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Abstract

Diabetic retinopathy (DR) is a disease that forms as a complication of diabetes, It is
particularly dangerous since it often goes unnoticed and can lead to blindness if not
detected early. Despite the clear importance and urgency of such an illness, there is no
precise system for the early detection of DR so far. Fortunately, such system could be
achieved using deep learning including convolutional neural networks (CNNs), which
gained momentum in the field of medical imaging due to its capability of being
effectively integrated into various systems in a manner that significantly improves the
performance. This paper proposes a computer aided diagnostic (CAD) system for the
early detection of non-proliferative DR (NPDR) using CNNs. The proposed system is
developed for the optical coherence tomography (OCT) imaging modality. Throughout
this paper, all aspects of deployment of the proposed system are studied starting from
the preprocessing stage required to extract input data to train the CNN without
resizing the image, to the use of transfer learning principals and how best to combine
features in order to optimize performance. A novel patch extraction framework for
preprocessing is presented, followed by fovea detection algorithm, in addition to
investigating the various CNN parameters for optimal deployment. Optimum CNN
parameters and promising results are achieved. To the best of our knowledge, this is the
first CNN-based DR early detection CAD system for OCT images. It achieves a
promising accuracy of 94% with transfer learning.

Introduction 1

Nowadays, ophthalmologists are capable of determining diseases with the utilization of 2

computer aided diagnostic (CAD) systems for accurate diagnosis, in contrast to the 3

traditional form of visual interpretation and observation. Although CAD systems have 4

recently emerged in the medical field, there is a continuous flux of interest in the 5

development of such systems due to their capability of improving the medical services 6

provided to the community in terms of accuracy and reliability in the diagnosis of 7

diseases. Meanwhile, machine learning is paving the way for breakthroughs in the 8
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different areas of medical imaging such as in classification [1], segmentation [2], disease 9

detection [3], and image registration [4]. The application of deep learning, a subset of 10

machine learning algorithms, has made tremendous impact in the area of medical image 11

processing research [5, 6]. Deep learning is the latest emerging machine learning lead 12

technology in computer vision and image processing domains, particularly convolutional 13

neural networks (CNNs) [7]. They are especially powerful in solving problems that are 14

computationally difficult or with a high error rate such as medical image recognition 15

with outstanding performance results [8]. For this reason, we got inspired to use CNNs 16

for the early detection of one of the most serious ophthalmological problems, which is 17

the diabetic retinopathy (DR). 18

Blindness resulting from diabetes is turning to be an increasingly alarming issue, 19

which is due to the associated eye disease: DR. Such disease which develops as a 20

complication of diabetes, particularly type II [9, 10] occurs specifically from the chronic 21

high levels of sugar in the blood associated with swelling and damage of the tiny retinal 22

blood vessels in the eye [11–13]. This leads to distortion of the vision followed by 23

scarring of the retina in advanced stages, and finally consequent blindness [12]. It is 24

worth mentioning that DR is one of the leading causes of blindness in adults [14,15]. 25

This problem is further amplified by the fact that 75% of the diabetic patients are not 26

aware of the eye complications that they may be experiencing [9]. To prevent such a 27

ramification, it is paramount to diagnose DR as soon as possible. Early detection and 28

intervention can slow down the process and halt it completely [16,17], which in turn 29

protects the vision of the patient [18]. However, despite the significance of this matter 30

and the notable prevalence rise of diabetes, a precise procedure to detect early retinal 31

changes for DR prevention is absent [13,17]. 32

DR has mainly two distinct classes: proliferative DR (PDR) and non-proliferative 33

DR (NPDR) [6]. NPDR is characterized by the presence of damaged blood vessels in 34

the retina in addition to fluid leakage, which results in the retina swelling and wetness. 35

For the case of PDR, multiple regions of the retina are affected by the appearance of 36

new abnormal blood vessels, which makes it a severe and advanced DR stage. The work 37

presented in this paper is limited only to NPDR. 38

One of the ophthalmology CAD imaging modalities used for early DR detection is 39

fundus images [19,20]. This is a particularly active area for research in applications of 40

automatic detection because while fundus imaging are convenient in terms of its imaging 41

principals that correspond to ophthalmoscopy, their interpretations requires a highly 42

trained ophthalmologist; hence it is expensive [21]. Related work on fundus imaging for 43

early detection of DR includes automatic micro-aneurysms detection trainable 44

system [22], rendering a 65% sensitivity at 27 false positives per image by supposition 45

testing. Another system, though dependent on the existence of the indicators, is able to 46

detect hard and soft exudates [23]. On the other hand, in [24], Pachiyappan et al. use a 47

combination of filtering, morphological processing, and thresholding for DR macular 48

abnormalities detection, while in [25], automatic extraction of retinal vasculature was 49

performed in order to obtain the blood vessels network. Similar feature-based for fundus 50

imaging have also been reviewed in [26]. Recently, CNNs have also been used for 51

exudates detection of diabetic subjects in fundus images [27]. 52

Nonetheless, another medical imaging modality that may be employed in the early 53

detection of DR is optical coherence tomography (OCT) [28], which is useful because it 54

facilitates retinal morphology evaluation to microscopic resolution [29]. In turn, various 55

retinal abnormalities including glaucoma, macular degeneration, and diabetic macular 56

edema may be diagnosed in a non-invasive manner. Compared to fundus imaging, OCT 57

is more favorable because it supports quantitative evaluations as it capable of capturing 58

depth, in addition to its lower cost, and its ability to allow human bias free monitoring 59

of changes [30]. However, OCT is relatively unexplored in comparison to fundus images 60
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in terms of early detection of DR. As such, the proposed system investigates early 61

detection of DR in OCT images, which is principally performed with the aid of CNNs. 62

Hence, this paper presents the optimal CNN architecture for early detection of DR 63

through the exploration of various CNN configurations and parameters. In particular, 64

the following items are studied: 1) the effect of transfer learning on improving the 65

performance of the proposed CAD system, given the scarcity of the data; 2) the effect of 66

fusing CNNs retrained with different datasets on the overall system performance; 3) the 67

depth of CNN layers required to extract features to train the final classifier used for 68

data fusion; and 4) the OCT layer required to be segmented in order to be used for the 69

y-coordinate axis alignment of the extracted patches for optimum results. The rest of 70

this paper is organized in three sections as follows: a section that presents the materials 71

and methods, followed by a section that discusses the experimental results, and finally 72

the conclusion is given in the last section. 73

Materials and methods 74

A simplified block diagram of the proposed CAD system for early detection of DR in 75

OCT images using CNNs is shown in Fig 1, and an overview of the system is shown in 76

Fig 2. In contrast to conventional feature extraction methods, using CNNs effectively 77

classifies normal and DR images without the need for features that are designed 78

manually. The proposed system is composed of a preprocessing stage where appropriate 79

sized patches are detected and extracted, a CNN training stage, and finally investigation 80

of various fusion or combination schema for improved performance of the proposed 81

system. The preprocessing stage starts with segmentation of the original OCT scan into 82

twelve different layers with the application of an unsupervised parametric mixture model 83

and Markov Gibbs Random Fields [31]. The location of the fovea is also simultaneously 84

detected. The results of the prior two stages are then fed for the positioning and 85

extraction of the appropriate patches as per the schema of the proposed system. 86

Fig 1. Simplified block diagram of the proposed CAD system for early detection of DR
in OCT images using CNNs.

The extracted patches are then fed into the CNNs of the proposed system according 87

to the configuration at which the system has been set. The output from the CNNs is 88

then analyzed if it is determined to be the final output of the proposed CAD system; 89

otherwise, it is fed into a classifier for appropriate training for combination of the data 90

to obtain the final result. We evaluate the overall performance of the system with 91

different metrics and the utilization of 5-fold cross validation technique. This allows us 92

to infer meaningful conclusions and develop the optimum CAD system for early 93

detection of DR with the use of CNNs. 94

OCT dataset 95

Patients with and without diabetes mellitus were enrolled at the Kentucky Lions Eye 96

Center at University of Louisville from between June 2015 and December 2015 ( total of 97

52 subjects with 26 patients for each class with IRB Number: 18.0010). Informed 98

consent (or assent) was obtained for each participant. Exclusion critiera included 99

history of retinal pathology, including diabetes-related, and severe myopia, defined as 100
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Fig 2. Overview of the proposed CAD system for early detection of DR in OCT images
using CNNs.

refractive error ≥ −6.0 diopters. In all, n subjects were enrolled, n of whom had 101

diabetes, ranging in age from n to n years. 102

Data used for training and testing of the CAD system were obtained using a clinical 103

OCT scanner, Cirrus HD-OCT 5000 (Carl Zeiss Meditec, Dublin, California). B-scans 104

were obtained over a 21-line raster across the macula of both eyes. For each eye, a single 105

b-scan, passing through the fovea, was selected for analysis. Images were 1024× 1024 106

pixels, 8 bit grayscale, capturing an optical slice 2 mm deep and 9 mm from side to side 107

(nasal-temporal). 108

Preprocessing and retinal layer segmentation 109

The proposed DR early detection system first constitutes of a preprocessing stage, as 110

illustrated in Fig 3, where we extract the inputs to be fed to the CNN as appropriate. 111

The main reason behind such a stage is the disagreement between the dimensional size 112

of the original OCT scans that are the input image data and that of the input layer for 113

the pretrained CNN in the methodology; i.e. the AlexNet CNN as shown in Fig 4. The 114

pre-trained version of the CNN for the application of transfer learning is trained on a 115

subset of the large-scale ImageNet image database [32]. That is 1000 object categories 116

and 1.2 million real-life images for training. The preprocessing stage also eliminates 117

unimportant information; hence, improving the speed and efficiency of the system. 118

Preprocessing for the proposed algorithm involves rough segmentation of the retina 119

proper from the rest of the image, and identification of the fovea. The appearance of 120

the retina in an OCT b-scan reveals approximately 12 bands of greater or lesser 121

reflectivity as shown in Fig. 5. Histological studies have correlated these bands with the 122

layers of the retina, proceeding from the vitreous body to the choroid: 1. nerve fiber 123

layer (NFL), 2. ganglion cell layer (GCL), 3. inner plexiform layer (IPL), 4. inner 124

nuclear layer (INL), 5. outer plexiform layer (OPL), 6. outer nuclear layer (ONL), 125

7. external limiting membrane (ELM), 8. myoid zone (MZ), 9. ellipsoid zone (EZ), 126

10. outer segments of the photoreceptors (OPR), 11. interdigitation zone (IZ), and 127

12. the retinal pigment epithelium (RPE). 128

As shown in Fig 5, at the fovea the vitreous body is nearly adjacent to the ONL 129
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Fig 3. Preprocessing stage of the proposed CAD system.

Fig 4. Pre-trained AlexNet CNN model architecture.

Fig 5. OCT retinal layers segmentation.

(layer 6), while layers 1–5 all but vanish; surrounding the fovea is the foveal rim, where 130

layers 1–5 are thickest. This is the structure used to guide the patch extraction 131

procedure for consistent representation of the retina across different OCT images. 132

Patches were selected from either side of the fovea and oriented to align with the retinal 133
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layers. Consequently, the amount of extracted background (vitreous or choroid) is 134

minimized, and feature extraction should be independent of any peculiarities (e.g. slight 135

tilt or off-center) of a given OCT scan. 136

The fovea coordinate localization starts off with applying a median filter in order to 137

remove any impulsive noise. This is then followed by the “à trous” algorithm [33] that 138

decomposes each scan into scale-space components of coarser and finer detail by 139

undecimated wavelet transform as per the aforementioned details. Edge detection in 140

scale space allows for easy identification of high contrast boundaries in the OCT image: 141

vitreous-NFL, MZ-EZ, and RPE-choroid. Contours are first detected as local gradient 142

maxima in the appropriate wavelet component, then smoothed using adaptive spline 143

smoothing. Considerations of typical retina structure, above, lead to identification of 144

the fovea with the point on the vitreous-NFL boundary at minimum distance from the 145

MZ-EZ boundary. When computing these distances, it is important to correct for the 146

non-square pixel aspect ratio of typical OCT scanners. The preprocessing algorithm is 147

described in detail in [31]. Finally, it is noteworthy to mention that each of the 148

grayscale images was concatenated as three different channels for the required 3-channel 149

input of the AlexNet. 150

Feature extraction and diagnosis 151

Upon the detection of the fovea, the required patches’ locations along the x-coordinate 152

axis is computed appropriately, i.e. with the origin at the fovea. These calculated points 153

are used for extracting the corresponding vertical slice from the segmentation mask of 154

the layer that we would be centering the patch extraction at for the y-coordinate axis. 155

The sum the values of the pixels of these extracted slices along the x-axis is then 156

considered to take into account any orientation or skewness display of the OCT scan. It 157

acts as an efficient measure where if it is greater than zero then the corresponding row 158

contains a significant part of the layer. The resultant of the final algorithm of the 159

preprocessing stage as shown in Fig 6 is a representative patch, i.e. extracted image 160

from the original OCT, that is in a matching size to the input layer of the CNN. 161

Fig 6. Patch extraction framework.

In order to find out the optimum parameters for the proposed system, various 162

investigations were carried out, the first of which is whether the application of transfer 163

learning improves the accuracy of the algorithm rather than just training the network 164

from scratch. This is also made in accordance to the fact that the dataset size is 165
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relatively small. As such, training of two AlexNet CNNs is performed; one which is 166

pre-trained and another which is not, with the normal and DR training dataset upon its 167

preprocessing. 168

Patches extracted to the temporal side of the fovea were fed into their own AlexNet 169

CNN, one of which was pretrained on ImageNet and another which had not been. The 170

pretraining is used only as far as layer pool5 (Fig. 4) for the activations of the hidden 171

layers, while subsequent layers of the AlexNet were treated identically for the 172

comparison between the use and non-use of transfer learning. Patches extracted to the 173

nasal side of the fovea were likewise input to two AlexNet CNN, one of which was 174

pre-trained, for carrying out the same comparison. 175

It was also tested whether improved accuracy would result if fusion of various input 176

data. This experiment was carried out through different means for extracting input 177

data and building a corresponding appropriate CNN configuration for testing and 178

validation of the investigation. The first use case is the configuration of the best results 179

concluded from the first experimentation. That is hypothetically the two pretrained 180

AlexNet CNNs that are fed the input images as the patches extracted to the left and to 181

the right of the fovea; i.e. the experiment is hypothesized to show that transfer learning 182

does improve the results particularly with small datasets. Fovea detection preprocessing 183

is then performed for each of the OCT scans or images in order to extract a patch 184

where the fovea coordinates are the center of the patch. That is the extraction process 185

of the patch assumes the fovea coordinates to be its center across both x-coordinates 186

and y-coordinates instead of just the x-coordinates and relying on the segmented layer 187

(6 or ONL) chosen as per the other extraction scheme. Hence, successfully combining 188

the information from the left and right patch to be fed to a single AlexNet CNN and 189

test the accuracy. 190

Furthermore, information combination of the patches extracted to the left and right 191

of the fovea in another way which aims to further improve the results by increasing the 192

amount of information fed to the network or the AlexNet CNN in investigated. That is 193

whether the combination of the results of the CNNs that are trained with the patches 194

extracted to the left and right of the fovea can improve the overall algorithm’s 195

performance. This is carried out by the extraction of the features at the bottleneck 196

stage and then the training of a two-class support vector machine (SVM) classifier, a 197

machine learning algorithm used in classification problems [34], with a fast stochastic 198

gradient descent solver for the final classification results. 199

Hence, the proposed overall CNN configuration starts with the fovea detection in 200

order to locate it as well as the layer segmentation to acquire the resultant segmented 201

layer 6, i.e. ONL layer, of each of the scans that we are keeping as a constant parameter 202

for the experiments carried out. However, it is noteworthy to mention that a different 203

experimentation is carried out where all other parameters are set but the layer at which 204

we center the patch extraction process at is varied in terms of the y-coordinates to find 205

the layer that achieves the optimum results and hence further improves the algorithm. 206

This entire CNN setup is shown in Fig 7. 207

Another investigation is carried out in order to find out the optimum parameters for 208

the best performance of the algorithm is the layer at which we carry out transfer 209

learning at by change of extracting the features at the following layers for comparison of 210

the performance results: (i) one layer above the bottleneck features which is relu6 layer, 211

{fc6}; (ii) the layer with the bottleneck features which is pool5 layer, {P5}; (iii) one 212

layer before the bottleneck features which is relu5 layer, {C5}; and (iv) two layers 213

before the bottleneck features which is relu4 layer, {C4}. In this investigation, both the 214

results in terms of accuracy and the computation expense for an overall performance 215

evaluation are taken into consideration. 216

The final investigation finds out the best OCT segmented layer to center the patch 217
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Fig 7. Investigation of deployment of various data fusion schemes in the proposed
system with transfer learning. A: Patches extracted to the left and right of the retina
combined convolutional neural networks together. B: Patches extracted to the left and
right of the retina, and left and right edge patches combined convolutional neural
networks.

extracted process at building on the results from the above investigations. The layers 218

that are experimented on are all around the location of the fovea which are set to be: (i) 219

layer 5 or the OPL; (ii) layer 6 or the ONL; (iii) layer 7 or the ELM; (iv) layer 8 or the 220

MZ; and (v) layer 9 or the EZ. Samples of such extracted patches are shown in Fig 8 for 221

DR OCTs. 222

Validation 223

Fivefold cross validation was used for the evaluation of each of the investigations of the 224

CNN CAD system for early detection of DR. This is a particular case of k-fold cross 225

validation, where k training runs are performed, each time leaving out a fraction 1
k of 226

the data for subsequent testing. In this way every available observation (OCT scan) is 227

used for both training and (exactly once) for testing. This is in contrast to the 228

traditional hold-out method where a fixed proportion of the data are set aside from the 229
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Fig 8. DR sample patches centered with different OCT layers. A: Original OCT scan
from a subject with DR. B: OCT scan corresponding joint layers mask for segmentation.
C: Patches extracted to the left and right of the retina from a subject with DR centered
across the y-coordinate axis with different OCT layers.

beginning of the experiment to be used only for validation. Cross validation has the 230

advantage of making the most of a limited amount of data, but is known to produce 231

biased estimates of system performance. 232

The performance metrics used were accuracy (α), error rate (β), specificity (κ),
precision (PPV), and recall (TPR). If TP is the number of correctly classified diabetes
cases in a particular run of cross validation, TN is the number of correctly classified
non-diabetic cases, and P = TP + FP and N = TN + FN are the total number of
diabetes and non-diabetic cases in the test data, then these metrics are defined as

α =
TP + TN

P + N

β = 1− α

κ =
TN

FP + TN

PPV =
TP

TP + FP

TPR =
TP

TP + FN
(1)

Experimental results and discussion 233

Shown in Table 1 are the comparative results of the proposed investigations. In addition 234

to the aforementioned performance metrics, the respective standard deviations across 235

the folds are noted. The standard deviation of the error metric corresponds to that of 236

the accuracy as they are complementary measures. First, when investigating the effect 237

of transfer learning application on the proposed system for a CNN which is fed only 238

patches extracted to the left and to the right of the fovea as input, a clear increase in 239

performance across all of the measures is observed. Second, comparison of the 240

performance results of training the proposed system with independent patches versus 241

various combination schemas such as patches extracted with the fovea at their center, or 242

using a classifier to combine two or four extracted patches shows that combining two or 243

four patches result in the highest performance metrics across the board. However, it can 244

also be observed that the time taken for the four patches approach is almost four times 245

the one for the two patches, with no improvement in any of the metrics. As such, only 246

the two patches approach is accounted for in the next investigation of finding the 247
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Table 1. Summary of proposed system findings.
Accuracy

Accuracy
Std

Error Rate Specificity
Specificity

Std
Precision

Precision
Std

Recall
Recall
Std

Average Testing
Time (s)

Right Alone (No transfer learning)
(pool5 - layer6) - 128 batches

52.00% 0.08940 48.00% 41.43% 0.09620 64.44% 0.20560 83.81% 0.23480 0.403820

Right Alone (No transfer learning)
(pool5 - layer6) - 64 batches

56.00% 0.08940 44.00% 62.50% 0.21650 65.11% 0.21150 88.67% 0.17580 0.492000

Right Alone (No transfer learning)
(pool5 - layer6) - 32 batches

54.00% 0.05480 46.00% 42.86% 0.04120 66.67% 0.20410 84.29% 0.20450 0.486904

Left Alone (No transfer learning)
(pool5 - layer6) - 128 batches

44.00% 0.05480 56.00% 36.67% 0.21010 57.83% 0.22600 71.79% 0.20220 0.386900

Left Alone (No transfer learning)
(pool5 - layer6) - 64 batches

56.00% 0.15170 44.00% 59.68% 0.22980 62.00% 0.21680 89.33% 0.15350 0.492300

Left Alone (No transfer learning)
(pool5 - layer6) - 32 batches

50.00% 0.00000 50.00% 30.00% 0.00000 76.79% 0.22520 66.79% 0.20660 0.4794120

Right Alone (Transfer learning)
(pool5 - layer6) - 128 batches

80.00% 0.07070 20.00% 77.78% 0.10190 80.00% 0.07070 100.00% 0.00000 0.394520

Right Alone (Transfer learning)
(pool5 - layer6) - 64 batches

86.00% 0.11400 14.00% 80.12% 0.14160 86.00% 0.11400 100.00% 0.00000 0.160400

Right Alone (Transfer learning)
(pool5 - layer6) - 32 batches

92.00% 0.08370 8.00% 89.33% 0.09830 93.78% 0.05700 97.78% 0.05640 0.156400

Left Alone (Transfer learning)
(pool5 - layer6) - 128 batches

74.00% 0.04470 26.00% 73.00% 0.06190 80.78% 0.06690 90.78% 0.04970 0.378820

Left Alone (Transfer learning)
(pool5 - layer6) - 64 batches

76.00% 0.08940 24.00% 68.45% 0.09170 76.00% 0.08940 100.00% 0.00000 0.15900

Left Alone (Transfer learning)
(pool5 - layer6) - 32 batches

66.00% 0.08940 34.00% 66.72% 0.18840 73.00% 0.16430 91.00% 0.12450 0.15690

Center (No transfer learning)
(pool5 - layer6) - 128 batches

52.00% 0.10950 48.00% 58.89% 0.23110 58.89% 0.23110 90.00% 0.14140 0.487400

Center (No transfer learning)
(pool5 - layer6) - 64 batches

52.00% 0.04470 48.00% 23.33% 0.11790 87.14% 0.21670 63.33% 0.21730 0.498400

Center (No transfer learning)
(pool5 - layer6) - 32 batches

56.00% 0.08940 44.00% 51.11% 0.24220 76.29% 0.22940 76.50% 0.22610 0.445120

Center (Transfer learning)
(pool5 - layer6) - 128 batches

74.00% 0.15170 26.00% 69.45% 0.13550 82.44% 0.08070 88.89% 0.19250 0.467270

Center (Transfer learning)
(pool5 - layer6) - 64 batches

78.00% 0.08370 22.00% 72.79% 0.08780 81.33% 0.08290 95.28% 0.06480 0.456780

Center (Transfer learning)
(pool5 - layer6) - 32 batches

80.00% 0.10950 20.00% 80.29% 0.13470 87.33% 0.08330 91.28% 0.15350 0.431520

Resized Image (Transfer learning)
(pool5) - 32 batches

78.00% 0.13040 22.00% 71.23% 0.12400 78.00% 0.13040 100.00% 0.00000 0.406880

Four Patches (Transfer learning)
(pool5 - layer6) - 32 batches

94.00% 0.05480 6.00% 88.00% 0.10950 90.00% 0.09130 100.00% 0.00000 0.420160

Two Patches (Transfer learning)
(pool5 - layer6) - 32 batches

94.00% 0.05480 6.00% 88.00% 0.10950 90.00% 0.09130 100.00% 0.00000 0.420160

Two Patches (Transfer learning)
(relu6 - layer6) - 32 batches

84.00% 0.05480 16.00% 72.00% 0.17890 79.52% 0.12250 96.00% 0.08940 0.429200

Two Patches (Transfer learning)
(relu5 - layer6) - 32 batches

94.00% 0.05480 6.00% 88.00% 0.10950 90.00% 0.09130 100.00% 0.00000 0.420160

Two Patches (Transfer learning)
(relu4 - layer6) - 32 batches

92.00% 0.04470 8.00% 84.00% 0.08940 86.67% 0.07450 100.00% 0.00000 0.406120

Two Patches (Transfer learning)
(pool5 - layer5) - 32 batches

88.00% 0.04470 12.00% 88.00% 0.10950 90.00% 0.09130 88.00% 0.17890 0.431940

Two Patches (Transfer learning)
(pool5 - layer7) - 32 batches

94.00% 0.05480 6.00% 88.00% 0.10950 90.00% 0.09130 100.00% 0.00000 0.420160

Two Patches (Transfer learning)
(pool5 - layer8) - 32 batches

92.00% 0.04470 8.00% 84.00% 0.08940 86.67% 0.07450 100.00% 0.00000 0.406120

Two Patches (Transfer learning)
(pool5 - layer9) - 32 batches

94.00% 0.05480 6.00% 88.00% 0.10950 90.00% 0.09130 100.00% 0.00000 0.420160

optimum CNN layer to extract the features from. It can be derived from the 248

summarization in the table that the bottleneck features represent the best choice in 249

terms of balance between the run time required, i.e. computation complexity and the 250

accuracy. Finally, to choose the OCT layer to align the extraction of the input patches 251

at, we find out that layer 6 is the best given that it reaches the highest performance 252

metrics. That is though other layers achieve similar levels of accuracy, error rate, 253

specificity, precision, and recall, they all require more time to train. As such, the final 254

design choices for the proposed system is the CNN retrained with two patches extracted 255

to the right and the left of the fovea centered with OCT layer 6 across the y-coordinate 256

axis. The features are extracted from pool5 CNN layer and transfer learning is applied 257

in the deployment of the proposed system. 258

Additional testing was carried out in order to confirm that the CNN architecture is 259

not biased due to color space, for the ImageNet dataset is RGB while our dataset is 260

intrinsically grayscale. Hence, we retrained the network with 200 grayscale images and 261

reapplied our investigation. The result was conclusive that the network is independent 262

of the color space as the results obtained exactly matched that of directly using the 263

ImageNet pretrained CNN. 264

Significant degradation of performance resulted upon downsampling, as shown in 265

Table 1. After training with downsampled images, accuracy was at most 78% (71% 266

specificity, 78% precision, and 100% recall). Every metric, except for the recall, was 267

lower comapred to that of the CNN trained at full resolution. In conclusion, resampling 268
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Table 2. Comparison of our proposed convolutional neural network (CNN) with four
other machine learning classifiers.

Classifier Accuracy Recall Specificity
CNN (proposed) 94% 100% 88%
K-Star(*) 89% 89% 89%
K-Nearest Neighbor (kNN) 84% 84% 83%
Random Forest 85% 82% 82%
Random Tree 81% 81% 81%

of input should be avoided, and extraction of patches as per the proposed methodology 269

is recommended. 270

Finally, the confusion matrix of the chosen CNN for the proposed early DR detection 271

CAD system is shown in Fig 9. A comparison of our proposed technique against other 272

machine learning techniques shows its superiority as can be observed in Table 2. 273

Fig 9. Confusion matrix for proposed computer aided design system for early DR
detection with CNNs.

Conclusion 274

Early intervention is essential to delay or prevent complications of diabetic retinopathy, 275

including blindness. As such, in this paper, a novel CAD system for early detection of 276

DR-related changes in OCT images using CNNs was presented. The system was 277

developed for use patients with almost clinically normal retina appearances. 278

Upon investigation of the various proposed parameters of the CAD system, the 279

optimal conditions for its deployment were derived. Foremost, transfer learning may be 280

used to achieve high accuracy despite the scarcity of the data. Second, best results are 281

seen when combining the output features of two independently trained CNN, which 282

operate on either side of the fovea. Features extracted at the pool5 layers of these CNN 283

provided for the highest accuracy with the least computational complexity. Finally, in 284

order to reach highest accuracy, which our preliminary results found to be 94 %, the 285

patches extracted for training and testing should be aligned or centered along the y-axis 286

using the patch extraction algorithm presented and the segmented OCT layer number 6, 287

or the outer nuclear layer (ONL). This paper recommends that further research is 288

directed towards this relatively uncharted topic, especially with OCT images, for the 289

results were observed to be high even given the scarcity of the data and the relative 290

complexity of the problem. 291
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