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Abstract 27 

Rabies is a zoonotic neurological disease with 100% lethality. Some of the rare human 28 

patients who survived after multiple drug treatment have inherited severe sequelae. The 29 

objective of this study was to investigate the action of the transfection of antibodies against 30 

rabies in the central nervous system of mice as target therapy for rabies. 31 

 32 

Author summary 33 

The present study showed that after 48 h of RABV inoculation, mice injected by the 34 

intracerebral route with anti-RABV F(ab’)₂ complexed with Bioporter® Protein Delivery 35 

Reagent (Genlantis) as a transfection agent, showing a morbidity/mortality rate of 30% with a 36 

minimum incubation period of seven days, while in the control group a significantly higher 37 

(p<0.0198) 90% morbidity/mortality was reached in thirteen days after a maximum 5-day 38 

incubation period, suggesting that the transfection of anti-RABV antibodies into the brain might 39 

prevent or delay RABV dissemination in an early stage of rabies infection. For the first time, a 40 

single compound was able to inhibit replication of the virus in the nervous system with high 41 

efficiency. This result can provide important results for the planning of protocols to prevent the 42 

fatal outcome of the disease in advanced stages. New studies focusing on the optimization of 43 

intracellular antibody delivery may be one of the main bases for more effective anti-rabies 44 

therapy. 45 

 46 
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Introduction 48 

Rabies is a zoonotic neurological disease with 100% lethality; some of the few human 49 

patients who survived after a multi-drug treatment developed severe motor impairment due to 50 

ischaemic encephalopathy followed by necrosis of the hippocampus, cerebellum and cortex [1-51 

2]. The use of immunomodulators and antivirals has not been shown to be effective in inhibiting 52 

the progression of the disease when tested in mice and humans [3-4]. Circa 59,000 human 53 

deaths occur worldwide yearly due to rabies, and although it is preventable with pre and post-54 

exposure prophylaxis, the logistics and costs involved in rabies treatments are a limiting factor 55 

to saving lives [5]. 56 

Rabies lyssavirus RABV (Mononegavirales: Rhabdoviridae: Lyssavirus) is a 57 

neurotropic virus with a circa 11 Kb negative-sense single-stranded RNA as a genome that 58 

codes for the nucleoprotein (N), phosphoprotein (P), matrix protein (M), envelope glycoprotein 59 

(G) and the RNA-dependent RNA-polymerase L protein [6], and it is most often transmitted 60 

amongst mammals via saliva after an initial local replication in muscle cells that follows to the 61 

central nervous system (CNS) via axons [7]. Within a variable period of time after infection, 62 

signs of hyperactivity, hypersalivation and hydrophobia are detectable. The virus causes enough 63 

damage to the brain in a few days that the infection invariably leads to coma and death by 64 

cardio-respiratory arrest [8]. 65 

Here, we show that the use of intracerebral transfection of anti-RABV antibodies to treat 66 

mice inoculated with RABV reduces mortality and extends the incubation period of rabies. 67 

 68 
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Results 70 

Probing the transfection to mouse brains with Bioporter agent complexed with an FITC-71 

antibody control protein (Genlantis) after intracerebral inoculations in mice showed fluorescent 72 

foci at 4 and 6-hours post-injection in brain slices obtained in a cryomicrotome (Fig 1), 73 

evidencing the efficacy of the protein transfection to mouse brains. However, the fluorescence 74 

technique performed with microscopic slide tissue fragments showed absence of fluorescent 75 

foci using equine anti-IgG conjugate for the mice inoculated with the F(ab')₂ anti-RABV 76 

Bioporter complex at concentrations of 50 and 250 μg/mL and Bioporter, for post-inoculation 77 

periods of 4 and 6 h (Unpublished data). 78 

Mice which received anti-RABV F(ab’)₂ in conjunction with Hepes 48 h,p.i., the mice 79 

in the control group had onset of rabies symptoms at 5 days post injection. About 90% of the 80 

mice showed symptoms of 2 to 3 days, followed by death, with only one mouse showing no 81 

symptoms throughout the experiment, resulting in 90% mortality. Only one mouse presented 82 

symptoms late, at 9 days p.i., consolidating survival of 10%. The clinical signs observed were 83 

anorexia, piloerection, arching of the back, and limb paralysis before death. 84 

On the other hand, the morbidity/mortality rate in the group treated with Bioporter plus 85 

anti-RABV F(ab’)₂ was as low as 30% with a minimum incubation period of seven days, 86 

resulting in a significant difference (p<0.0198) when compared to the control group (Fig 2). 87 

Bioporter alone had no significant action on RABV, as morbidity/mortality rates of 50 88 

and 80% were found for mice treated with only Bioporter or Hepes 20 mM pH 7.4 solution, 89 

respectively, after 48 h of RABV inoculation (p=0.3498), indicating that the reduced 90 

morbidity/mortality rate in mice treated with anti-RABV F(ab’)₂ transfected with Bioporter was 91 

due to a specific intracellular neuralization effect (Unpublished data). 92 

All dead animals were positive for direct immunofluorescence for RABV, with no 93 

difference in fluorescence intensity between groups. Thirty days after viral inoculation, all 94 
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surviving mice were euthanized and negative by direct immunofluorescence and PCR for 95 

RABV. 96 

In summary, these results show that the transfection of anti-RABV antibodies into the 97 

brain might prevent or delay RABV dissemination in an early stage of rabies infection. 98 

 99 

Discussion 100 

In this study, the IFD technique used with equine anti-IgG conjugate to detect a 101 

transfection of anti-RABV F(ab')₂ through the Bioporter reagent performed 4-6 h after its 102 

intracerebral injection showed no fluorescence, which may indicate that (a) transfection of anti-103 

RABV F(ab')₂ occurred with low efficiency, (b) its intracytoplasmic dispersion avoids large 104 

clusters of anti-RABV F(ab')₂ accumulators, in this way the fluorescence of the conjugate anti-105 

IgG antibody is inhibited by fluorescence microscopy if it is associated with anti-RABV F(ab')₂ 106 

and (c), the result may be related to lack of affinity of the equine anti-IgG conjugate by the 107 

fragmentation of IgG- RABV. 108 

If the latter is the case, the absence of fluorescence should result from the purification 109 

of anti-RABV F(ab’)₂ by the enzymatic digestion of pepsin, which produces two F(ab')₂ 110 

fragments bound by disulfide bond, which reduces its molecular weight from 160 kDa IgG to 111 

90 to 100 kDa, eliminating from the molecule the Fc fraction responsible for complement 112 

activation by the classical route. 113 

Interestingly, in the work done by Weiil, among the three antibodies transfected in vitro 114 

by the Pulsin reagent, the only one that did not demonstrate the expected signaling was the 115 

Anti-mouse IgG antibody, since a secondary antibody rapidly exuded from the cytoplasm when 116 

the cells were treated with digitonin (lipid solubilizer) revealing that it was not bound to any 117 
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target, while the primary antibodies remained within the cytoplasm for 15 minutes. This result 118 

helps to support hypothesis (b) in which the dispersion of anti-RABV F(ab’)₂ in the cytoplasm, 119 

implies non-visualization of its location by signaling by the equine anti-IgG conjugate if it is 120 

associated [9]. 121 

A fluorescence microscopy depends on detection of the fluorophore above its effective 122 

detection limit. And, eventually, false negatives may occur when attempting to study the 123 

dispersion of fluorophore labeled molecules, so that a low level of fluorescence could reflect 124 

the absence in that tissue area or a high degree of dispersion would decrease the fluorescence 125 

to the point of not being distinguished of the autofluorescence of the tissue attached to the 126 

slide[10]. However, the abundance of FITC-control Bioporter, the product of transfection, 127 

enabled confirmation of delivery by the reagent, even if no specific target was found 128 

intracellularly. 129 

Since the efficacy of post-exposure treatment decreases progressively when initiated 130 

late, antibody performance is still significant if treatment is performed in the first 24 h. At this 131 

early stage, treatment with antibodies performed directly in the CNS may still prevent or delay 132 

the spread to the rest of the brain. However, in later stages, no protection is effective because 133 

the virus has spread to larger parts of the brain [11].  134 

However, inversely, our treatment performed 48 hours later with the Bioporter reagent, 135 

70% of the mice in the treated group were healthy after viral infection, suggesting intense 136 

inhibition of the virus by anti-RABV F(ab’)₂ and , in addition, there was an increase in survival 137 

of 48 h for the rest of the mice that died. The anti-RABV F(ab')₂ was transfected using a single 138 

intracerebral inoculation with optimal result. These results are consistent with previous 139 

observations showing inhibition of viral activity in N2A cell culture inoculated with isolates 140 

DOG-IP3629/11 [12]. Therefore, transfection of anti-RABV F(ab')₂ in vivo, demonstrated in 141 
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this study could act in other variants with the same result confirmed for (IP3629/11 dog), 142 

especially in cases of human rabies. 143 

The possibility of the Bioporter reagent contributing to the antiviral action together with 144 

the anti-RABV F(ab’)₂ required further investigation. When this possibility was tested, the 145 

Bioporter reagent was inoculated into mice in the CNS without addition of anti-RABV F(ab')₂. 146 

This approach led to 50% and 20% survival between the Bioporter and Hepes salts respectively, 147 

without significant difference (p=0,3498), demonstrating that the inhibitory effect of treatment 148 

was due only neutralizing action of anti-RABV F(ab’)₂. 149 

Infections in the CNS are contained by the action of several immune effectors such as 150 

antibodies, cytotoxic T-cells and soluble factors that are involved in generation and control of 151 

the immune response as type-1 IFNs. Consequently, after brain infection by a pathogen, MHC 152 

II expression is surprisingly upregulated by approximately 90% by glial cells, including in 153 

diffuse areas distal to viral infection [13]. In murine brain infection demonstrates the prolonged 154 

activation of microglia associated with the continued presence of long-lasting memory T cells 155 

in the brain. Thus, it is clear that this small number of long-term memory T-cells may advance 156 

control of reinfection or reactivation of pathogens in the CNS by directing innate immune cells 157 

as microglia [14]. 158 

In some reports, the serological status of the patients shows that the production of 159 

antibodies plays a fundamental role in viral clearance. Prior to the Milwaukee Protocol, few 160 

human cases of rabies survival received post-exposure prophylaxis only with administration of 161 

the vaccine [15, 16, 17, 18]. Complete recovery or with sequels in rabies patients is limited to 162 

a few cases in the literature linked to the history of immunization with the combination of 163 

vaccines and passive immunization of antibodies at the onset of symptoms [19, 20, 21]. Studies 164 

with B cell-deficient mice, which underwent CNS virus inhibition after peripheral 165 
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administration of RABV-specific antibodies at 5 d.p.i, support these results. Because, passively 166 

administered antibodies gain access through the BBB, conferring therapeutic antiviral effects 167 

on the CNS. This indicates that neutralizing antibodies may be able to cross the blood-brain 168 

barrier, representing an increase in the patient's expected life expectancy until immunotherapy 169 

can establish the response against the virus [22, 23]. 170 

Anti-RABV antibody transfection as shown in this report is a candidate new tool for the 171 

treatment of rabies when the disease has already manifested, such as in cases in which no post-172 

exposure prophylaxis was applied or in cases the prophylaxis failed. We have added a new tool 173 

for manipulation in the against rabies, by inhibiting replication and viral synthesis in neural 174 

cells without affecting neurotransmitters, using a single intracerebral inoculation with optimal 175 

results.  176 

 177 

Materials and Methods 178 

 179 

Ethics. This experiment was approved by the Ethics Committee on Animal Use (CEUA) of 180 

the School of Veterinary Medicine and Animal Science - University of São Paulo (FMVZ - 181 

USP), under Protocol no. 9658071016. All mice were used for the experiments; prior to any 182 

procedure, mice were anesthetized with isofluoran. 183 

Transfection test with Bioporter® protein delivery reagent in vivo. First, in order to assess 184 

the effectivity of protein delivery to mice brains, a total of 40 μl of FITC-antibody control 185 

protein (Gelantis) was complexed with the Bioporter® Protein Delivery Reagent (Genlantis) 186 

per the manufacturer’s instructions and was injected by the intracerebral route in two mice, and 187 

the CNS of each mouse was collected at 4 and 6 hours post-injection. Ten-μm sections were 188 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 11, 2019. ; https://doi.org/10.1101/667949doi: bioRxiv preprint 

https://doi.org/10.1101/667949
http://creativecommons.org/licenses/by/4.0/


9 
 

obtained in a LEICA CM 1860 UV microtome, fixed on glass slides with -20ºC acetone for 2 189 

hours and observed for fluorescence with an OLYMPUS ® BX53 epifluorescence microscope. 190 

Transfection test with anti-RABV F(ab’)₂ in vivo. Next, forty-two female 21-day-old CH3 191 

ROCKEFELLER mice were inoculated with RABV strain IP3629/11-AgV2 isolated from a 192 

dog in Brazil on mouse central nervous system (CNS) with a titer of 103.8 DL50/ μL kindly 193 

provided by the Pasteur Institute, Brazil. After 48 h, mice were intracerebrally injected with 40 194 

µL of either Bioporter resuspended in Hepes 20 mM pH 7.4 containing anti-RABV F(ab’)₂ 195 

(treated group, n=10 mice) or Hepes 20 mM pH 7.4 containing anti-RABV F(ab’)₂ (control 196 

group, n=10 mice), both groups with 0.17 UI (250 µg) of anti-RABV F(ab’)₂ as a final dose. 197 

Evaluation of the action of the transfection agent alone on RABV. To assess whether the 198 

Bioporter transfection agent alone had any effects on RABV, the aforementioned experiment 199 

was repeated, but the (test group, n=10 mice) was injected with 40 µL of Bioporter in 400 μl 200 

Hepes 20 mM pH 7.4, and the (control group, n=10 mice), was injected with 40 µL of Hepes 201 

20 mM pH 7.4 solution after 48 h of RABV inoculation.  202 

Antibodies. Anti-rabies hyperimmune serum was kindly provided by FUNED (Fundação 203 

Ezequiel Dias), Brazil, containing enzimatic-digestion purified equine IgG Fab fragment 204 

against the PV strain of RABV (200UI/mL). 205 

 206 

Equine anti-igG conjugate. For evaluation of transfection of equine F(ab')₂ against RABV by 207 

direct immunofluorescence, Anti-Horse IgG (whole molecule) -FITC antibody (Sigma-208 

Aldrich) was used. 209 

 210 
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Virus. Strain (IP3629/11-AgV2 dog isolated from Brazil), grown on mice central nervous 211 

system (CNS) with a title of 103.8 DL50/ μL, kindly provided by the Pasteur Institute, Brazil, 212 

was used for the infection in mice. 213 

 214 

Antibody transfection test. FITC-antibody control protein (Gelantis) complexed with 215 

Bioporter® Protein Delivery Reagent (Genlantis) per manufacturer’s instructions were injected 216 

by the intracerebral route in two mice and the CNS of each mouse was collected at 4 and 6 217 

hours post-infections; 10μm sections were obtained in a LEICA CM 1860 UV microtoime, 218 

fixed in glas sliced with -20ºC acetone/2 hours and observed for fluorescence with a 219 

OLYMPUS ® BX53 epifluorescence microscope.  220 

 221 

Direct fluorescent antiboy test (DFAT) and PCR. All mice were observed for period 30 days 222 

after RABV inoculation for signs of rabies such as anorexia, piloerection hyperesthesia, 223 

aggressiveness, paralysis and death, being the surviving mice euthanized at the end of the 224 

observation period. The central nervous system (CNS) of each mouse was tested with a direct 225 

fluorescente antiboy test (DFAT) [24], using an anti-RABV nucleocapsid IgG conjugates with 226 

Fluorescein isothiocyanate (Pasteur Institute, Brazil), and, if negative, to a PCR targeting 227 

RABV N-P genes [25]. 228 

 229 

Statistical analysis. GraphPad Prism was used for statistical analyses of in vivo data. Fisher's 230 

test with α = 0.05 was used for the statistical analysis with Fisher Exact Test Calculator online. 231 
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transfection agent showing fluorescent dots (arrows) on the cytoplasm at 4 (A) and 6 (B) hours post-injection. 359 

200x increase. 360 

 361 

Fig. 2 - Survival plot for mice inoculated intracerebrally with 103.8 DL50%RABV DOG-IP3629/11 and treated 48 362 

h post-inoculation with Anti-RABV F(ab’)₂ plus Bioporter ® (solid line) or  Anti-RABV F(ab’)₂ plus Hepes 20 363 

mM pH 7.4  (dashed line). 364 
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