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Highlights:  

● Identifying significant critical transition signals (CTSs) from expression noise 

● A significant CTS contains or is targeted by key transcription factors  

● BioTIP identifies CTSs accurately and independent of trajectory topologies 

● Significant CTSs reproducibly indicate bifurcations across datasets 

 

Summary  

Differentiation involves bifurcations between discrete cell states, each defined by a distinct gene 

expression profile. Single-cell RNA profiling allows the detection of bifurcations. However, 

while current methods capture these events, they do not identify characteristic gene signals. Here 

we show that BioTIP – a tipping-point theory-based analysis – can accurately, robustly, and 

reliably identify critical transition signals (CTSs). A CTS is a small group of genes with high 

covariance in expression that mark the cells approaching a bifurcation. We validated its accuracy 

in the cardiogenesis with known a tipping point and demonstrated the identified CTSs contain 

verified differentiation-driving transcription factors. We then demonstrated the application on a 

published mouse gastrulation dataset, validated the predicted CTSs using independent in-vivo 

samples, and inferred the key developing mesoderm regulator Etv2. Taken together, BioTIP is 

broadly applicable for the characterization of the plasticity, heterogeneity, and rapid switches in 

developmental processes, particularly in single-cell data analysis.  

Key words: computational biology, regulated stochasticity, correlation estimation, 

differentiation, priming, gene expression  
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1. Introduction 

Fate decisions in stem cell differentiation involve bifurcations between discrete cellular states 

that present distinct gene expression profiles. Before a bifurcation, multilineage progenitor cells 

undergo priming, the phenomenon of cells in a subpopulation that are permissive for opposing 

cell fates prior to their lineage commitment (Moris et al., 2016; Ranzoni et al., 2021; 

Teschendorff and Feinberg, 2021). Besides epigenetic priming, transcriptional priming has been 

recently described using single-cell transcriptomes (Ando et al., 2019; Mojtahedi et al., 2016; 

Nestorowa et al., 2016; Zhao and Choi, 2019; Zhou et al., 2019). Transcriptional priming are 

detectable prior to two types of bifurcations (Teschendorff and Feinberg, 2021) (Fig 1a). 

Pitchfork bifurcations happen before a multipotential progenitor cell makes a quick bifurcation 

between two distinct stable states (Bargaje et al., 2017); saddle-node bifurcations occur before a 

progenitor cell approaches a threshold of irreversible commitment to a differentiated state 

(Mojtahedi et al., 2016; Richard et al., 2016). However, mainstream analyses assumed that 

pluripotent cells undergo smooth and continuous transitions to committed states that are marked 

by the progressive activation and silencing of molecular hallmarks (Lummertz da Rocha et al., 

2018), being unable to characterize these abrupt, non-linear, and often irreversible transition 

events. Therefore, it is crucial to fathom where bifurcations lie and, importantly, what 

characterizes or drives their formation.  

To detect where bifurcations lie using gene expression profiles (Mojtahedi et al., 2016; 

Richard et al., 2016), researchers have adopted a theory called ‘tipping point’ that has wide 

applications in ecosystems, climates, and other complex systems (Clements et al., 2019; Lenton 

and Livina, 2016). Bifurcations (a type of tipping point) occur when perturbations in some gene 

interactions causes the cell to cross a certain threshold that had been maintaining an equilibrium 

(Teschendorff and Feinberg, 2021). According to this theory, when a critical transition is 

imminent, a set of interconnected genes gain covariance (due to the loss of the preexisting 

equilibrium and the onset of a new state) (Fig 1b, embedded red dots) (Chen et al., 2012; 

Clements et al., 2019; Teschendorff and Feinberg, 2021). Knowing this, the expression patterns 

of these genes thus serve as a critical transition signal (CTS) to characterize an impending 

bifurcation.  

There are two models about what drives the formation of critical transitions: ‘regulated 

stochasticity’ (Teschendorff and Feinberg, 2021) and stochasticity. The regulated-stochasticity 

model assumes that extrinsic inputs alter the expression of CTS genes to change cell states. 

Established bifurcation-driving inputs include transcription factor (TF) whose temporal activities 

determinate distinct cell fates (Bockamp et al., 1998; Hu et al., 1997; Shai et al., 2015; Sheikh 

and Groom, 2020), which is illustrated in Figure 1a. The stochasticity model assumes that 

stochastic fluctuations in a single cell (which is hereafter called transcriptional noise) cause 

cells to switch between states. The stochasticity model is supported by the transitions displaying 

stochastic fluctuations, e.g., cell’s position in the cell cycle phases (Antolovic et al., 2019; 

Buganim et al., 2012; Kalmar et al., 2009). In the extreme, the second model anticipates overall 
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gene expression changes to participate in the state transition, i.e., the model does not identify 

CTSs. 

To identify CTSs, current computational applications have uniformly been applied to bulk 

RNA-seq data (Chen et al., 2012; Richard et al., 2016; Yang et al., 2015). However, bulk samples 

pose challenges for the significance and reproducibility in the TF-regulated CTS analysis. This is 

because transcriptional regulation fluctuates spatiotemporally in living cells, but the heterogeneity 

of single cells is erased in bulk samples. By addressing the challenges arising for single-cell RNA 

sequencing (scRNA-seq) (Fig 1c), we aim to identify significant and robust CTSs.  

We introduce BioTIP, a new method that complements mainstream scRNA-seq 

analytical methods (Delile et al., 2019; Trapnell et al., 2014) (Fig 1c). BioTIP’s performance was 

evaluated through application to both simulated and benchmark datasets and compared to 

previous analyses. We demonstrated that not only can BioTIP be applied to the characterizations 

of bifurcations, but also to address the computational challenges in analyzing single-cell 

transcriptomes. BioTIP was then applied to the scRNA-seq data of mouse gastrulation on which 

tipping point analyses had never been done before, where multiple critical transitions were 

identified and evaluated using independent cells of the same developmental stages. Based on 

literature, we showed how a significant CTS provides insight into cell-fate decisive transcription 

factors. These results open a way for characterizing critical transitions from dynamic expression 

profiles of developmental biology. 

2. Results 

2.1. BioTIP overview  

Temporally transcriptional regulation must be understood at the level of the single cell (Richard 

et al., 2016). However, classical tipping-point models require a time series in which the same cell 

is analyzed at various successive points in time (Clements et al., 2019; Lenton and Livina, 2016). 

This type of longitudinal transcriptomic data is rarely available for single-cell transcriptomes. In 

the absence of longitudinal data, a common practice has been to describe each cellular state from 

its statistical replicates (a cluster of individual cells sharing similar gene expression patterns) 

(Chen et al., 2012; Mojtahedi et al., 2016). In these practices, the cell clusters composed of 

bifurcation-occurring or impending cells were defined as ‘critical transition states’ or ‘tipping 

points.’ Therefore, we hereafter rename the classical ‘early-warning signal for tipping point’ 

(which suggests time series) as a ‘critical-transition signal’ (CTS). The term CTS encourages the 

application of tipping-point theory with broadly available scRNA-seq profiles.  

To adopt tipping-point theory to single-cell transcriptomic analysis, two assumptions must be 

met:  

1) The system (an ensemble of the individual replicates) has a dissipative structure (i.e., 

having discrete states including the one showing semi-stability).  

2) Each state has a characteristic gene expression profile and thus presents a distinct 
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molecular phenotype.  

Complementing to the current scRNA-seq analytical pipeline, BioTIP focuses on gene 

expression dynamics and is applicable to cellular states regardless of their pseudo-orders (Fig 

1c). For scRNA-seq data, BioTIP is unique in its ability to address the five following challenges 

in the identification of significant CTS (Fig 1d):  

a) Bifurcations could be stimulated by signals other than TFs, particularly when scores of 

random genes indicate bifurcations (Antolovic et al., 2019; Buganim et al., 2012; Kalmar et 

al., 2009), thus noise removal is essential. 

b) A significance threshold is required because increased gene expression stochasticity could 

indicate tipping points (Richard et al., 2016), and multiple CTSs and bifurcations may coexist. 

c) Because we can profile only subsets of the true trajectories, the independence of trajectory 

topologies is important, particularly for identifying saddle-node bifurcations. 

d) Due to the high resolution of cell states detectable, changes of certain genes could span several 

states of distinct phenotypes and gene expression patterns.  

e) The sizes of the statistical ensembles (e.g., cellular populations) vary considerably.  

To identify CTS from noisy gene expression profiles, the regulated-stochasticity model-based 

Dynamic Network Biomarker (DNB) is the most promising and first method to have come into 

use (Chen et al., 2012; Liu et al., 2017; Yang et al., 2018; Yang et al., 2015; Zhang et al., 2019). 

DNB predicts a tipping point from which the CTS is detected. Therefore, DNB enables 

transcriptomic analysis on sample ensembles of macroscopic phenotypes, allowing for both time-

series and cross-sectional analyses with one model. However, DNB may report false positive 

from complex scRNA-seq data because the method compares gene modules at each state over all 

states (Methods, Formula 4). This comparison is susceptive to genes that covariate in multiple 

states and can’t identify multiple CTSs. To overcome these limits, BioTIP designed two 

enhanced gene-selections steps to better screen inputs for DNB. Additionally, BioTIP inputs the 

DNB-reported CTS candidates into a stochasticity model-based scoring system for the 

significance evaluation. The rational comes from the observed agreement between these two 

models in one cell system (Richard et al., 2016).  

Among existing stochasticity model-based methods, index of criticality (Ic)  is a breakthrough in 

detecting bifurcations using single-cell transcriptomes (Mojtahedi et al., 2016). However, Ic is 

prone to overpredict states of small size (i.e., with small number of replicates) as critical 

transitions. This is a result of an inaccurate numerator in the Ic ratio which inherits defects from 

the classical estimation of correlation matrix that inflates for states with small sample sizes (See 

Methods). To overcome this, we redefine an Ic* score with a ‘shrinkage of correlation’ method 

(Schafer and Strimmer, 2005). 
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Altogether, BioTIP analysis has five steps that are grouped into three main components (Fig 2a, 

Methods). The first component (step i) searches for critical transitions from noisy background 

signals using the new Ic* scoring system (Methods, Formulas 1-2). Being served with a newly 

designed score (Formula 3) to select variable genes robustly and to uncover co-expressed genes 

fast, the second component (steps ii-iv) detects CTS candidates based on the existing DNB 

method (Formula 4). The final component (step v) uses a Delta score to identify significant 

CTSs from candidates. The Delta score is based on where the maximum Ic* occurs and its 

distance from the second maximum Ic* (Formula 5). Together, we can assess the significance of 

each CTS candidate meeting following three quantitative criteria, enabling the identification of 

multiple CTSs.  

1) higher DNB score at the state from which this CTS was identified, thus selecting CTS 

candidates 

2) the highest Ic* at the same state, thus characterizing its indicative critical transition 

3) significantly higher Delta at the same state than that of random genes, thus distinguishing 

the CTS from gene expression noise. 

2.2. Ic* Detects Tipping Points More Accurately Than the Original Ic Scoring System  

We first discussed two shortcomings of the existing Ic method for tipping-point identification 

using statistical-resampling based approaches. First, Ic calculated for each state as the ratio of 

average between-gene correlations to average between-cell coefficients and compared among 

states (Mojtahedi et al., 2016). The calculation of between-gene correlations over samples in 

each state biases Ic towards small states, and sometimes led to wrong predictions. It is because of 

the serious defect with the classical estimation of a correlation matrix from a state with few 

samples. This defect impacts Ic’s performance to compare large sates with small states. To 

address this defect, we redefined a new Ic* score by a ‘shrinkage estimation of correlation 

matrix’ method (Schafer and Strimmer, 2005) (Methods).  

We characterize Ic*’s advancement on tipping-point prediction in simulated single-cell 

transcriptomes, where the largest state size was seven times larger than the smallest state size (S 

method, Section 3) (Pijuan-Sala et al., 2019). We first applied the Ic method to the whole 

dataset, then repeated the same Ic analysis after down-sampling the data to equal-sized states. 

Unintendedly, the earlier full-sized analysis and the later equal-sized analysis yielded different 

results (Fig 2b, top). By contrast, and rigorously, Ic* predictions were consistent regardless of 

the inputted cell numbers per state (Figs 2b, bottom). 

The advance of Ic* is universal, regardless of the number of genes tested (from 50 to 1000, Fig 

2c). When calculated with 200 random genes, a positive correlation resulted between the Ic 

scores and the cell-population sizes (P= 8.3e-6). Although we expect critical transition states to 

be smaller than stable states in a snapshot data, this result is incorrect for the system because it 

was irreproducible in a down-sampled simulation (Fig 2b). By contrast, using Ic* to analyze the 

same dataset removed this correlation (Fig 2c, bottom). This suggests that when using Ic* 
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instead of Ic, there is no longer a risk to find incorrect bifurcations when working with data sets 

or variable population sizes.  

2.3. Applying BioTIP to benchmark dataset with an experimentally verified bifurcation 

and driving TFs.   

Applying BioTIP to single-cell gene expression profiles, we showed that it not only identified 

multiple bifurcations but also characterized them by significant CTSs. We demonstrated the 

accuracy with an experimentally validated bifurcation in early cardiogenesis, when induced 

pluripotent stem cells differentiating into cardiomyocytes (Bargaje et al., 2017). This dataset 

contains the gene expression profiles of 96 developmental genes for 1,934 cells collected from 

six timepoints (Bargaje et al., 2017) (Fig 3a). Day 2-2.5 was the verified developmental 

pitchfork bifurcation when multipotent primitive streak (PS)-like progenitor cells branched out 

into either the mesoderm cardiomyocyte (M) lineage (marked by Sox17) or the competing 

endoderm (En) lineage (marked by Hand1). Fig S1a presents the lineage mark gene expression.  

We applied BioTIP to the temporal gene expression profiles of 929 cells (days 0 - 2.5, and 

mesoderm-specific day 3) as previously applied to Ic (Bargaje et al., 2017). We first partitioned 

all 96 genes into modules that highly co-expressed in cell at any given collection day (Fig 3b). 

Among the 8 prioritized modules (Fig 3c), we detected 7 CTS candidates at five timepoints 

(P<0.001, Fig 3d), based on the DNB scoring. Although a 43-gene module identified at day 1 

present significantly higher than random Ic* scores at both days 1 and 1.5, due to their high 

between-gene correlations at both days (Fig 3e). Therefore, BioTIP reject his identification. 

Being evaluated by Ic* similarly, only three CTSs at days 2.5 or 1 were found to be significant 

(P of Delta < 0.05, Fig 3f).  

The highest Ic* was observed at the verified bifurcation at day 2.5. By contrast, Ic had been 

applied to the same profile to assign an equally high score at days 1.5 and 2.5 (Bargaje et al., 

2017), which is presented by two equally high simulation scores (boxes at days 1.5 and 2.5 in 

Fig 3f). The advantage of BioTIP over Ic is that BioTIP reflects the interaction patterns of 

module genes whose covariation increases before (or at) the critical transition subpopulation 

(Richard et al., 2016; Teschendorff and Feinberg, 2021).  

We conclude that BioTIP analysis is more accurate and precise than existing methods -- having 

higher accuracy than Ic (which failed to prioritize day 2.5) and higher precision than DNB 

(which had false positive) in the prediction of tipping points. Additionally, applying BioTIP to 

single-cell gene expression can capture multiple tipping points. Furthermore, our data supports 

the theoretical hypothesis that CTSs can describe both topologically pitchfork (e.g., day 2.5) and 

saddle-node (e.g., day 1) bifurcations.   

2.4. Significant CTSs Disclose Key Transcription Factors Controlling Cell Fate decisions  

We collected five established cardiogenesis TFs in this system which are KIT, BMP4, DKK1, 

WNT5B, and PDGFRA (Bargaje et al., 2017). In this system, the stem cells were induced by 

BMP4 and Wnt pathway activator; KIT was the experimentally verified bifurcation predictive 
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marker that guides differentiation into the mesodermal cardiomyocyte lineage as opposed to the 

competing endoderm lineage; And the expression levels of DKK1, WNT5B, and PDGFRA were 

highly correlated with the BMP-induced differentiation efficiency towards cardiac cell fate 

(Bargaje et al., 2017). All five key TFs were disclosed by the three computationally identified 

CTSs (Fig 3g).  

The identification of these key TFs is unique, being overlooked by conventional group-mean 

based approaches. On one hand, these TFs gained expressional variance at the bifurcation state 

(i.e., increasing standard deviation (sd), Fig 3h, purple bars). On the other hand, it is a set of 

genes’ covariations rather than single gene’s expression that characterize a bifurcation. For 

example, KIT and BMP presented increased co-expression at days 1 and 2-2.5, the identified and 

verified tipping points in this system (Fig 3i).  

We conclude that BioTIP is a powerful approach to disclose key TFs at differentiation 

bifurcations by the identification of significant CTSs. 

2.5. Applying BioTIP to Cell Clusters Identify CTSs as Key TF-regulated Targets 

We propose a better detection of key TFs when applying BioTIP to cell clusters defined by the 

similarity of gene expression profiles. To test this hypothesis, we reanalyzed the same 1,934 cells 

that were previously grouped into 19 consensus clusters (Bargaje et al., 2017) (Fig 4a, left). Note 

that cells collected at the same timepoint can come from distinct cell clusters (Fig 4b), timepoint-

based CTS identification may describe the heterogeneity regarding multiple clusters collected at 

the same day. To compare with the above time-course analysis, we applied BioTIP to nine 

clusters of the analyzed 929 cells.  

Among four DNB-identified CTS candidates (Fig S1, b-d), we verified the significance of three 

CTSs, respectively indicating critical transition at clusters 9 and 10 (Fig 4c, Table S1). Cells of 

cluster 9 (C9) were collected at Day 2-2.5 (Fig 4g), the experimentally verified bifurcation of 

this dataset (Bargaje et al., 2017), and presented an abundant level of NANOG and EOMES 

representing the transient PS state (Fig S1a). Cells of cluster 10 (C10) were collected at day 3, 

when major lineage commitments took place (Bargaje et al., 2017). Cells in this cluster presented 

high expression of the mesoderm markers HAND1 but not the cardiac mark TNNT2 (Figs 4e, 

S1a), suggesting a mesoderm progenitor state. However, this cluster was overlooked in the 

original study (Teschendorff and Feinberg, 2021). Because C10 sits along the path towards 

mesoderm lineage, being a topologically a saddle-node bifurcation, it is also undetectable by 

other existing methods. Therefore, the identification C9 demonstrates the accuracy, but C10 the 

sensitivity, of BioTIP application.  

We identified two distinct CTSs for cluster 9, with 18 and 23 genes in each. The CTS of 18 

genes contained not only the verified bifurcation mark genes KIT and DKK1 but also the cardiac 

markers NKX2-5 and TBXT. These TFs gained variance in expression among C9 cells (Fig 4f, 

purple bars). These results show that BioTIP analysis can discover key TFs with increased 

fluctuation at bifurcation state, being potential cell engineering targets. 
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Our results further witnessed a model of CTS to be strongly enriched for direct and indirect 

targets of key TFs controlling fate decisions (reviewed in (Teschendorff and Feinberg, 2021)). 

Along the differentiation from PS to mesoderm, the 18 CTS genes of C9 were the enriched 

targets of PS markers NANOG and EOMES as well the cardiac mesoderm inducing marks 

BMP4 and WNT3A (IPA analysis, P< 1e-8, ≥5 genes, Fig 4f, left). Another set of 23 CTS genes 

of C9 were the enriched targets of not only BMP4 but also the pluripotency factor POU5F1 that 

is highly expressed in the primitive streak (Mohammed et al., 2017). These results fit the 

hypothesis of opposing factors causing transcriptional priming (Ranzoni et al., 2021; 

Teschendorff and Feinberg, 2021) (Fig 1a). Therefore, tipping-point theory based BioTIP 

analysis can discover targets of these key TFs. 

Similarly for C10, the 19 CTS genes include the Wnt signal mark WNT5A. WNT5A level was 

induced at PS and maintains until cardiac mesoderm (CM) clusters (Fig 4g), agreeing with the 

literature that BMP4-Wnt activity within cardiac mesoderm appears to be positively amplified 

early commitment steps to cardiomyocyte have occurred (Kwon et al., 2007). Three upstream 

regulators of the 19 CTS genes were Sonic hedgehog (SHH), SHH downstream factor GLI3, and 

RBPJ (Fig 4f, right). Inhibition of these three factors has been shown to improve specification of 

cardiomyocytes (Diaz-Trelles et al., 2016; Parikh et al., 2015). We thereby reason that SHH-

GLI3 cascade signal is one driver of the bifurcation at C10. Indeed, the expression levels of 

GLI3 targets DLL3, MESP2, and FGF8 are higher in earlier primitive streak (PS) state, as a 

readout of the decreasing attractors. In contrast, HAND2 is more highly expressed in later CM 

clusters, as a readout of an emerging new attractor. These patterns support the notion that saddle-

node bifurcations can be seen as a gradual destabilization of previously stable attractor states, 

and the simultaneous emergence of new differentiated states (Teschendorff and Feinberg, 2021) 

(Fig 1a). 

Overall, BioTIP analysis on cell clusters of distinct expression patterns found verified key TFs 

and disclosed new TFs (or signals) for further investigation. We show the success in identifying 

significant CTSs in two types of bifurcations, independent of observed trajectory topologies, in 

two ways (Fig 4h). First, the TFs driving cell differentiation from one stable state to a later state 

could gain its expression level with fluctuance, being not only a CTS member gene but also the 

marker of the coming state. Second, the competing regulators of the early and later states cause 

fluctuance in their target genes, allowing CTS to infer key TFs from enriched upstream 

regulators. We propose that BioTIP analysis of single-cell gene expression profiles can detect 

critical cellular state bifurcations when external signaling can redirect the population’s lineage 

fate. 

2.6. Application to Mouse Gastrulation Identifies Four Robust CTSs  

To further demonstrate applicability, we studied mouse embryonic developmental bifurcations. 

We hypothesize that BioTIP analysis could capture the regulated stochasticity and reproducibly 

indicate bifurcations in independent samples on the same developmental paths. To test this 

hypothesis, we studied a mouse gastrulation in-vivo dataset (Pijuan-Sala et al., 2019), focusing 

on early organogenesis at embryonic day (E) 8.25 when precursor cells of major organs have 

been formed (Kaufman and Bard, 1999). We clustered 7,240 E8.25 cells into 19 states (sub-
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populations) and annotated them by up-regulated transcriptional markers (S Methods). The 

branches of cardiac mesoderm and muscle mesenchymal from early mesoderm were followed by 

a bifurcation between the hematopoietic and endothelial lineages (Fig 5a). Note that S13, S10, 

and S15 were three haemato-endothelial progenitor states sequentially in pseudo-order. They 

also have notable differences in gene expression: the early S13 has the highest average 

expression of Kdr (Fig S2a); S13 and S15 were closely clustered groups (positive silhouette 

width) but multiple clusters intermingled at S10 in expression space (Fig S2b), suggesting 

branching events at S10. 

Applying BioTIP to all 19 cell states regardless of their pseudo-trajectory, we detected four CTS 

candidates. Each presented significantly high DNB scores at one cell state, respectively (Figs 5b, 

S2c). The significance of these CTS was confirmed by Ic* simulation (P<0.05, Fig 5c). These 

CTSs revealed four transcriptional priming states, respectively (Tables 1, S2-S5, Fig S3a). 

Along the trajectory from early mesoderm to endothelium, there are many tipping points when a 

cell transitions from one stable state to another. Therefore, BioTIP’s ability to identify multiple 

significant tipping points is essential to understand the dynamic processes in development.  

Given a significant CTS, its significance in indicating a critical transition should be concordant 

in independent profiles of the same developmental stage. We tested this hypothesis using in vivo 

samples (E-MTAB-6153, published in 2018) (Ibarra-Soria et al., 2018). We reanalyzed 16 

previously defined subtypes of E8.25 developing mesoderm (11,039 cells) that spanned from 

mesoderm progenitor to blood and endothelium.  

Of each our identified CTSs, the Ic* scores over 19 cellular subtypes peaked at one subtype 

significantly (P of Delta<0.001, Fig 5d), thus pairing each detected bifurcation sate to predefined 

subtypes. The agreement between each pair was supported by their shared biomarkers (Fig S3). 

Three out of four pairs shared the top-10 up-regulated biomarkers significantly (12-29 shared 

markers from 10k common background genes, Fisher’s exact test P<2e-16, odds ratio> 250, Fig 

5e). One pair with moderate overlap (P=0.01, OR=15) was between the muscle mesenchyme 

specification and the ‘mixed mesoderm subtype a’, sharing the established cardiac mesoderm 

marker Hand1 and cell growth regulator Csrp2.  

We then verified the agreement between each pair in development pseudo-order. All four CTS-

mapped cell subtypes resembled the pseudo-order of the four CTS-indicated bifurcations (Fig 5f 

vs 5a) – The muscle mesenchyme specification from the mesoderm was followed by the 

commitment to the early HEP state; then a transition into the later (more blood-committed) HEP 

state occurred before the specification to either blood or endothelium. These concordances 

support the significance of the four CTSs, suggesting they are robust in charactering bifurcations 

in developing mesoderm.  

In summary, we identified four significant CTSs as the readout of imminent developmental 

bifurcations and evaluated their reproducibility in independent samples. This novel angle of 

transition states reflects the plastic and combinational regulatory mechanisms regulating early 

mesoderm development.  
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2.7. CTS-based Mapping of Developmental Bifurcations  

We have shown that significant CTS contains or is the targets of key TFs marking or driving the 

bifurcation. Here, asked whether the identified CTSs disclose fate-decisive key TFs. From four 

identified CTSs we isolated three TFs whose fluctuation in expression most likely impacts other 

CTS genes’ fluctuation; these TFs were Gata1, and two ETS family members Ets1 and Etv2 (Fig 

S2d). Each TF was not only the CTS member gene gaining covariance with other CTS genes but 

also the upstream regulator whose variance could explain the expression changes of the CTS 

genes (Methods). Among these three TFs, the CTS member gene ETV2 also presented as 

traditional up-regulated marker for its indicated cell state S13 (Fig 5g), suggesting its 

transcriptionally regulatory role.  

To verify the CTS-driving role of Etv2, we checked two key ingredients of a bifurcation 

(Scheffer et al., 2012): threshold-dependence and autoactivation. First, the variance of Etv2 

expression peaked at HEP before HE bifurcation, suggesting that Etv2 fluctuation marks this fate 

decision; while Etv2 reached its highest mean value at early HEP, indicating an expression 

threshold is required (Koyano-Nakagawa and Garry, 2017; Zhao and Choi, 2017) (Fig 5h). By 

contrast, the variance and mean value of Tal1 expression peaked at early HEP and then 

maintained its value for blood progenitors, going along with literature that a positive Etv2-Tal1 

loop is induced upon the activation by Etv2 (Zhao and Choi, 2017). Second, we observed 

enriched ETS motifs, denoting Etv2 as an upstream regulator of this CTS (Fig 5i). Consistent 

with this observation is the significant overlaps between 60 early HEP CTS genes and the ChIP-

seq detected Etv2 targets in hematopoietic and endothelial lineages (Liu et al., 2015) (P=3.8e-7, 

Fig 5j). Meanwhile, 60 CTS genes significantly overlapped with the upstream regulators of Etv2 

during haemangiogenic differentiation (Zhao and Choi, 2017) (P=3.2e-11, Fig 5j), suggesting 

Etv2 is also a downstream target of this CTS. These results agree with reported Etv2 

autoactivation in hematoendothelial specification (Koyano-Nakagawa et al., 2015). Therefore, 

we infer a bifurcation-driving role of Etv2. This inference agrees with literature that Etv2 

activation specifies HE lineages and is required until HE bifurcation (Koyano-Nakagawa and 

Garry, 2017; Liu et al., 2015). 

We further inferred the Etv2-mediated gene regulations from the Etv2-centered E8.25 60 CTS 

genes, which revealed four co-regulators (as both regulators and targets) -- Tal1, Lyl1, Rhoj and 

Rasip1 (Fig 5j). Existing literature supports a strong cooperation between the Etv2 targets Tal1 

and Lyl1 during HE transition (Guibentif et al., 2017), and both CTS members Rasip1 and Rhoj 

are endothelium-specific Etv2 targets (Palikuqi et al., 2020; Singh et al., 2020). Given the 

consensus that VEGF signaling plays an instructive role in promoting Etv2 threshold expression 

(Zhao and Choi, 2017), we model an Etv2-induced HE bifurcation (Fig 5k). In this model, 

positive feedback loops amplify the perturbations of a Etv2-activated GRN module, followed by 

negative feedback loops that repress Etv2 and drive the cells into distinct differentiated, stable 

states. Together, this is the first computational inference for the transient Etv2 expression that is 

required for HE bifurcation. 

Similarly, the predicted roles of Gata1 and Ets1 in marking or driving the bifurcation at later 

HEP are new, and our computational inference is partly supported by literature: Gata1 has been 
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reported to drive stem cells toward erythroid/megakaryocytic differentiation (Grass et al., 2003). 

Ets1 has been shown to function redundantly with Etv2 in promoting embryonic vasculogenesis 

and angiogenesis (Casie Chetty and Sumanas, 2020). 

In summary, our efforts to detect significant CTS from a noisy background moves the field one 

step closer towards understanding the dynamic TF regulation, in which the transient induction of 

a master TF concurs with critical state changes. The above results provide an impetus to adopt 

tipping-point analysis to uncover the roles of transcriptional mosaicisms with high resolution.  

3. Discussion 

In this paper, we detail BioTIP, a new workflow that advances mathematical tipping-point 

methods to identify significant CTSs. When the system approaches a critical state transition, the 

underlying gene expression signals become more stochastic, priming new states with distinct 

expression patterns. BioTIP parses out noisy transcriptional background signals and identify 

multiple significant, robust, trajectory topology-independent CTSs. Detecting these CTSs in 

cellular development is of prime interest for forecasting cellular engineering potential (Bargaje et 

al., 2017). Built on previous mathematical studies, BioTIP achieves three methodological 

contributions to study TF-regulated CTSs using scRNA-seq data:  

1) BioTIP enables the identification of multiple CTSs from stochastic background signals. 

The false positives were removed in multiple simulation steps (rather than simply taking 

the maximum), particularly by inputting DNB-identified gene signals into to the Ic*-

scoring system. Further advancements in the inputs of the DNB span the identifications. 

Consequently, the identified CTSs inform key TF regulations that were previously unable 

to computationally explore. 

2) BioTIP explicitly compares Ic* scores over states respite population sizes to infer tipping 

points accurately. By an advanced estimation of correlation matrices (Schafer and 

Strimmer, 2005), BioTIP reduces the sample-size related bias in the CTS-evaluation step.   

3) The focus on critical transitions is novel in current scRNA-seq data analysis. BioTIP 

enables the identification of CTSs from noisy data, which can be independent with 

trajectory topologies, enabling the CTS identification for potential saddle-node 

bifurcations. 

Using BioTIP, we were able to computationally capture hematopoietic-endothelial bifurcations 

in gene expression changes, through which Etv2 expression is induced, fluctuating, and 

extinguished rapidly (Koyano-Nakagawa and Garry, 2017; Koyano-Nakagawa et al., 2015). Four 

CTSs were either distinguished from or recaptured 8-21% of the up-regulated marker genes, 

respectively, at a bifurcation state (Fig S2e), confirming the independence between CTS and 

differentially-expressed genes (Liu et al., 2019). This independence suggests that BioTIP 

analysis detects new features of dynamics, going beyond traditional analysis relying on 

differential expression patterns. BioTIP models the lineage specifications to be not just a simple 

gradual silencing of the progenitor cells with simple upregulation of lineage marker genes 
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(Bargaje et al., 2017; Zhou et al., 2019). Such analyses allowed for Etv2 to be identified as a 

CTS driver and for regulatory loops it’s involved to be characterized. These findings demonstrate 

how BioTIP’s ability to identify bifurcations has applications across different types of 

transcriptome data and fields of biology.  

BioTIP is based on the regulated stochasticity model. Indeed, cells are most likely to determine 

their fate by taking developmental cues from stochastic fluctuations. To the authors’ knowledge, 

BioTIP is the first workflow to correctly identify tipping points and significant CTSs despite the 

presence of stochastic fluctuations in expression (background gene signals). In the cardiogenesis 

data that random gene signals can be indicative of a tipping point, Ic* was able to capture 

significant CTS (Figs 3-4), suggesting that stochastic perturbations coexist with transcriptional 

priming in these systems. In the developing mesoderm data (Fig 5), the results show that a 

perturbation in CTSs (rather than expression noise) is the only readout of critical transitions. 

Knowledge-based TF-binding metrics help discriminate between TF-driven perturbations 

triggering bifurcations versus those perturbations responding to non-transcriptional stimulus. To 

unlock those mechanisms besides of or coexisting with TF-driven perturbations, future work will 

be a comprehensive integration of multi-omics profiles (Stuart et al., 2019; Su et al., 2020). 

Existing biological tipping-point studies have not produced software packages. The only 

available tool, earlywarnings (Dakos et al., 2012) (early-warning-signals.org), has been 

evaluated and accurately predicts the epithelial–hybrid-mesenchymal determination (Sarkar et 

al., 2019).  However, it only allows for univariate data analysis. Few scRNA-seq analytical 

methods can predict general phenotypic transitions without checking variance and correlation of 

gene expression. These methods include pseudo-ordering analysis of cellular states (Lummertz 

da Rocha et al., 2018; Wang et al., 2019), single-cell clustering using bifurcation analysis (Marco 

et al., 2014), unstable-cluster marking using the silhouette-width method (Rousseeuw, 1987), and 

cellular entropy changes (Mojtahedi et al., 2016; Teschendorff and Enver, 2017). Importantly, 

these methods cannot identify CTSs. Beyond all existing methods, BioTIP represents a new 

multivariate tipping-point analytic tool for the computational biology community.  

Note that the BioTIP approach cannot distinguish pitchfork or saddle-node bifurcations and is 

not universally applicable. First, this work only detects tipping points based on certain early-

warning signs such as increased variance and correlation, but there are many other warning 

signals associated with other types of tipping points. Second, transcriptional CTS cannot be 

significant when the noise in gene expression is larger than biological CTS (Oku and Aihara, 

2018). Additionally, attractors are features of dissipative dynamical systems, but not all 

biological systems are dissipative.  

In conclusion, we have developed the BioTIP algorithm and tool to identify CTSs from noisy 

gene expression profiles. We illustrate the utility and efficiency of BioTIP across multiple 

profiling technologies, system levels, and biological contexts. We suggest the use of 

transcriptomic tipping-point analysis for a deeper understanding of the plasticity, heterogeneity, 

and phenotypic changes in dynamical biological systems. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 26, 2021. ; https://doi.org/10.1101/668442doi: bioRxiv preprint 

https://doi.org/10.1101/668442


4. STAR Methods 

4.1.  Notation 

Let 𝑋 denote the 𝑝 × 𝑛 matrix of the expression levels of p genes ({𝑔1, 𝑔2, … 𝑔𝑝}) in rows and 𝑛 

samples ({𝑠1, 𝑠2, … 𝑠𝑛}) in columns. When the 𝑛 = 𝑛1 + ⋯ + 𝑛𝑅 samples are divided into 𝑅 

distinct states, we can group the columns of 𝑋 to have 𝑋 = [𝑋1|⋯ |𝑋𝑅], where 𝑋𝑟 denotes the 

𝑝 × 𝑛𝑟 submatrix for samples in a state 𝑟 ∈ {1,2, … , 𝑅} and 𝑛𝑟 denotes the number of samples 

observed in the r-th state. 

Given a state r, let 𝑔𝑗
𝑟 be the expression vector for gene 𝑗 among samples in the state (i.e., the 𝑗-

th row of 𝑋𝑟), and let 𝑔𝑗
−𝑟 be the expression vector for gene 𝑗 among samples outside the state 

(i.e., the 𝑗-th row of 𝑋 where we remove 𝑋𝑟). For a group of 𝑞 genes (called a ‘module’) indexed 

by 𝑚 = {𝑚1, 𝑚2, … 𝑚𝑞} ⊂ {1,2, … , 𝑝}, let 𝑋𝑚
𝑟  denote the 𝑞 × 𝑛𝑟 submatrix of 𝑋𝑟 which selects 

the rows corresponding to the q genes in the module. 

Given a gene expression matrix of interest 𝑍, 𝑃𝐶𝐶𝑔(𝑍) denotes the Pearson Correlation 

Coefficient matrix calculated between the genes (rows of 𝑍), and 𝑃𝐶𝐶𝑠(𝑍) is calculated between 

the samples (columns of 𝑍) (i.e., 𝑃𝐶𝐶𝑠(𝑍) = 𝑃𝐶𝐶𝑔(𝑍𝑇)). 

Additionally, let ⟨⋅⟩ take the average of the off-diagonal entries in a square matrix, and let 𝑠𝑑(⋅) 

be the operator that calculates the standard deviation of a vector. 

4.2. Five steps in three components of the BioTIP workflow 

Component A: Predicting tipping point. Theory: The original Ic calculated for each state as 

the ratio of average 𝑃𝐶𝐶𝑔 (correlation coefficient matrix between genes) to average 𝑃𝐶𝐶𝑠 

(correlation coefficient matrix between samples) (Mojtahedi et al., 2016). Throughout states 

during a dynamic course, Ic peaks when the system approaches a critical transition because of 

the following two ‘early-warning’ features, exampled in the following single-cell scenarios:  

a) The average 𝑃𝐶𝐶𝑔 increases (Fig 1a, S method, Section 1). This is because 𝑃𝐶𝐶𝑔 

calculates the ratio of the between-gene variability to the average gene variability. Before 

transition, both variabilities are dominated by the noise around the attractor of the stable state. In 

contrast, when approaching transition, the decaying range-restriction effect limits the average 

gene variability within the unstable state – a decrease in the denominator of 𝑃𝐶𝐶𝑔. Meanwhile, 

there is an onset of distinct states among the assembled cells. This new layer of fluctuations 

contributes to a higher between-gene variability – an increase in the numerator of 𝑃𝐶𝐶𝑔. 

Together, 𝑃𝐶𝐶𝑔 increases impending the transition. 

b) The average 𝑃𝐶𝐶𝑠 throughout the genes decreases. This is because the state of cell 

replicates become destabilized when approaching a tipping point, resulting in greater 

heterogeneity and thus weaker between-sample co-expression within the transition state.   

Problem: The statistic (𝐼𝑐(𝑋𝑟)=
⟨|𝑃𝐶𝐶𝑔(𝑋𝑟)|⟩

⟨𝑃𝐶𝐶𝑠(𝑋𝑟)⟩
) estimates the true correlation present in the data 
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𝑋𝑟with the empirical correlation matrixes. Given a fixed number of genes q, the data varies in 

sample sizes {𝑛𝑟} among states; the numerator of Ic (each is calculated over one 𝑛𝑟) exhibits 

serious defects with 𝑋𝑟 that describes few samples (𝑛𝑟 ≪ 𝑞). It is because the empirical 

correlation matrix suffers from high variance, which inflates the numerator of the Ic for states 

with small sample sizes. Consequently, Ic has an undesirable performance on the comparison 

between 𝐼𝑐(𝑋𝑟): inaccuracy in its tipping-point prediction towards states r with a small 𝑛𝑟.  

Method: To address this problem,  we first introduce a ‘shrinkage of correlation’ method to 

𝑃𝐶𝐶𝑔 (see (Schafer and Strimmer, 2005), the model named ‘Target D’ for details). This method 

shrinks the most extreme coefficients in the observed 𝑃𝐶𝐶𝑔 towards more central value(s), 

thereby systematically reducing estimation error where it matters most (Ledoit and Wolf, 2004). 

Given a shrinkage target matrix 𝑇𝑔,this method then weighs both matrices 𝑇𝑔 and 𝑃𝐶𝐶𝑔 to get an 

improved approximation (𝑃𝐶𝐶𝑔
∗) of the true (unknown) correlation matrix (S Method, section 

1):  

𝑃𝐶𝐶𝑔
∗ = 𝜆𝑇𝑔 + (1 − 𝜆𝑔)𝑃𝐶𝐶𝑔   (Formula 1) 

We set 𝑇𝑔 to be the identity matrix -- so that we shrink the partial correlation coefficients in 

𝑃𝐶𝐶𝑔 towards 0 due to the globally low gene covariance in stable states; and the ones on the 

main diagonal represent the self-correlation of every gene.  

The parameter 𝜆𝑔 ∈ [0,1] is a value to be estimated from 𝑋𝑟 and 𝑇𝑔, controlling how strongly the 

estimate 𝑃𝐶𝐶𝑔
∗ is shrunk towards 𝑇𝑔; 𝜆𝑔 also controls the tradeoff between bias and variance 

when estimating the true correlation matrix (Schafer and Strimmer, 2005). When the sample size 

𝑛𝑟 is small, the optimal value for 𝜆𝑔 will be larger, leading to a stronger level of shrinkage of the 

partial correlations towards 0, which in turn shrinks the average of the 𝑃𝐶𝐶𝑔 towards 0, limiting 

the effect of the problem mentioned above. 

Similarly, we shrink the 𝑃𝐶𝐶𝑠 to get an improved approximation (𝑃𝐶𝐶𝑠
∗) of the true (unknown) 

between-sample correlation matrix (see (Schafer and Strimmer, 2005), the model named ‘Target 

F’ for details). Particularly, we set the target matrix 𝑇𝑠 with 1 on the diagonal and 〈𝑃𝐶𝐶𝑠(𝑋𝑟)〉 
elsewhere, so that for each state, we shrink the correlations towards the average value. The 

choice of average not only reflects the steady expression pattern in a stable state but also 

preserves the pattern difference across states. Note that a different value of 𝜆 (𝜆𝑔
𝑟  or 𝜆𝑠

𝑟) is 

estimated from the data when we calculate the 𝑃𝐶𝐶𝑔* or 𝑃𝐶𝐶𝑠* respectively for a state 𝑟.   

Step i) Finding tipping point. We define a refined Index of critical transition 

(Ic*) scoring system, using this updated 𝑃𝐶𝐶𝑔
∗ and 𝑃𝐶𝐶𝑠* estimates:       

𝐼𝑐∗(𝑋𝑟) =
〈|PCC𝑔

∗ (𝑋𝑟)|〉

⟨PCC𝑠
∗(𝑋𝑟)⟩

=
⟨|𝜆𝑔

𝑟 𝑇𝑔+(1−𝜆𝑔
𝑟 )PCCg(𝑋𝑟)|⟩

⟨𝜆𝑠
𝑟𝑇𝑠+(1−𝜆𝑠

𝑟)PCCs(𝑋𝑟)⟩
  (Formula 2) 

An increased 𝑃𝐶𝐶𝑔
∗(𝑋𝑟), contributes to an increased Ic* regardless of sample size, and 

substantially enhances the reproducibility of the tipping-point identification from restricted 

sample numbers.   
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Simple algebra reveals a linear relationship between the original Ic and our improved Ic*: 

𝐼𝑐∗(𝑋𝑟) = (1 − 𝜆𝑔
𝑟 )𝐼𝑐(𝑋𝑟) (S Method, section 1). As a sample size 𝑛𝑟 raises, the calculated 

value for 𝜆𝑔
𝑟  decreases to 0 and therefore we recover the traditional Ic score. Consequently, this 

correction enhances comparisons among states with variable sample sizes. 

Note: Not all tipping points are predictable by Ic (using randomly selected genes) for which we 

document in this Result section. Therefore, the hybrid of Ic* with the following CTS 

identification is not trivial.  

Component B: Identifying significant CTS. Theory: In the tipping-point model, each attractor 

(e.g., in the form of a fixed point along the dynamical trajectory) has a restricted effect (basin 

of attraction, e.g., expression regulation). The gradient of the basin of the attraction 

determines the rate at which a system turns back to the attractor from small perturbations. 

Thus, one indicator of tipping-point is a sudden ‘slowing down’ in which the system’s response 

to perturbations away from the current attractor decays just prior to the state transition (Scheffer 

et al., 2009). Not only is a tipping point characterized by an increase in 𝑃𝐶𝐶𝑔 of a group of genes 

reflecting the onset of a new state, but their cell-to-cell variability also surge corresponding to the 

system’s loss of resilience (Richard et al., 2016). DNB has successfully quantified these 

characters from bulk-cell (Chen et al., 2012; Liu et al., 2019) also single-cell (Richard et al., 

2016) expression profiles.  

Problem:  In previous DNB studies, significance, robustness, and reproducibility of the CTS 

identification are overlooked.  

Method:  Here, the goal is to identify a subset of genes that “drive” or respond to the state’s 

change at the tipping point. For expression profiles, we introduce new gene-feature selection, 

gene-module definition, and a module-size-adjusted DNB score (Chen et al., 2012) such that one 

can infer the underlying TF from the robust and significant CTS identification. With these 

refinements, BioTIP applies the concept of the DNB approach, by acknowledging its state-

specificity.  

Step ii) Feature (gene) preselection. The purpose of this step is to pre-select 

robustly informative transcripts and minimize the intrastate dispersions caused by sample 

outliers. This step is essential in high-throughput single-cell expression analysis as it picks the 

most informative genes from noisy background. To this end, we estimated a gene’s variation in 

state r relative to other states using a relative transcript fluctuation (RTF) score, for each state as 

follows:  

𝑅𝑇𝐹𝑟(gj) =
𝑠𝑑(gj

r)

sd(gj
−r)

    (Formula 3). 

To ensure robustness to outliers, we used saturation (i.e., statistical-resampling) based 

approaches to optimize the RTF estimation. This optimization is done by 1) randomly drawing 

𝑛𝑟 × 𝑏% samples from a state r to estimate the 𝑅𝑇𝐹𝑟(gj), and 2) repeating this drawing to select 

the 𝑝 × 𝑎% genes that have top RFT scores. Parameter b is set to 80% to preserve the data 

structure, thus being optional and only recommended for large systems (𝑛𝑟>10 per state). By 
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default, we set a up to 10% to focus on 5k or less genes with highest expressional fluctuation in a 

state (Fig S1, step 2.2). By adjusting b, we allow no less than about 200 genes per state for the 

following analysis. We document in the Result section that BioTIP is robust to this parameter. 

Step iii) Network partition. Gene expressions are modulated by complex 

regulatory feedback loops; thus, the gene expression of a system can be conceptualized as an 

interconnected network. These networks are equilibrium for stable states -- if even one gene’s 

expression is perturbed, the effects could be kept in an attractor’s potential well throughout its 

connectivity in the network. When the perturbation passes a threshold of equilibrium, critical 

transitions happen (Scheffer et al., 2012). Therefore, it is essential to uncover which genes are 

most influential within these co-expressed networks or ‘modules.’ Decomposing pre-selected 

genes per state into several modules will serve as the inputs of the next CTS-searching step.  

To identify significant CTS, it is necessary to partition genes into co-expressed modules. We 

chose to use random walk (RW) (Pons and Latapy, 2005) after reviewing an evaluation of 42 

module-detection algorithms and finding RW to be the fastest, non-parametric, and have 

performed in the top 20% of the evaluated alternatives (Saelens et al., 2018; Wiwie et al., 2015) 

(S Method, Section 2). Additionally, BioTIP provides alternative methods such as k-means, HC, 

and PAM that showed superior performance in gene expression clustering (Wiwie et al., 2015).   

Step iv) Identifying non-random CTS. We adjust the DNB’s bias towards small 

modules with a scaling factor equal to √𝑚𝑜𝑑𝑢𝑙𝑒 𝑠𝑖𝑧𝑒, as being proposed recently (Yang et al., 

2018). Comparing expressional deviation, the connectivity and homogeneity in this module 

relative to its complement set, and the scaling factor gives: 

𝐷𝑁𝐵. 𝑠𝑐𝑜𝑟𝑒(𝑋𝑟 , 𝑚) = Avgi∈m𝑠𝑑(𝑔𝑖) ×
⟨|PCCg(𝑋𝑚

𝑟 )|⟩

𝐴𝑣𝑔𝑖∈𝑚,𝑗∉𝑚(|𝑃𝐶𝐶(𝑔𝑖
𝑟,𝑔𝑗

𝑟)|)
 × √𝑠𝑖𝑧𝑒(𝑚)         (Formula 4) 

To identify the putative CTS, the modules 𝑚�̂�  with the higher-than-expected DNB scores in the 

state 𝑟, we estimate random DNB scores from 𝑋𝑟 by bootstrapping √𝑠𝑖𝑧𝑒(𝑚�̂�) genes from the 

background. 

Three notes: 1) An DNB-derived CTS is the genes members of 𝑚�̂� which are exclusively 

fluctuating and interactive in a tipping point r. 2) When DNB works on the same networks 

preselected from the gene background, the state with highest DNB score indicates a tipping point 

state (Chen et al., 2012; Liu et al., 2017; Liu et al., 2019). This tipping-point prediction should 

agree with the prediction in Component A (if there is a prediction) because both methods 

identify increasing co-expression. 3) The CTS-indicated tipping-point should be evaluable in the 

same data using different method, introduced in Component C. 

Component C: Two-way evaluation. Theory: The early-warning features of a true tipping 

point should be captured by both Ic* and DNB scoring systems. With the same transcriptome 

data, we can evaluate the significance of the CTS and its indicated tipping point by the Ic* 

scoring system.  
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Method: The purpose is to define a tipping point by a significantly increased Ic* throughout 

discrete states. We design a Delta score to quantify abrupt changes in Ic* between states. Given a 

CTS candidate, the 𝑚�̂� detected in state �̂�, calculating its 𝐼𝑐∗(𝑋
𝑚�̂�
𝑟 ) per state gives a vector 

𝐼𝑐∗|𝑚�̂� = (𝐼𝑐∗(𝑋𝑚�̂�
1 ), … , 𝐼𝑐∗(𝑋𝑚�̂�

�̂� ), … , 𝐼𝑐∗(𝑋𝑚�̂�
𝑅 )), which should peak at the state �̂� significantly. 

To quantify the module’s between-state changes, we propose a Delta score, the distance between 

the largest and the second-largest scores in 𝐼𝑐∗|𝑚�̂�: 

∆𝐼𝑐∗(𝑚�̂� ) = 𝑙𝑎𝑟𝑔𝑒𝑠𝑡(𝐼𝑐∗|𝑚�̂�) − 𝑠𝑒𝑐𝑜𝑛𝑑. 𝑙𝑎𝑟𝑔𝑒𝑠𝑡(𝐼𝑐∗|𝑚�̂�)    (Formula 5) 

Step v) Simulation study using Delta score. Given a CTS identification, 

comparing the observed Delta score of the observed Ic* to the simulated Delta scores (of random 

Ic*s using randomly selected genes) gives empirical p-value. From the transcriptome 𝑋, the 

random Delta scores are calculated by fixing the state labels but randomly drawing the 

expressional values of p genes.  

For a CTS-indicated tipping point state, comparing the observed Delta score to state-irrelevantly 

simulated Delta scores gives another empirical p-value. These random Delta scores are 

calculated by fixing the CTS genes but randomly assembling all n samples.  

Note: In complex systems, the identified signal may be a mix of CTS along the trajectory of 

interest with unknown effects. Therefore, we recommend a validation using independent samples 

of concordant states on the same trajectory.  

Finally, we comprise BioTIP into a comprehensive bioinformatics toolset for identifying 

transcriptomic tipping points and for describing critical transitions with non-random CTSs. 

4.3. Prediction of upstream regulators  

We predicted the upstream regulator for each set of the identified CTS genes using two 

strategies. First, we explained the expression changes of CTS genes with regulators whose 

change in expression are relevant to what is expected from the literature, using IPA (QIAGEN 

Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) (Kramer et 

al., 2014). The cutoff settings were FDR<0.005, at least 10% of target genes, and molecular 

type=’transcription regulator’. Second, because transcriptional regulation requires the binding of 

TFs, we searched for enriched ‘known’ TF-binding motifs which are mostly based on the 

analysis of public ChIP-Seq data sets, using Homer (Heinz et al., 2010). Significance settings 

were Benjamini-adjusted p<0.005 and at least 20% of target promoters ([-200,100] around TSS) 

with a known motif.  

Motif enrichment analysis was also performed using Homer software (Heinz et al., 2010). 

Promoters were defined as a 200-nt window ([-200, +100]) around each TSS. These TSSs were 

directly extracted from the assembled transcripts of RNA-seq but were retrieved from the 

Ensembl (GRCm38_release97) annotations for the mouse gene symbols. Promoters overlapping 

with the blacklist were removed (Amemiya et al., 2019). We considered significance at a level of 

Benjamini-adjusted p<0.005 and at least 20% of target sequences with a known motif. 
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5. Data and Software Availability 

The R package is available at https://github.com/xyang2uchicago/BioTIP. 

Processed data and R codes are available at 

https://github.com/xyang2uchicago/BioTIP_application. 
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9. Figure Legends 

Figure 1 
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Figure 1. Tipping-point theory and adaption to gene expression analysis.  

a, A model of transcription factor (TF)-regulated stochasticity described in two formats: the 

pitchfork bifurcation (e.g., lineage bifurcation, left) and the saddle-node bifurcation (e.g., 

irreverent fate commitment, right).  In this model, discrete cell states present distinct gene 

expression patterns, each under the control of particular TFs. According to tipping-point theory, 

a fixed point (a basin with steep local gradient near the center) is illustrated with a line, and the 

systems (cells) are illustrated with balls. At the critical transition (tipping point), the line turns 

flat, representing the effect of multiple decayed attractions resultant in a vulnerable regulation. A 

transcriptional readout of this phenomena is the increased covariance among a small set of 

interacting genes (the circles in the embedded box).  

b, Schematic of the gene expression space of a system undergoing a bifurcation, exampled by a 

transition from multipotential progenitor state to a differentiated stable state. A tipping point in 

this progression occurs when simultaneous emergence of new controlling transcription factors 

increases the diversity/stochasticity in a cell population (middle panel). Before making a cell fate 

decision, an onset of correlated changes in expression among a small set of genes precipitate the 

disequilibrium (red shaking balls), which is illustrated by the pink cycles in the embedded box. 

After passing this tipping point, system diversity drops quickly and remains lower compared 

with the original progenitor state.   

c, Analytic pipeline of single-cell RNA-seq analysis, with BioTIP as an alternative to differential 

expression analysis. Arrow lines in orange showing that BioTIP is applied to cell state ensembles 

(clusters) without the pseudo-order information. The dashed orange line showing that BioTIP 

may use pseudo-order information to select cell states on the trajectory of interests.  

d, Table view comparing the functionality of BioTIP with pseudo-time analysis and two existing 

tipping-point scoring systems. DNB: Dynamic biomarker network; Ic: index of criticality; Ic*: a 

redefined Ic; RTF: relative transcript fluctuation; RW: random walk. 
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Figure 2 
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Figure 2. BioTIP workflow, in which Ic* yields consistent results to compare states with 

variable cell population sizes. 

a, BioTIP’s five-step analytic workflow. 

b, Comparison of the Ic scores on a simulated scRNA-seq dataset of variable subpopulation sizes 

(left, gene permutation based on the data of GSE87038) with that of down-sampled equal 

subpopulation sizes (right). Boxplot showing the simulation of 1000 scores based on 200 random 

genes. Box color decodes 19 unique cell clusters. In each subpanel, two red arrows point the top 

two scores. Ic scores output different clusters with highest scores (top); Ic* output consistent 

results (bottom). 

c, Calculating Ic-scores on the simulated dataset, using different numbers of random genes (50, 

200, and 1000, respectively). Each dot represents one cell subpopulation (cluster). A p-value of 

Pearson Correlation is calculated between population sizes (x) and Ic scores (y) across all states, 

for which a linear regression line presents the strength and direction. Ic scores significantly 

decreases with large state sizes (top); Ic* does not significantly associated with state size 

(bottom).  
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Figure 3 
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Figure 3. BioTIP identified multiple significant CTSs that contain experimentally validated 

key TFs controlling fate choices in early cardiogenesis   

a, TSNE plot of the 1,896 induced stem cells, colored by 8 collection timepoints. Cell identities 

were supported by marker expression (Fig S1a). E: epiblast, PS: primitive streak; CM: cardiac 

mesoderm, En: endoderm. Hollow blue arrows illustrate the knowledge-based cell differentiation 

trajectories. 

b, Network view of three gene modules detected by the random-walk algorithm at day 2.5, 

respectively in colored circles. Each module contains the genes (nodes) that present pairwise 

between-gene correlation in expression (edges, FDR of Pearson correlation test < 0.2) among 

122 day-2.5 cells. Gene numbers (≥10, given in the parentheses) are shown and coded by colors. 

c, Bar plots showing DNB scores in each cell collection day (D). 14 modules with the 

identification of 10 or more out of the 96 measured genes are shown. The horizontal dashed line 

indicates a cutoff, resulting in 8 prioritizing modules with the gene count per module listed atop. 

d, Boxplot comparing the observed DNB score (red dot) with the random scores for the 8 

prioritizing modules, respectively, with the gene number atop. Each box presents the results of 

1000 runs on randomly selected genes of the same size, over the cells at its derived timepoint. 7 

out of 8 prioritizing modules were significant (P<0.001, when a red dot above its box), being the 

CTS candidates. 

e, Boxplot comparing the observed score with the random scores for the CTS candidate of 43 

genes detected at day 1. Random scores were calculated based on permutation of gene labels. 

Showing are the between-gene correlation (PCCg*, left), between-sample correlation (PCCs*, 

middle), and Ic* score (right), respectively. Yellow triangles point the significantly high PCCS* 

and the Ic* at unintended day 1.5, respectively, suggesting these 43 genes are not day 1 specific.  

f, Ic* of 7 CTS candidates (red or purple line) compared to that of random-gene simulations 

(boxes, 1000 runs) across all timepoints. Left 3 panels are significant (P<0.05 at the predicted 

timepoint which is labeled in red on the x-axis); right 4 are insignificant, being the false positive. 

g, Table view of the presence (1) of five known cardiogenesis TFs in the three identified CTSs.  

h, Bar plot displaying the log2-scaled expression patterns of the five cardiogenesis TFs across 

timepoints. For each TF, red arrows point the highest standard deviation (sd) which is 

independent of the highest mean value. 

i, Hexbin plots comparing the average expression values of two TFs among cells collected at 

each day, respectively. Cell population sizes are given atop in the parentheses. A p-value of 

Pearson Correlation is calculated between BMP4 (x) and KIT (y), for which a linear regression 

line presents the strength and direction.  

In panels e. f and h, each CTS candidate-predicted timepoint is labeled in red on the x-axis.  
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Figure 4
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Figure 4. BioTIP identified significant CTSs that are independent of differentiation 

trajectory topologies and enriched for targets of fate decisive TFs 

a, TSNE plot for all collected cells. Cells are labelled by 18 unique clusters of similar gene 

expression patterns (left).  

b, Stack bar chart projecting cell clusters into their collection days of interest (days 0, 1, 1.5, 2, 

and 3/M – only mesoderm-specific cells). Cell numbers are given in the parentheses (n=929 in 

total). Note that there are small proportion of endoderm-specific cells collected at day 2.5 

(cluster 6, n=15).  

c, Similar to Fig 3f but showing the Ic* scores across cell clusters. For each of the four DNB-

identified CTS candidates, also shown is the p-value of Delta scores at the predicted bifurcation 

state (cluster), resulting in 3 significant CTSs and one false positive. 

d, Bar plot displaying the log2-scaled expression patterns of four CTS member genes for the C9. 

For each gene, red arrows point the highest standard deviation (sd) exhibiting at C9. 

e, TSNE plot for all collected cells. Cells are colored by mark gene expression levels.  

f, Bar plot of significant upstream regulators for the 18 genes charactering C9 (left), or for the 23 

genes charactering C10 (right), respectively. Also shown are the target genes and enrichment p-

values (IPA analysis). Bar color decodes the molecular types of these upstream regulators. The 

experimentally verified bifurcation-driving TF KIT is highlighted in red. 

g, TSNE view of six C10 CTS member genes that are enriched for the SHH-GLI3 singling 

pathway.  

h, Tipping points (TPs) along the trajectory from early stem cell to CM differentiation, induced 

by BMP4 and Wnt pathway activator. Each cell state (stable or transitional) can be marked by 

specific transcription factors. Color distinguishes the verified tipping point and factors (black) or 

the BioTIP-identified new ones (red). The verified tipping point at day 2.5 was identified by both 

time-course and cellular cluster analysis using BioTIP. 
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Figure 5 
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Figure 5. Applying BioTIP to scRNA-seq data of developing mesoderm disclosed the cell-fate 

decisive ETV2 and revealed reproducible CTSs 

a, Uniform manifold approximation and projection (UMAP) plot of 7,240 developing mesoderm 

cells (E8.25, published in 2019), colored and numbered by 19 unique clusters (states) of 

transcriptionally similar cells. Blue hollow arrows illustrate the knowledge-based pseudo-orders.  

b, Bar plots illustrate the DNB scores in each E8.25 state (S). The horizontal dashed line indicates 

a significance threshold a cutoff, resulting in 4 prioritizing modules with the gene number atop. 

Eleven states with module identifications of 60 or more genes are shown. 

c, Evaluation of four identified CTS candidates, each being labeled by the cell-cluster identity from 

which the CTS was identified. For each CTS candidate, comparing its Ic* (colored line) to the 

gene-size-controlled random scores (light grey lines, 1000 runs). Also showing is the p-value of 

Delta of the observed Ic* at the CTS-indicated tipping point. 

d, Validating identified CTSs in independent profiles of 11,039 E8.25 cells (published in 2018). 

Ic*s of each CTS across new cell subtypes (line) were compared to their empirically simulated 

scores (box, 1000 runs). Calculation was conducted after mapping all CTS genes (n=67, 90, 79, 

60, respectively) to this profiling, extracting above 98% of CTS genes (n=66, 88, 79, 60, 

respectively) measured. For each CTS, the subtype with the highest Ic* is highlighted with a red 

dot, and the p-value for the Delta at that point is shown. The red font on the x-axis indicates ‘CTS-

mapped’ states of bifurcation.  

e, Venn-diagram comparing the up-regulated biomarkers of each bifurcation state (in the 2019 

profiles) with the biomarkers of the mapped cell subtypes (in the 2018 profiles). Circle color 

decodes the four CTSs. The numbers in the Venn count the biomarkers. OR: Odds ratio. Fisher’s 

Exact test. Some shared marker genes are displayed to the right. 

f, UMAP showing the 2018 E8.25 cells in vivo, colored and indexed by 16 unqiue subtypes. Blue 

hollow arrows illustrate the knowledge-based pseudo-orders. Colored text indicates four tipping 

points mapping to four subtypes. 

g, Venn-diagram comparing the E8.25 early HEP (eHEP) CTS genes and up-regulated biomarkers 

of this cell cluster.  

h, Bar plot displaying the log2-scaled expression patterns of Etv2 and Tal1 across cell clusters.  

Colored squares highlight the two HEP (black) or HP (red) clusters, respectively. 

i, Significantly enriched ETS-binding motifs found by Homer from the promoters ([-200, 100] 

around transcript start sites) of the 60 CTS genes. 

j, Venn-diagram showing the overlap among E8.25 eHEP CTS genes, the CRISP-validated 

upstream regulator of Etv2, and the Etv2 direct targets in a previous ChIP-seq experiment. 

k, A model of Etv2 masters the HE bifurcation. The yellow ball is the initial state. As Etv2-targets, 

increasing fluctuation in CTS-gene expressions (pink) can be triggered by Etv2 autoregulation. 

After entering later stable states, some oscillated CTS genes gain enriched expression. 
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10. Supplementary Figure Legends 

Figure S1 
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Figure S1. Analysis of single-cell RT-PCR data of induced stem cell towards cardio 

mesoderm  

a, Top: Established cell lineage markers. Bottom:  TSNE plot showing marker gene expression 

of individual cells, numbered by 18 unique cell cluster IDs. Each dot represents a single cell. Dot 

color decodes expression levels on log-2 scale. the E: epiblast, PS: primitive streak; CM: cardiac 

mesoderm, M: mesoderm, En: endoderm.  

b, Similar to Fig 3b but showing the three gene modules detected from cell cluster 9 (C9). 

c-d, Similar to Fig3c-3d but showing the DNB results of across cell clusters, resulted in 4 CTS 

candidates. Gene numbers are given at bottom. 

e, Bar plot of significant upstream regulators (left) for the 23 genes (right) charactering cluster 9 

(C9). Color decodes the molecular types of these upstream regulators. 
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Figure S2 

 

Figure S2. Analysis of the single-cell expression profiles of mesoderm in vivo (E8.25, 2019, 

GSE87038) 

a, Lines showing the average expression levels of Kdr in each of the 19 cell states. 

b, Distribution of the approximate silhouette width (y-axis) across 19 cell states (x-axis) of the 

dataset. Each point represents a cell and is colored with the identity of its own cluster if its 

silhouette width is positive, or that of the closest other cluster if the width is negative. 

c, Bar plots illustrate the DNB scores in 19 E8.25 states (S, GSE87038) for each identified CTS 

at its representative state (red dot), respectively, compared to the DNB scores of random genes 

(boxes, 1000 runs).  

d, Venn-diagram comparing the genes of dual roles (up-regulated biomarkers and CTS in panel 

a), with the up-regulators of the CTS genes.   

e, Venn-diagram for each CTS showing, up-regulated biomarkers of the representative critical 

transition state. lHEP: later haemato-endothelial progenitor; End: endothelial; eHEP: early HEP. 
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Figure S3 
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Figure S3. Comparing the up-regulated marker genes between two E8.25 datasets.  

a, Heatmap showing the top-5 ranked regulated genes each identified E8.25 bifurcation state over 

other E8.25 states (2019, GSE87038). Euclidean distance was measured, and normalized log 

counts were centered and scaled in the row direction. Pairwise comparisons between cell states 

were run using the Wilcoxon rank-sum test.  

b, Similar to panel a but for the top 10 up-regulated markers detected from the E8.25 (2018) dataset, 

each shown state sharing up-regulated biomarkers with one E8.25 bifurcation states (blue arrows). 

Pairwise comparisons between cell states were run using the t-test. The up-regulated markers were 

identified as a summary logFC > 1, FDR<0.01, and rank ≤ 10, using the R package scran.  

In both panels, the red color of gene symbols highlights shared markers. 
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11. Table 1. The established cell lineage marks 

State 

ID Cell Identity Up-regulated lineage marks 

    

Eendothelial-

Hematopoietic  Eendothelial  Hematopoietic Mesenchymal  Muscle 

S16 

Muscle 

mesenchyme    Hoxb6 

Hand1, 

Bmp4, Pitx1, 

Igfbp2 

S13 early HEP Kdr and Etv2 Slc25a5  Lmo2, Hhex   

S15 later HEP  

Slc25a5, 

CD34, Cdh5, 

Apoe 

Gata1, Gfi1b, 

Spi1 (Pu.1), 

Itga2b   

S6 Endothelium   

Cd81 and 

Apoe       

 

12. Appendix   

Other supporting Materials are available with this article online, including five S Tables and 

S Methods.  
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