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Running title: vGWAS for wheat grain cadmium 22 

Core Ideas:  23 

Variance-heterogeneity mapping for grain Cadmium (Cd) concentration in bread wheat was 24 

performed. 25 

Novel variance-heterogeneity loci were detected on chromosomes 2A and 2B. 26 

Loci influencing both mean and variance were identified on chromosome 5A. 27 

Identified variance-heterogeneity loci were associated with epistatic interactions.  28 

Homoeology within the vQTL on chromosomes 2A and 2B was found. 29 

Abbreviations 30 

ABC transporter, ATP-binding cassette transporter; Cd, cadmium; DGLM, double generalized 31 

linear model; GLM, generalized linear model; GRM, genomic relationship matrix; HGLM, 32 

Hierarchical generalized linear model; HWW, hard-red winter wheat; mQTL, mean quantitative 33 

trait loci; mvQTL, mean-variance quantitative trait loci; QTL, quantitative trait loci; ROS, 34 

reactive oxygen species; SNP, single nucleotide polymorphism; vQTL, variance heterogeneity 35 

quantitative trait loci; variance vGWAS heterogeneity genome-wide association studies. 36 
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Abstract 38 

Genome-wide association mapping identifies quantitative trait loci (QTL) that influence the 39 

mean differences between the marker genotypes for a given trait. While most loci influence the 40 

mean value of a trait, certain loci, known as variance heterogeneity QTL (vQTL) determine the 41 

variability of the trait instead of the mean trait value (mQTL). In the present study, we performed 42 

a variance heterogeneity genome-wide association study (vGWAS) for grain cadmium (Cd) 43 

concentration in bread wheat. We used double generalized linear model and hierarchical 44 

generalized linear model to identify vQTL associated with grain Cd. We identified novel vQTL 45 

regions on chromosomes 2A and 2B that contribute to the Cd variation and loci that affect both 46 

mean and variance heterogeneity (mvQTL) on chromosome 5A. In addition, our results 47 

demonstrated the presence of epistatic interactions between vQTL and mvQTL, which could 48 

explain variance heterogeneity. Overall, we provide novel insights into the genetic architecture 49 

of grain Cd concentration and report the first application of vGWAS in wheat. Moreover, our 50 

findings indicated that epistasis is an important mechanism underlying natural variation for grain 51 

Cd concentration. 52 

Genome-wide association studies (GWAS) are routinely conducted to study the genetic basis of 53 

important traits in crops. GWAS link phenotypic variation with dense genetic marker data using 54 

a linear modeling framework (e.g., Nordborg and Weigel, 2008; Ingvarsson and Street, 2011; 55 

Huang and Han, 2014; Xiao et al., 2017). Standard GWAS approaches seek to identify marker-56 

trait associations that influence the mean phenotypic values. However, differences in the 57 

variance between genotypes are also under genetic control (Shen et al., 2012). As a result, 58 

several recent studies have identified loci associated with differences in variance between 59 

genotypes (Cao et al., 2014; Corty et al., 2018). Such genetic variants that affect the variance 60 
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heterogeneity of traits have been referred to as variance heterogeneity quantitative trait loci 61 

(vQTL) (Rönnegård and Valdar, 2011). vQTL can be detected by searching the difference in the 62 

variability between the groups of genotypes that carry alternative alleles at a particular locus 63 

(Forsberg and Carlborg, 2017).  A simple example is genotypes of wheat with difference in plant 64 

height. One genotype group is homozygous for a certain allele and manifests greater variability 65 

(including both shorter and taller plants), while the second genotype group that is homozygous 66 

for the alternative allele involves plants that are similar or uniform in height. This contrast in 67 

plant height across two allelic groups leads to genetic variance heterogeneity. Note that the mean 68 

difference between the two groups does not have to be different for variance heterogeneity to 69 

arise (Fig. 1). 70 

Variance heterogeneity-based genome-wide association studies (vGWAS) have emerged as a 71 

new approach for identifying and mapping vQTL. vQTL contribute to variability, which is 72 

undetected through standard statistical mapping (bi-parental or association) procedures 73 

(Rönnegård and Valdar, 2011; Shen et al., 2012; Forsberg and Carlborg, 2017). It has been 74 

argued that variance heterogeneity between genotypes can be partially explained by epistasis or 75 

gene-by-environment interactions (Brown et al., 2014; Forsberg and Carlborg, 2017; Young et 76 

al., 2018). Thus, vQTL can provide insights into epistasis or phenotypic plasticity (Nelson et al., 77 

2013; Young et al., 2018). Moreover, these vGWAS frameworks can serve as tractable 78 

approaches to reduce the search space when assessing epistasis among markers (Brown et al., 79 

2014; Wei et al., 2016). This is because we can limit the number of interacting marker pairs ��
2 � 80 

to be investigated into ��
2�, where k is the number of markers (� � �) associated with vQTL or 81 

mvQTL. 82 
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Numerous studies have reported vQTL associated with diverse phenotypes, including the 83 

tendency to left-right turning and bristles (Mackay and Lyman, 2005) and locomotor handedness 84 

(Ayroles et al., 2015) in Drosophila; coat color (Nachman et al., 2003), circadian activity, and 85 

exploratory behavior (Corty et al., 2018) in mice; thermotolerance (Queitsch et al., 2002), 86 

flowering time (Salomé et al., 2011), and molybdenum concentration (Shen et al., 2012; 87 

Forsberg et al., 2015) in Arabidopsis; litter size in swine (Sell-Kubiak et al., 2015); urinary 88 

calcium excretion in rats (Perry et al., 2012); and body mass index (Yang et al., 2012; Young et 89 

al., 2018), sero-negative rheumatoid arthritis (Wei et al., 2017), and serum urate (Topless et al., 90 

2015) in humans. In plants, vGWAS have been limited to few species, including Arabidopsis 91 

(Shen et al., 2012; Forsberg et al., 2015) and maize (Kusmec et al., 2017). 92 

Methodologically, vQTL have been detected by performing statistical tests searching for unequal 93 

variance for a quantitative trait between the marker genotypes (Rönnegård and Valdar, 2012). 94 

The most common statistical tests used to identify vQTL include Levene’s test (Paré et al., 95 

2010), Brown-Forysthe test (Brown and Forsythe, 1974), squared residual value linear modeling 96 

(Struchalin et al., 2012), and correlation least squares test (Brown et al., 2014). However, these 97 

methods have certain drawbacks when applied to genetic data. For example, Levene’s and 98 

Brown-Forsythe tests are sensitive to deviations from normality of residuals and have an inherent 99 

inability to model continuous covariates (Rönnegård and Valdar, 2011; Dumitrascu et al., 2019). 100 

Double generalized linear model (DGLM) has emerged as an alternative approach to model the 101 

variance heterogeneity for genetic studies (Rönnegård and Valdar, 2011). In DGLM, sample 102 

means and residuals are modelled jointly. Here, generalized linear models (GLM) are fit by 103 

including only the fixed effects in the linear predictor(s) for the mean and then the squared 104 

residuals are used to estimate the dispersion effects. It is important to correct for population 105 
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structure, which can otherwise lead to spurious associations in GWAS (Patterson et al., 2006). In 106 

DGLM, population structure can be corrected by incorporating the first few principal 107 

components of a genomic relationship matrix (GRM) (Patterson et al., 2006; Price et al., 2010) 108 

as fixed covariates in the model. However, the first few principal components may not be 109 

sufficient to account for complex population structure or family relatedness (Hoffman, 2013; Sul 110 

et al., 2018). Alternatively, we can fit linear mixed models (LMM) to explicitly correct for 111 

population structure, where the whole GRM can be included to account for relationships among 112 

individuals and correct for background genotype effects. Hierarchical generalized linear model 113 

(HGLM) has been proposed as an extension of the DGLM to model random effects in the mean 114 

component (Rönnegård and Valdar, 2012; Tan et al., 2014). In HGLM, the GRM can be used to 115 

model correlated random effects and account for population structure. 116 

We applied a vGWAS framework to examine the genetic architecture of grain cadmium (Cd) 117 

accumulation in wheat. Cd is a heavy metal that is highly toxic to human health (Menke et al., 118 

2009). Identifying genetic variants that control low-grain Cd concentration in wheat is necessary 119 

to understand the basis for phenotypic variation in grain Cd and can help accelerate the 120 

development of low Cd wheat varieties. A recent study assessed natural variation in bread wheat 121 

grain Cd by conducting GWAS (Guttieri et al., 2015a). However, only a fraction of phenotypic 122 

variation could be explained by the top marker associations, indicating that grain Cd 123 

concentration is a complex trait that is influenced by multiple loci and/or loci with non-additive 124 

effects (Guttieri et al., 2015a). Given the genetic complexity of Cd in wheat, we hypothesized 125 

that variation in grain Cd concentration in wheat is influenced by vQTL that are likely to be 126 

involved in epistatic interactions; this would allow us to capture additional variation that is not 127 

accounted for in a standard GWAS approach. 128 
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In this study, we sought to provide additional insights into natural variation in grain Cd 129 

concentration by extending the standard GWAS to vGWAS using a hard winter wheat 130 

association mapping panel. To achieve this, we used DGLM and HGLM to perform vGWAS. 131 

Previously, Guttieri et al., (2015a) conducted the standard GWAS using this association panel 132 

and identified a single mean effect QTL (mQTL) for grain Cd concentration on chromosome 5A. 133 

In addition, we aimed to understand the basis of vQTL by searching for pairwise epistatic 134 

interactions among vQTL and mQTL. To our knowledge, the present study is the first to conduct 135 

vGWAS and identify vQTL associated with grain Cd concentration in wheat. 136 

  137 
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MATERIALS AND METHODS   138 

Plant Materials and Genotyping 139 

We analyzed a publicly available dataset comprising of phenotypes for grain mineral 140 

concentration for � � 299  genotyped hard-red winter wheat accessions (hereafter called as 141 

HWW association panel). The details of the study are discussed in Guttieri et al., (2015a; 2015b), 142 

and access to the data is available at http://triticeaetoolbox.org/wheat/. The data are also 143 

downloadable at https://github.com/whussain2/vGWAS/tree/master/Data. Here, we focused on 144 

grain Cd concentration (mg/kg) collected across two years (2012 and 2013) in one location 145 

(Oklahoma, USA). Briefly, the experiment was laid in an augmented incomplete block design 146 

with two replications and 15 blocks within each replication. Least square means adjusted across 147 

the replications and blocks in each year were obtained for each genotype. In this study, we 148 

averaged the least square means for each genotype across two years because of non-significant 149 

genotype x year interaction (Guttieri et al., 2015a). The association panel was genotyped using a 150 

90K iSelect Infinium array (Wang et al., 2014b). We used a filtered marker data set consisting of 151 

� �  14, 731 single nucleotide polymorphism (SNP) markers from the 90K iSelect Infinium 152 

array as described by Guttieri et al., (2015a). All the SNP markers were physically anchored on 153 

the new reference genome of hexaploid wheat RefSeq v1.0 (International Wheat Genome 154 

Sequencing Consortium (IWGSC), 2018).  155 

Statistical Modeling 156 

Genome-Wide Association Mapping   157 
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Standard GWAS or mQTL analysis based on mean differences between marker genotypes for 158 

grain Cd concentration was performed similar to Guttieri et al., (2015a) using the rrBLUP 159 

package (Endelman, 2011) in the R environment (R Core Team 2018).  160 

Variance-Heterogeneity Genome-Wide Association Mapping 161 

We used DGLM and HGLM to perform vGWAS and detect vQTL in the current study. The 162 

description of models used is given below. 163 

DGLM 164 

DGLM is a parametric approach that can be used to jointly model the mean and dispersion using 165 

a GLM framework (Smyth, 1989). The DGLM works iteratively by first fitting a linear model to 166 

estimate the mean effects (mQTL). The squared residuals are used to estimate the dispersion 167 

effects (vQTL) using GLM with a gamma-distributed response and the log link function. This 168 

process is cycled until convergence. Here, we extended the DGLM to marker-based association 169 

analysis according to Rönnegård and Valdar (2011). The mean part of DGLM was as follows: 170 

y � 1�� � X� � s���� � � #���  

where y is the Cd concentration (mg/kg); 1 is the column vector of 1; �� is the intercept; X is 171 

� � 4  covariate matrix of the top four principle components (PCs) obtained by performing 172 

principal component analysis (PCA) of marker data using the SNPRelate R package (Zheng et 173 

al., 2012); � is the regression coefficients for the covariates; s� �(0,2) is the vector containing the 174 

number of reference allele at the marker j, �
��

 is the effect size or allele substitution effect of the 175 

�th marker; and � is the residual. We assumed 176 

�� � ��0,  !��
� � 
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"#$�!��
� � � 1�� � s���� 

where I is the identity matrix; !���  is the residual variance; and 1�� and �� are the intercept and 177 

marker regression coefficients for the variance part of the model, respectively. While we fit 178 

separate effects for the mean using a standard linear model and for the variance using the squared 179 

residuals in gamma distributed GLM with a log link function, this is equivalent to modeling 180 

y � ��1� � X� � s��� , exp�1�� � s����� or % � ��0, exp�1�� � s������ in equation (1). 181 

The DGLM was fitted using the dglm package (https://cran.r-182 

project.org/web/packages/dglm/index.html) in R. SNP markers were fitted one by one, and for 183 

each marker, the effect sizes, standard errors, and p-values were obtained for the mean and 184 

dispersion components. To account for multiple testing, we determined the effective number of 185 

independent tests (Meff) using the method described by Li and Ji (2005). Subsequently, a 186 

genome-wide significance threshold level ( & � 1.44 � 10�	 ) was determined using the 187 

following formula: 188 

                                                              (
 � 1 ) �1 ) (��
�

Meff                                                          �*� 

where (
 is the genome-wide significance threshold level, (� is the desired level of significance 189 

(0.05), and Meff = 3,495. 190 

HGLM 191 

To explicitly account for population structure and kinship in GWAS, LMM have been proposed 192 

as alternative methods that allow the genetic relationships between individuals to be modeled as 193 

random effects. To perform vGWAS in the LMM framework and to identify genome-wide 194 

vQTL, we used a HGLM approach. HGLM (Lee and Nelder, 1996) is a class of GLM and is a 195 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/668087doi: bioRxiv preprint 

https://doi.org/10.1101/668087
http://creativecommons.org/licenses/by-nc/4.0/


 11

direct extension of the DGLM that allows joint modelling of the mean and dispersion parts and 196 

introduces random effects as a linear predictor for the mean (Rönnegård and Carlborg, 2007). 197 

The mean part of HGLM was given as follows: 198 

y � 1� � s���� � Zu � % #�+�  

assuming that 199 

u � ��0, G!

�� 

where Z is the incident matrix of random effects of genotypes; u is the vector of random effects 200 

with Var�u� � ,!
�; G is the GRM of VanRaden (2008); and !
� is the additive genetic variance. 201 

A log link function was used for the residual variance given by exp�s�����, which is equivalent 202 

to modeling y|��� , u, ��� � ��s���� �   Zu, exp�s������. 203 

We fitted HGLM using the hglm R package (Rönnegård et al., 2010b). We reformulated the term 204 

Zu as Z�u�, where u� � ��0, I!

��; Z� � Z�L; L is the Cholesky factorization of the G matrix; 205 

and Z� is the identity matrix (Rönnegård et al., 2010a). Markers treated as fixed effects were fit 206 

one by one, and for each marker, the effect sizes, standard errors, and p-values were obtained for 207 

the mean and dispersion components. The genome-wide significance threshold level was derived 208 

as described in the DGLM analysis. Circular Manhattan and quantile-quantile (QQ) plots were 209 

created using the CMplot R package (https://github.com/YinLiLin/R-CMplot).  210 

Epistasis Analysis 211 

We investigated the extent of epistasis that was manifested through variance heterogeneity. All 212 

the possible pairwise interaction analyses for markers that were associated with grain Cd 213 

concentration were performed using the following two markers at a time epistatic model: 214 
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y � 1� � .� � s��� � s��� � /s�s�01�� � � #�2�  

where y is the vector of Cd concentration (mg/kg); . is the incident matrix for the first four PCs; 215 

� is the regression coefficients for the PCs; 3� and 3� are SNP codes for the �th and �th markers, 216 

respectively; ��  and ��  are the additive effects of the markers � and �, respectively; and 1��  is 217 

the additive � additive epistatic effect of the jth and kth markers. We used Bonferroni correction 218 

to account for the multiple testing. The threshold of -log10(0.05/325) = -log10 (1.54 x 10-04) = 219 

3.8 was used to declare the significance of interaction effects. 220 

Homoeology and Candidate Gene Analysis  221 

Homoeologous gene construction was performed as per procedure described by 222 

(Santantonio et al., 2019). Briefly, the annotated coding sequences within the 2A vQTL 223 

were aligned back onto themselves using the IWGSC RefSeq v.1.0 coupled with BLAST tool 224 

in Ensemble Plants browser (Bolser et al., 2017). For candidate gene identification for the SNP 225 

markers associated with variance heterogeneity, we used  Ensembl Plants browser  to retrieve the 226 

candidate genes and functional annotations 227 

(http://plants.ensembl.org/Triticum_aestivum/Info/Index) and the wheat RefSeq v1.0 annotations 228 

(International Wheat Genome Sequencing Consortium (IWGSC) et al., 2018) available at 229 

https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations. For candidate gene analysis, we 230 

first determined the positions of significant SNP markers, and the interval was defined as the 231 

distance between the lowest and highest markers based on the position of SNP. For example, if 232 

the position of the lowest SNP and highest SNP was 715,333,165 bp and 717,146,211 bp in the 233 

vQTL region on chromosome 2A, we defined 2A as the 715,333,165-717,146,211 interval for 234 

candidate gene identification. After defining the interval for the 2A (2A: 715,333,165-235 
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717,146,211) and 2B (2B: 691,780,716- 701,097,263 bp) regions, we explored the intervals 236 

using Ensembl Plants browser and extracted the Gene IDs within these intervals. The Gene IDs 237 

within the defined interval on chromosomes 2A and 2B were analyzed using the IWGSC RefSeq 238 

v.1.0 (International Wheat Genome Sequencing Consortium (IWGSC) et al., 2018) integrated 239 

genome annotations to obtain the predicted genes and functional annotations.  240 

  241 
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RESULTS 242 

Variance Heterogeneity GWAS Provide Additional Insights into Natural Variation in 243 

Grain Cd 244 

Although grain Cd concentration is a highly heritable trait, recent GWAS revealed that 245 

significant loci can only explain a fraction of the variation for this trait (Guttieri et al., 2015a). 246 

We found the single genomic region on chromosome 5A affecting the grain Cd concentration 247 

(Fig. 2) from the standard GWAS analysis confirming the results of Guttieri et al., (2015). The 248 

DGLM and HGLM approaches were used to detect vQTL while controlling for population 249 

structure. The population structure based on PCA of the HWW association panel is given in 250 

Supplemental File S1: Figure S1. QQ plots (Supplemental File S1: Figure S2) show that both 251 

DGLM and HGLM had adequate control of population structure and effective control of false 252 

positives.  253 

We classified the QTL into the following categories: mQTL, which contributes to difference in 254 

the means between marker genotypes; vQTL, which influences the variability between the 255 

genotypes; and mean-variance QTL (mvQTL), which contributes to differences in both the mean 256 

and variance between the genotypes. 257 

Based on the DGLM, we identified two vQTL associated with the variance heterogeneity of Cd 258 

concentration. One vQTL on 2A contained four SNP markers, and one vQTL on 2B contained 259 

17 SNP markers (Fig. 2 and Supplemental File S1: Table S1). The four SNP markers associated 260 

with the vQTL region on the chromosome 2A region spanned the physical distance of 1.81 Mb; 261 

all SNP markers were located within the 1,000 bp linkage disequilibrium (LD) block 262 

(Supplemental File S1: Figure S3). The vQTL region on 2B associated with 17 SNP markers 263 
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spanned the physical distance of 9.32 Mb, and the SNP markers were located within four LD 264 

blocks of sizes 0, 1, 1, and 204 kb (Supplemental File S1: Figure S4).  265 

In addition, we identified a single mvQTL (containing four SNP markers) associated with both 266 

mean and variance heterogeneity on chromosome 5A (Fig. 2 and Table S2). The markers 267 

associated with mvQTL on chromosome 5A were identical to those obtained in the original 268 

GWAS analysis according to Guttieri et al., (2015), indicating that this region affects both the 269 

mean and the variance heterogeneity (Supplemental File S1: Figure S5). Moreover, these results 270 

showed that DGLM serves as an accurate framework to jointly detect mean and variance QTL 271 

and provides additional insights into phenotypic variation that would otherwise not be captured 272 

by standard GWAS.  273 

The HGLM analysis revealed the same results as those obtained using DGLM and showed 274 

identical vQTL on chromosomes 2A and 2B and mvQTL on chromosome 5A associated with 275 

variance heterogeneity of Cd concentration (Fig. 2 and Supplemental File S1: Table S1). Further, 276 

we observed a potential vQTL region on 2D from the DGLM and HGLM analyses. This region 277 

was slightly below the significance threshold level but may have an implication on Cd variation 278 

given that the allopolyploid nature of wheat and the role of homoeologous gene sets on 279 

phenotypic variation (Borrill et al., 2019). 280 

Variance Heterogeneity Loci can be Partially Explained by Epistasis 281 

We investigated all significant markers (25 markers) associated with mvQTL on chromosome 282 

5A and vQTL on chromosomes 2A and 2B and explored all possible pairwise additive × additive 283 

epistatic interactions. We detected significant additive �  additive interactions between the 284 

markers (Fig. 3). The interaction was more evident between mvQTL on chromosome 5A and 285 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/668087doi: bioRxiv preprint 

https://doi.org/10.1101/668087
http://creativecommons.org/licenses/by-nc/4.0/


 16

vQTL on chromosomes 2A and 2B. Specifically, all the markers associated with the 5A mvQTL 286 

region revealed highly significant interactions with all the markers associated with the 2A and 287 

2B vQTL regions. Interactions between vQTL on chromosomes 2A and 2B were also observed; 288 

however, the interactions were less evident, and only a few markers within these regions showed 289 

statistically significant interactions. Taken together, these results suggested that the vQTL and 290 

mvQTL may be manifested because of pairwise epistatic interactions. 291 

Homoeology and Candidate Genes  292 

Homoeology analysis between the defined regions on chromosomes 2A and 2B resulted in 22 293 

homoeologous gene sets, consisting of 21 triplicates and only one duplicate gene set. Additional 294 

details on the homoeologous gene sets can be found in Supplemental File S2.  As compared to 295 

the total number of candidate genes equal to 39 within the 1.18 Mb 2A region, 22 (58%) were 296 

homoeologous across the three genomes.  Based on the annotations for the 22 homoeologous 297 

gene sets, a few of the  genes encoded homeobox-leucine zipper family protein, plant peroxidase, 298 

and glycosyltransferase, which have been associated with the genetic regulation of minerals in 299 

plants (Whitt et al., 2018).  For example, homeodomain-leucine zipper family protein has been 300 

functionally associated with Cd tolerance by regulating the expression of metal transporters 301 

OsHMA2 and OsHMA3 in rice (Ding et al., 2018; Yu et al., 2019). These genes have been found 302 

to play important roles in loading Cd onto the xylem and root-to-shoot translocation of Cd in 303 

rice. In plants, response to heavy metals involves the accumulation of reactive oxygen species 304 

(ROS) that damage DNA and cellular machinery (Kumari et al., 2008; Rascio and Navari-Izzo, 305 

2011). In Arabidopsis, the peroxidase genes At2g35380, PER20, and At2g18150 have been found 306 

to be associated with Cd responses by affecting the lignin biosynthesis in root cells under high 307 

Cd stress (Chen and Kao, 1995; van de Mortel et al., 2008). Full list of candidate genes within 308 
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the 2A and 2B region, and within the homoeologous gene sets is in Supplemental File S2. These 309 

results clearly indicate that most of the genes with vQTL regions are redundant across the 310 

genomes and may have significant role in the genetic regulation of grain Cd concentration in 311 

wheat. However, we contend that further investigation of these regions using dense markers and 312 

increased sample size is necessary to fine-map the QTL and validate potential candidate genes 313 

underlying these loci and also the role of gene redundancy in generating phenotypic variation. 314 

315 
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DISCUSSION 316 

In the present study, we explored the genetic variants affecting variance heterogeneity of Cd. 317 

Given the complexity of genetic regulation of Cd in wheat (Guttieri et al., 2015a) and the 318 

influence of epistatic interactions, we anticipated that partial genetic regulation of Cd in wheat 319 

can be detected using methods that have been developed to identify vQTL. As reported by 320 

Rönnegård and Valdar, (2012), a potential explanation for variance-controlling QTL is epistatic 321 

interactions that are unspecified in the model. Herein, we utilized two approaches, namely, 322 

DGLM and HGLM, to detect vQTL and mvQTL associated with grain Cd concentration in 323 

wheat. 324 

The DGLM framework is a powerful approach for vGWAS analysis.  However, in DGLM, GLM 325 

is fit by including only the fixed effects in the linear predictor of mean and dispersion. Therefore, 326 

by using the DGLM approach, population structure can only be accounted for by using the first 327 

few PCs obtained from the SNP matrix; however, this may not completely account for complex 328 

population structure and family relationships (Price et al., 2010). We hypothesized that the use of 329 

random effects to model the mean component can better account for population structure and 330 

reduce spurious associations. In this approach, a random additive genetic effect is introduced to 331 

the mean component of the model that accounts for population structure and cryptic relatedness 332 

between accessions. Therefore, we performed vGWAS analysis using HGLM. Interestingly, both 333 

DGLM and HGLM approaches were effective in identifying the genetic variants controlling 334 

variability of Cd, suggesting that the loci detected with the DGLM approach are likely to be true 335 

QTL rather than artifacts from population structure. The impact of population structure on the 336 

power of DGLM and HGLM remains to be explored; further examination is warranted. 337 
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In the literature, it has been argued that variance heterogeneity can also arise by a simple mean 338 

variance relationship, which does not have biological significance (Young et al., 2018). To rule 339 

out the role of the mean-variance function in generating variance heterogeneity, we plotted the 340 

estimated effects of the top three significant associated vQTL markers at the alternate genotypes 341 

and observed that the means of all the markers were the same (Fig. 4), indicating that the effect 342 

of SNP on variance heterogeneity was not due to the consequences of mean-variance function 343 

but likely due to the genetic effects (Yang et al., 2012). 344 

Further, variance heterogeneity can also be observed in a population when two or more alleles 345 

having different effects on the phenotype are in high LD (Cao et al., 2014; Wang et al., 2014a; 346 

Forsberg and Carlborg, 2017). To rule out the possibility of LD as a source for variance 347 

heterogeneity in grain Cd in this population, we suggest the use of high-density markers and 348 

larger sample size to identify the actual functional alleles associated with Cd, their LD patterns, 349 

and their effects on the Cd phenotype (Struchalin et al., 2010; Forsberg and Carlborg, 2017). 350 

In QTL studies, variance heterogeneity arises because of various underlying mechanisms, such 351 

as epistatic interactions (Struchalin et al., 2010; Shen et al., 2012; Nelson et al., 2013). Epistasis 352 

gives rise to variance heterogeneity when the different allele combinations at one locus change 353 

the effect of the other loci in the genome, as shown in one pair of interacting markers (Fig. 5). 354 

Hence, identifying the loci affecting variance heterogeneity through vGWAS means that the loci 355 

are likely to be involved in epistatic interactions. To validate this assumption and investigate 356 

whether epistasis can explain the identified vQTL and mvQTL in this study, we analyzed all 357 

possible pairwise interactions between the associated markers. We detected significant epistatic 358 

interactions between the associated markers (Fig. 2), which can explain the existence of variance 359 

heterogeneity in the genotypes. Additionally, identifying vQTL through vGWAS serves as an 360 
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effective way to restrict the search space when detecting epistatic QTL. Thus, with the vGWAS 361 

approach, many of the requirements necessary for conventional epistasis mapping can be 362 

avoided (e.g., large sample size and extensive multiple testing corrections that reduce power). 363 

However, Forsberg and Carlborg (2017) empirically showed that the presence of variance 364 

heterogeneity does not always guarantee the presence of epistatic interactions that contribute to 365 

the total variation of the trait; therefore, the results should be interpreted carefully when multi-366 

locus interactions are involved. 367 

The genomic regions on chromosomes 2A and 2B associated with variance heterogeneity 368 

revealed homoeologous gene sets with 58% genes revealing the gene redundancy mostly present 369 

as three functional homoeologous copies (triplicated). This also indicates that genetic complexity 370 

of Cd phenotype is not only controlled by multiple genes but may be affected by the multiple 371 

homoeologs of the individual genes which warrants further investigation. Presence of multiple 372 

copies of homoeologous genes may have consequence on phenotypic variation due to dosage 373 

effects and or functional redundancy (Borrill et al., 2019). Dosage effect, in which the 374 

phenotypic variation is amplified by the addition of each gene copies can act additively (e.g., 375 

genes controlling grain protein content (Avni et al., 2014) and grain size (Wang et al., 2018)) or 376 

non-additively (e.g., genes controlling amylopectin content in wheat (Kim et al., 2003)). Non-377 

additive variation between homoeologous gene has been shown to be an important source of 378 

variation in wheat. However, its relative contribution across the wheat genome as compared to 379 

non-syntenic regions was proportionately less (Santantonio et al., 2019). This is in agreement 380 

with our results because we observed interactions among the homoeologous genomic regions on 381 

chromosomes 2A and 2B. However, this homoeologous gene interactions was less evident as 382 

compared to two-way interactions found between non-syntenic vQTL regions on 2A and 2B with 383 
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the mvQTL region on 5A. The nature and functional role of homoeologous gene sets within the 384 

vQTL region on 2A and 2B is not clear. However, it is increasingly feasible in wheat to examine 385 

the effects of gene redundancy and explore the contribution of homoeologous genes in 386 

generating phenotypic variation (Wang et al., 2018) . 387 

Conclusion 388 

We showed the potential of vGWAS for dissecting the genetic architecture of complex traits and 389 

identifying novel genomic regions influencing variance heterogeneity in wheat. We provided 390 

evidence that the vQTL contribute to natural variation in grain Cd concentration through non-391 

additive genetic effects. This is particularly evidenced by epistatic interactions between mvQTL 392 

on chromosome 5A and vQTL on chromosomes 2A and 2B.  393 

Acknowledgements 394 

This work was supported by the National Science Foundation under Grant Number 1736192 to 395 

H.W. and G.M. Data analysis was performed using the Holland Computing Center 396 

computational resources at the University of Nebraska-Lincoln. 397 

 398 

  399 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/668087doi: bioRxiv preprint 

https://doi.org/10.1101/668087
http://creativecommons.org/licenses/by-nc/4.0/


 22

Supplemental Materials 400 

Supplemental File S1 contains Table S1 and Figures S1-S5.  401 

Table S1:  Single nucleotide polymorphism markers associated with variance heterogeneity of 402 

cadmium concentration in the hard-red winter wheat association panel. 403 

Table S2:  Single nucleotide polymorphism markers associated with the mean of cadmium 404 

concentration in the hard-red winter wheat association panel. 405 

Figure S1: Principal component analysis of the population structure in the hard-red winter wheat 406 

association panel. The different colors represent the sub-populations of red wheat and winter 407 

wheat. 408 

Figure S2: Quantile-quantile (QQ) plot of the outputs for the double generalized linear model 409 

and the hierarchical generalized linear model shown in the Manhattan plot. 410 

Figure S3:  Linkage disequilibrium block and annotated genes on chromosome 2A.  411 

Figure S4:  Linkage disequilibrium blocks and annotated genes on chromosome 2B. 412 

Figure S5: Violin plot showing the differences in the mean and variance of Cadmium 413 

concentration with alternative marker allele groups. 414 

Supplemental File S2: A list of candidate genes and homoeologous gene sets associated with the 415 

vQTL on chromosomes 2A and 2B. 416 

Data Availability 417 

The wheat phenotypic and genotypic data can be downloaded from 418 

(http://triticeaetoolbox.org/wheat/) and also available on the GitHub repository 419 
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Figures 732 

 733 

Figure 1. Illustration of variance heterogeneity of two genotype groups at a biallelic locus 734 

affecting the variance not the mean.  Genotypes with CC allelic combination present narrow 735 

variance, whereas genotypes with TT allelic combination show greater variability. The mean 736 

difference between two genotype groups is the same as shown by the solid vertical gray line.  737 
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 739 

Figure 2: Circular Manhattan plot of standard genome-wide association studies (GWAS) based 740 

on mean differences (inner), and variance GWAS using double generalized linear model 741 

(middle) and hierarchical generalized linear model (outer) for grain cadmium concentration in 742 

the hard-red winter wheat association panel. The red dots represent the significant markers 743 

associated with either mean or variance heterogeneity quantitative trait loci. The blue line in each 744 

circular plot shows the cutoff for the statistical significance. The P-values in )log
��

 scale are 745 

given in black vertical line. 746 
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 748 

749 

 Figure 3: Heat map showing all possible pairwise epistatic interactions between the markers750 

associated with vQTL on chromosomes 2A and 2B or mvQTL on chromosome 5A.751 

Chromosome information of each marker is given on the left side. The heat map is sorted and752 

color coded based on -log10 (p-value) scale with the legend given on right side. Interactions that753 

are significant (-log10 > 3.8) are color coded as red or orange in color and outlined in black box.  754 

 

ers 

. 

nd 

at 

 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/668087doi: bioRxiv preprint 

https://doi.org/10.1101/668087
http://creativecommons.org/licenses/by-nc/4.0/


 42

755  

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2019. ; https://doi.org/10.1101/668087doi: bioRxiv preprint 

https://doi.org/10.1101/668087
http://creativecommons.org/licenses/by-nc/4.0/


 43

 Figure 4: Violin plot showing the differences in the mean and variance of grain cadmium756 

concentration with alternative marker genotype groups coded as AA and BB for the top three757 

significant markers associated with vQTL on (A) chromosome 2A and (B) chromosome 2B. The758 

mean of marker genotypes AA and BB are connected by red dotted line. 759 

 760 

 Figure 5: Epistatic interaction plot between marker pair IAAV3067 (shown in dark-red color)761 

and IWA7579 (shown in blue color) on chromosomes 5A (mvQTL) and 2B (vQTL). The y-axis762 

shows the phenotypic value of cadmium concentration (mg). AA and BB represent the alternate763 

genotypes at the particular marker. Plotted points indicate two-locus genotype means ± standard764 

deviations for the two loci represented by error bars. Large difference in the mean value of765 

cadmium concentrations at BB genotype compared to no difference in the mean value of766 
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cadmium concentrations at AA genotype indicates the presence of interaction between the two 767 

markers. 768 
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