B| 

Tangling metric vs. number of dimensions used to compute Q for grasp. Q values derived from motor 

cortical responses are shown in blue, Q-values derived from hand kinematics are shown in green. When 

Q has leveled off for the kinematic and neural data (~15 dimensions), neuronal trajectories in motor 

cortex exhibit higher tangling than do the corresponding hand kinematic trajectories. C| Tangling metric 

vs. number of dimensions used to compute Q for reaching in motor and somatosensory cortex. Q-values 

derived from motor cortical responses are shown in blue, those derived from somatosensory responses 

are shown in orange. Hand motor and somatosensory responses exhibit similar tangling.  
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