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Abstract. Next generation sequencing and biochemical cross-linking
methods have been combined into powerful tools to probe RNA sec-
ondary structure. One such method, known as PARIS, has been used to
produce near base-pair maps of long-range and alternative RNA struc-
tures in living cells. However, the procedure for generating these maps
typically relies on laborious manual analysis. We developed an auto-
mated method for producing RNA secondary structure maps using net-
work analysis techniques. We produced an analysis pipeline, dubbed
cross-linked RNA secondary structure analysis using network techniques
(CRSSANT), which automates the grouping of gapped RNA sequencing
reads produced using the PARIS assay, and tests the validity of sec-
ondary structures implied by the groups. We validated the clusters and
secondary structures produced by CRSSANT using manually-produced
grouping maps and known secondary structures. We implemented
CRSSANT in Python using the network analysis package NetworkX and
RNA folding software package ViennaRNA. CRSSANT is fast and effi-
cient, and is available as Python source code at
https://github.com/ihwang/CRSSANT.
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Background

The base-pairing properties of RNA enable its ability to form complex macro-
molecular structures, which are critical to the variety of functions that different
RNA perform as messengers, gene regulators, and subcomponents of complex
molecular machinery and cellular networks [6, 10]. So crucial is structure to RNA
function that a variety of techniques have been developed to probe the trajec-
tory of an RNA molecule from single-stranded transcript to complex, folded
macromolecule—plus all variety of stable and unstable intermediates and alter-
native conformations that might be adopted in between. Predicting the base-
pairing of RNA nucleotides, or RNA secondary structure, has long been the
goal of algorithms that calculate possible free-energy structures [26] or exhaus-
tively search for shared structural motifs in nucleotide sequences [11]. Mean-
while, insights into the three-dimensional, or tertiary structure of RNA, have
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predominantly been obtained using x-ray crystallography and nuclear magnetic
resonance spectroscopy [4].

In the last two decades, a host of chemical methods have dramatically ad-
vanced both secondary structure prediction and tertiary structure probing [33].
Despite these advancements, the structural insights are often limited, for exam-
ple, to providing information about which bases are paired but without specifics
about their pairing partners, or to capturing ensemble effects averaged over a
large number of molecules [21]. However, recent work based on in vivo cross-
linking and next-generation sequencing provides a new method for identify-
ing base-pairing interactions in living cells [3, 30,23, 17,13, 31,27, 36]. One such
method, psoralen analysis of RNA interactions and structures—PARIS for short—
targets base-paired regions of RNA and uses sequencing to directly read out
paired bases. First, a psoralen derivative is used to cross-link base pairs in RNA
helices in living cells. Next, RNase digestion is used to remove regions of RNA
that are single-stranded. Cross-linked base pairs are then ligated, denatured and
reverse transcribed to produce a single DNA molecule that is complementary to
the RNA stem comprising the original cross-linked RNA base pairs. Each DNA
read is sequenced and mapped to a reference sequence, producing “gapped”
reads, which are paired—duplexed—reads without single-stranded loop regions.
Each gapped read contains a left and right portion—or “arm”—where “left” de-
notes the 5’, or upstream position in the reference genome and “right” denotes
the 3’, or downstream position.

The gapped reads produced by the PARIS method make it possible to iden-
tify not only which bases in a sequence are involved in base-pairing, but also
the counter-parties in each base pair. The insights into base-pairing provided by
the PARIS method were used to validate structures obtained by other structure
probing methods, and were also used to identify the structural basis for long-
range RNA interactions in long non-coding RNA. Although the PARIS method
is extremely powerful in revealing basic stem structures and long-range interac-
tions, the process of clustering gapped reads in order to extrapolate underlying
RNA structures is laborious. In this manuscript, we present a computational
method dubbed CRSSANT, which is intended to be an analytical complement
to the PARIS assay. CRSSANT leverages network analysis techniques—also fre-
quently referred to as “graph” techniques—in order to automate analysis of
sequencing reads produced by the PARIS assay.

In theory, it is straightforward to infer RNA base pairs from PARIS reads.
Each gapped read was produced by subjecting a single RNA stem to a succession
of biochemical processes that makes it possible to read out the nucleotides and
base pairs underlying the stem. However, in practice a number of issues make it
difficult to easily interpret PARIS reads. First, the cross-linker employed in the
PARIS assay has a preference for staggered uridine bases, and, like any catalyst,
is less than 100% efficient. Furthermore, certain RNA structures may even block
cross-linking. In addition to issues with cross-linking, the ligation step is known
to have a low efficiency of approximately 5%, at most. These complications
mean that the PARIS method is unable to capture all RNA structures, making
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it difficult to directly infer properties like the relative abundance of alternative
structures or long-range interactions [22]. Additionally, the RNase digestion pro-
cess is known to be highly variable, which may sometimes result in reads with
unexpectedly long arms.

To account for these issues, the CRSSANT pipeline comprises two main
analysis procedures: clustering and structure extrapolation. It accepts as input
gapped reads produced by the PARIS method that have been mapped to a
reference sequence by the STAR read aligner [8]. First, the pipeline transforms
reads into a network representation. This representation facilitates clustering of
highly similar reads into duplex groups (DGs). DGs are further processed to
produce stem groups (SGs), which are used to identify candidate regions of a
reference sequence that could undergo base-pairing and give rise to an RNA stem.
To produce SGs from DGs, reads with unusually long arms are removed from
each DG. The remaining filtered reads are used to identify consensus regions of
the reference sequence, which are tested for base-pairing ability using state-of-the
art RNA structure prediction software. Finally, the pipeline outputs structure
maps for predicted RNA stems as lists of predicted base pairs.

An overview of the PARIS assay and CRSSANT methodology is shown in
Figure 1.

Results

DG assignment validation and choice of default clustering parameters

We tested DG clustering methods and set default clustering parameters for
CRSSANT by validating CRSSANT DG assignments on sets of PARIS reads
generated in [24]. These sets comprised reads that were mapped to the follow-
ing human gene sequences: RNA component of mitochondrial RNA-processing
endoribonuclease (RMRP), ribonuclease P RNA component H1 (RPPH1), sub-
units 18S, 5.8S and 28S from ribosomal ribonucleic acid (rRNA) transcription
unit 45S, and small nuclear ribonucleic acids (snRNAs) U2, U4, U5, U6, Udatac,
and Ubata. Basic properties of the datasets are summarized in Table 1.

We tested two types of DG clustering methods: cliques-finding and spectral
clustering. For both clustering methods we tested the effect of different over-
lap thresholds t,. We also tested two spectral clustering-specific parameters:
eigenvalue test size nejq, and eigenratio threshold tei. In brief, nej, is the num-
ber of eigenvalues that are considered during spectral clustering, and %4 is the
threshold that the ratio of gaps between consecutive eigenvalues must exceed to
merit a new cluster. For more details about these parameters, please refer to the
Methods section. We tested various ranges of clustering parameters: for both
cliques-finding and spectral clustering methods we tested ¢, from 0.1 to 0.9 at
increments of 0.1, and for spectral clustering we tested neig = {10, 20,100} and
teig = {3,5,10}.

We relied on a combination of three indicators to judge CRSSANT DG as-
signments against those generated in [24], which serve as ground truth DG sets.
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Fig. 1. Overviews of CRSSANT and PARIS. (A) Cartoon overview of the PARIS
assay with critical steps: in vivo cross-linking of RNA (beige) via psoralen-derivative
4'-aminomethyltrioxsalen (AMT, green lozenge), RNase digestion and purification, two
possible ligation modes (dashed gray line), cross-link photoreversal to remove AMT
cross-links, reverse transcription producing complementary DNA (blue), sequencing,
and alignment to a reference sequence. Solid gray lines indicate paired read arms. (B)
Cartoon overview of the CRSSANT analysis pipeline, which accepts as input a SAM
file of aligned reads (and, if applicable, a SAM file of chiastic reads, gray) and performs
the following steps: DG clustering (producing two DG files if successful), SG clustering
(which follows from DG clustering if DG clustering is successful), and output SG files
which are produced if SG analysis is successful. Output SG files are produced in sets
of three, one for each SG assembly percentile threshold p.
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Gene Average  Average
Dataset Gene Reads read sequencing
length
length coverage
RMRP RMRP 268 694 53 136
RPPH1 RPPHI1 333 1,142 48 166
rRNA  18S 1,870 5,670 73 220
5.8S 158 252 69 109
2885 5,071 3,975 66 52
snRNA U2 187 459 44 107
U4 145 1,899 44 582
U6 106 187 47 84
U5 116 1,100 41 392
Udatac 130 165 47 60
U6atac 125 99 51 40
snoRNA U3 214 4,481 47 988

Table 1. Datasets used in all experiments. Basic properties of the datasets used to
evaluate CRSSANT, including haploid gene length (in bases), number of reads (Reads),
average read length (also in bases), and average sequencing coverage [18].

The first indicator, which we call “mismatch fraction,” measures the amount of
variation between the ground truth DG set and the CRSSANT DG assignments.
Mismatch fraction is calculated by comparing the ground truth DG assignments
with the CRSSANT DG assignments for each pair of reads that were assigned
to valid DGs using the CRSSANT pipeline. A penalty is accrued whenever there
is a difference between the ground truth and CRSSANT DG assignments, i.e.
if the two reads have the same DG assignment in the ground truth but are as-
signed to different DGs by CRSSANT, or vice versa. To obtain the mismatch
fraction, the total penalty is normalized by (g), where n is the number of reads
that were successfully assigned to valid DGs using the CRSSANT pipeline. In
the best case, the mismatch fraction is zero.

The second indicator is the fraction of original reads that were not assigned
to a valid DG using the CRSSANT pipeline. Ideally, this fraction is close or equal
to zero, since all reads were assigned to DGs in the ground truth sets. Finally,
the third indicator is the fraction of non-overlapping reads, or the fraction of
reads that are assigned to the same DG that do not share any overlap in either
arm. Because DGs are expected to contain highly similar reads, this number
should be zero for the optimal clustering method. In fact, the cliques method of
clustering DGs always results in zero non-overlapping reads, since every node in
a clique must share an edge with every other node, i.e. each read corresponding
to a node must overlap every other read more than t,.

The optimal clustering method and corresponding optimal parameter(s) were
chosen to be those for which the fraction of non-overlapping reads equals zero,
and the sum of the mismatch fraction and the fraction of unassigned reads—a
quantity we refer to as the clustering score—is minimized. Read set statistics,
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optimal clustering method and parameters, mismatch fraction and fraction of
unassigned reads are reported for each dataset in Table 2. The full set of results
for DG clustering experiments is recorded in Additional file 1.

For optimal clustering parameters (Additional file 1, bold rows), the cluster-
ing score ranges from 0 in the case of snRNA U5 to 0.36 for RMRP, out of a
maximum clustering score of two (since the clustering score is the sum of two
values with maximum value 1). The perfect clustering score achieved by the DG
clusters in the snRNA U5 dataset is due to the fact that the ground truth DG set
contained only a single DG, as did the optimal spectral clustering. The results
for the Udatac dataset are only slightly larger than 0.

The results further show that optimal clustering method and corresponding
parameters varied from dataset to dataset, and indeed, from gene to gene within
the same dataset. Cliques-finding was the optimal clustering method chosen for
validation sets RMRP, rRNAs 18S and 28S, and snRNAs U4 and U6atac. For
all other validation sets, spectral clustering was chosen as the optimal clustering
method, and the optimal parameters t, and t.;; vary. None of these trends can
be explained by basic dataset attributes, including number of reads, reference
sequence length spanned by the reads, nor the approximate coverage of the val-
idation sets. With six of the 11 validation sets having optimal clustering results
using spectral clustering, we set spectral clustering to be the default CRSSANT
clustering method. Due to consistently good spectral clustering performance
when ngig = 10, we set as default nes to 10. Based on the median of the optimal
parameters for the six validation sets that underwent spectral clustering, we also
set as default t.;; = 5 and ¢, = 0.5. When the cliques-finding method is selected,
the pipeline uses a default value of 0.1 for ¢,. The results for DG clustering using
the default clustering method and parameters are shown in Table 2.

SG structure validation and prediction

After finding the optimal clustering method and parameters for creating DGs,
we tested the SGs assembled from DGs for their potential to base pair and form
stable RNA stems. In addition to the RMRP, RPPH1, rRNA and spliceoso-
mal datasets, we tested an additional set of PARIS reads comprising gapped
reads that mapped to the reference sequence encoding small nucleolar RNA U3
(snoRNA U3, see Table 1). For each of these datasets, there exist sets of struc-
tures based on a variety of structure-probing experimental methods [16, 34, 28,
2,25], which were recorded as individual base pairs (Additional file 5). We used
these known base pair sets to both validate known RNA structures as well as
reveal possible alternative base-pairings.

For all datasets except snoRNA, we assembled SGs from DGs obtained using
the values in Table 2. To assemble SGs from DGs, we filtered out reads having
either arm longer than some p*" percentile arm length threshold and removed
empty SGs, i.e. SGs for which all reads were eliminated. We then tested the
stem formation potential of the RNA sequences spanned by the reads in each SG
using ViennaRNA [20] at each percentile arm length threshold p, as described
in the Methods section. We tested a range of percentile threshold p, ranging
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Non-
Dataset Gene  Reads GT DGs FUR MF overlapping
reads
RMRP RMRP 694 320.06 0.24 171
RPPH1 RPPH1 1,142 30 0.03 0.08 336
rRNA 18S 5,670 266 0.04 0.03 2,538
5.85 252 70.01 0.28 126
28S 3,975 287 0.07 0.01 531
snRNA U2 459 13 0.01 0.06 0
U4 1,899 70 0 3
U6 187 30.01 0.41 5
U5 1,100 10 0 0
Udatac 165 30 0.01 0
Ubatac 99 50.02 0.07 17

Table 2. Duplex group clustering results using default CRSSANT parameters: spectral
clustering under t, = 0.5, neig = 10 and tejg = 5. The number of reads and ground
truth duplex groups (GT DGs) are listed for each dataset. The resultant fraction of
unassigned reads (FUR), mismatch fraction (MF) and number of non-overlapping reads
are also listed.

from 10*" to 90" percentile at 10*" percentile increments. Dataset snoRNA
was tested using both clustering methods over the full range of ¢, and, where
appropriate, ranges of te,. For snoRNA, all clustering parameters and the full
range of percentile thresholds were tested.

We refer to the resultant set of stem structures as CRSSANT SG base pairs,
and compared them to the known base pairs. For each set of CRSSANT SG
base pairs produced at different values of p (and, in the case of snoRNA, at
all possible clustering parameter values), we recorded the following values: arm
cutoff length, the total number of CRSSANT SG base pairs, number of base
pairs that are shared between both the set of known base pairs and the set of
CRSSANT SG base pairs, and the base pair recall (defined as the ratio of shared
base pairs to known base pairs). The percentile threshold p for which the base
pair recall is maximized was recorded as the optimal percentile cutoff, popt. This
rule is used to determine popt, because while it is crucial to maximize the number
of shared base pairs, it is also important to not penalize potentially novel base
pairs, i.e. base pairs that are present in the set of CRSSANT SG base pairs but
not in the known base pair set.

These results are summarized in Table 3. Complete SG base-pair results are in
Additional file 2. The values in Table 3 recorded for snoRNA are those for which
the number of shared base pairs was maximized over all clustering conditions
and percentile thresholds. The CRSSANT SGs were found to generally have a
larger number of base pairs than the known base pair set (Additional file 2,
Additional file 4). However, the recall was found to cover a wide range, from
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arm CRSSANT .
known shared base pair
dataset gene  popt cutoff . SG base .
base pairs . base pairs recall
length
RMRP RMRP 90 38 69 389 23 0.33
RPPH1 RPPHI1 30 24 72 318 2 0.03
rRNA 18S 40 28 477 1,058 110 0.23
5.85 20 24 20 66 7 0.35
28S 40 26 1,495 1,812 340 0.23
snRNA U2 50 21 42 85 17 0.40
U4 90 30 36 49 18 0.50
U6 50 18 29 15 11 0.38
U5 90 25 30 24 22 0.73
Udatac 90 27 21 26 2 0.10
U6atac 60 32 28 35 5 0.18
snoRNA U3 70 25 76 1,193 31 0.41

Table 3. Summary of results for the base pair comparison test. Optimal percentile
cutoff popt and resultant arm cutoff length are reported for each dataset. The number
of known base pairs, the number of base pairs in the CRSSANT SG stems and the
number of base pairs shared between the known base pair and CRSSANT SG sets are
also reported, alongside the base pair recall.

a little under one-tenth for snRNA Udatac to nearly three-quarters for snRNA
U5.

Execution time

CRSSANT is fast and efficient at analyzing PARIS reads data. For all 12 datasets
tested, the DG clustering step of the pipeline took less than four minutes to
complete, and generating all nine SG output files took less than half a minute.

Pipeline execution times under optimal DG clustering parameters are listed in
Table 4.

Discussion

The results of the CRSSANT DG assignment validation tests set the default
parameter values for both clustering methods, and instituted the use of spectral
clustering as the default clustering method. There are two additional motiva-
tions for using spectral clustering as the default clustering method, rather than
cliques-finding. First, the cliques-finding algorithm can be extremely time in-
tensive, depending on the exact conditions of the dataset. We found that in
certain instances, e.g. small nuclear ribonucleic acid spliceosmal RNA U4, the
cliques-finding algorithm was prohibitively slow at certain overlap threshold and
required nearly half an hour to complete (data not shown). In contrast, spectral
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Dataset Gene DG clustering SG generation

[mm:ss] [ss]

RMRP RMRP 00:04 1
RPPH1 RPPH1 00:04 2
rRNA  18S 00:54 19
5.8S 00:01 <1

28S 00:11 19

snRNA U2 00:01 <1
U4 02:40 <1

U6 00:01 <1

Ub 00:23 <1

U4datac <00:01 <1

Ubatac <00:01 <1
snoRNA U3 03:07 20

Table 4. Execution times for running the CRSSANT pipeline on all datasets, separated
into DG clustering and SG generation times.

clustering never required more than four minutes for any combination of clus-
tering parameters. In addition to time constraints, the cliques-finding method
tends to discard more reads than does the spectral clustering method. Ideally,
the pipeline should not discard more reads than are necessary to avoid non-
overlapping reads in the same DG, which we found to be more often achieved
using spectral clustering. Altogether, the variety of results shown in Table 2—
notably, the number of nonzero non-overlapping reads for a number of the
datasets—highlights the fact that although the CRSSANT method is able to
automate otherwise laborious tasks, the user must still apply their own intu-
ition to fine-tune the pipeline’s outputs. As a result, the pipeline is designed for
customization. Users have the option of specifying different clustering param-
eter values. Furthermore, the pipeline checks for non-overlapping reads in all
DGs. Whenever a DG containing non-overlapping reads is created, the pipeline
automatically aborts, and provides general suggestions for improving clustering
performance. These design decisions allow room for the user to interpret the
results and experiment with different clustering settings.

User intuition is also required for interpreting the stem folding test results and
output files. Despite the ease of predicting secondary structure from sequence
alone, it is known that the accuracy of these algorithms is limited at best, espe-
cially with regard to predicting alternative structures [9]. In particular, though
these algorithms are rooted in rigorous thermodynamic or comparative models,
the computational complexity required to execute them often restricts the re-
sults to simplistic conformations. As a result, despite the relatively low number
of shared base pairs between CRSSANT SG stems and known structures, the
large number of novel base pairs in the CRSSANT SG sets demonstrates the
potential for the PARIS assay to discover novel structures and interactions that
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have remained undetected by other means. This is bolstered by the low average
distance between basic CRSSANT SG sets and known stem structures, described
in Additional file 3 and shown in Additional file 4.

The wide variety of p selected as popt in the direct base pair tests further
suggest that it is difficult to choose a good default percentile threshold a priori.
This again implies that the best use of the CRSSANT pipeline may be to discover
novel RNA stem formations by comparing to known base-pairing sets, rather
than de-novo exploration of a completely unknown RNA structure. As a result,
the CRSSANT pipeline outputs, by default, all nine sets of SG files: one SG
base-pairing file, one SG arcs file and one SG auxiliary file for each percentile
threshold ranging from 10 to 90, inclusive, in increments of 10, in order to allow
CRSSANT users to apply their biological intuition to selecting the best SG stem
set for their experimental purposes.

We acknowledge that the tests performed here are rather brute-force, but
given the small volume of manually-curated DG assignment sets in existence and
known structures found to overlap with CRSSANT structures, it is difficult to
perform any kind of bootstrapping. We envision that default pipeline parameters
can be updated as the PARIS method is adopted more widely, and note that
the option to specify different pipeline parameters was built into CRSSANT to
address this very issue.

Altogether, we have shown that the CRSSANT pipeline automates the oth-
erwise laborious tasks of reads clustering and testing the structure-forming ca-
pabilities of gene regions implied by the clusters. However, it is still up to the
user to fine-tune the desired output, and to interpret the biological significance
of what the pipeline produces.

Conclusions

We have presented the CRSSANT analysis pipeline which integrates network
analysis techniques with state-of-the-art RNA structure prediction software in
order to facilitate analysis of PARIS assay data towards the goal of secondary
structure maps of RNA in the form of predicted base pair lists. We validated the
read clustering and stem testing functionalities of CRSSANT against manually-
labeled DG sets and known RNA structures over a range of human gene datasets
including a variety of gene lengths and types. We also verified that CRSSANT’s
computational requirements are reasonable.

We envision CRSSANT to be adopted as the default method of analyzing
PARIS assay data, which is sure to itself be widely adopted as a method of in
vivo elucidation of alternative structure and long-distance interaction formation
in RNA molecules. CRSSANT is designed to not only automate clustering and
structure prediction for the user, but also to streamline downstream analysis
and experimentation. The files output by CRSSANT concisely summarize in-
formation that is crucial to the RNA structural biologist, and are prepared in
file formats commonly used by the structural biology community in order to
facilitate cross-platform analysis. Further improvements on CRSSANT include
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parameter tuning with the help of additional datasetes, adding the ability to an-
alyze extremely large reads datasets with sampling, and implementing methods
to further decrease runtime and improve operation efficiency.

Methods

In this section, we outline the methods of the CRSSANT pipeline, which consist
of the following components: data pre-processing, creating a network representa-
tion of an input PARIS reads set, network clustering, DG analysis, SG analysis
and production of output files.

Data pre-processing

The mapped reads accepted as input to the CRSSANT pipeline are assumed to
be formatted in the SAM file format [19]. In order for the reads to be clustered,
they must be first converted into 4-tuples of read arm start and stop indices.
This is done using the read start position and its CIGAR alignment string, which
encodes the transformations performed on the read during alignment. However,
not all reads are readily converted due to variability in ligation. During the
ligation step in the PARIS method, ligation may occur in two different ways.
Ligation between the 3’ end of the left stem arm and the 5 end of the right
stem arms result in “normal” gapped reads. Ligation may occur at opposite
ends of the stem, between the 5 end of the left arm and the 3’ end of the right
arm, resulting in “chiastic” reads. Due to the ability of RNA to form higher-level
structures between different molecules in addition to intramolecular base-pairing
interactions, chiastic reads may comprise sequences from two different strands
or even genomic regions (i.e. chromosomes).

For simplicity, the CRSSANT pipeline operates on the assumption that all
gapped reads in an input SAM file map to the same genomic region and strand.
This assumption means that only chiastic reads from the same genomic region
and strand are analyzed. Chiastic reads are output by the STAR aligner in a
separate file and impossible to be represented with a single CIGAR string and
read start position. Instead, every chiastic read is represented with two lines per
read, each containing alignment information for the left and right read arms.
The pre-processing module of the CRSSANT pipeline identifies chiastic reads
that have both arms mapped to the same strand in the same genomic region,
and integrates the two pieces of arm mapping information into a single SAM
file line. These integrated lines are then appended to the SAM file containing all
normal, non-chiastic reads. Finally, both normal and chiastic reads are converted
into 4-tuples that can be used in a network representation.
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Fig. 2. Ligation may lead to normal or chiastic gapped reads. A single cross-linked RNA
stem (beige) comprising a left stem arm (LSA) and right stem arm (RSA) may undergo
ligation at either of the stem ends. Ligation between the 3’ end of the left stem arm and
the 5’ end of the right stem arm ultimately lead to a “normal” gapped read (top path).
Reverse transcription of the ligated RNA stem arms produces a complementary DNA
molecule (blue), which is sequenced to produce a read (blue bar). In a normal gapped
read, the read comprises a sequence of nucleotides corresponding to the left read arm—
or left arm sequence (LAS)—followed by a sequence of nucleotides corresponding to
the right read arm—or right arm sequence (RAS). The entire read sequence (white
letters in blue bar) is ordered such that the left arm sequence is 5’ of the right arm
sequence (stem arm directions are indicated by the 5, 3’ pairs). Ligation may also occur
between the 5’ end of the left stem arm and the 3’ end of the right stem arm, resulting
to a “chiastic” gapped read (bottom path). In a chiastic read, the left arm sequence
is ordered 3’ of the reversed right arm sequence. The chiastic read sequence must be
pre-processed in order to undergo the rest of the CRSSANT pipeline.

Network representation of PARIS reads

The reads are transformed into a network representation using the Python pack-
age NetworkX [12]. Each vertex in the network represents a single read. Consider
a pair of reads r1, ro, each with left (1) and right (r) arm start and stop positions
indexed by 0 and 1, respectively. Read ¢ is represented by the 4-tuple of arm
start and stop positions: (a0, @11, @r0, Gir1)-

To determine whether the network vertices representing the read pair 7,7
are connected via an edge, left and right overlaps o;(r1, r2) and spans s;(r1,72),j €
{l,r} of the read pair are calculated. Overlap and span are defined as:

Oj(Tl, 7'2) = min(al,jﬁl, a27j71) — max(al,j’o, ag,j)o)

sj(r1,72) = max(ay,j1,az,5,1) — min(as,j0, az,5,0),

and are depicted in Figure 3.

Note that the ratio of overlap to span is less than or equal to 0 if there is there
is no overlap between arms, and is exactly 1 if the arms overlap completely and
have the same length. An edge is drawn between the vertices representing reads
r1,72 in the network if both left and right overlap ratios o;(ri,r2)/s;(r1,72)
exceed some overlap threshold ¢,. This rule makes intuitive sense from a biolog-
ical perspective: in order to have originated from the same stem structure, two
reads must have at least some overlapping portion in both arms. The sum of the
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Fig. 3. Overlap and span calculation for a pair of reads. Two reads r1 and r2 each
comprising a left and right arm (solid blue bars), share left and right overlaps oy, or,
respectively and left and right spans s;, s, respectively. The arm start and stop posi-
tions of read ¢ are represented by the 4-tuple (ai 1,0, @i,1,1, @i,r,0, Qir1)-

right and left overlap ratios of reads r1,ro is recorded as the weight of the edge
connecting the vertices representing reads.

To decrease graphing time, reads are ordered by all four arm start and stop
positions. For a given read ordering “primary” read—one half of a potential read
pair—is selected, and a “secondary” read—the second half of a potential read
pair—is drawn sequentially from the remaining ordered reads. As long as the
secondary read overlaps the primary read in both arms, the secondary read is
added as a vertex to the network and the next read is selected as a candidate
secondary read. However, once a candidate secondary read is found to share no
overlap with the primary read, the remaining reads in the ordering are skipped,
and reads from the next ordering are considered sequentially. This procedure of
ordered traversals over all ordered reads avoids an exhaustive pairwise search
over non-overlapping reads and increases pipeline efficiency.

We refer to the resulting network comprising the set of vertices V' and the
set of edges F as the weighted reads graph G = (V, E).

Network clustering

The graph comprising all reads typically contains multiple subgraphs of con-
nected components, which each represent groups of overlapping reads that do
not overlap with other groups (i.e., that overlap less than overlap threshold
to). However, the subgraphs themselves may sometimes be further broken down
into distinct clusters of reads that are more similar to each other than they are
to other reads in the subgraph. To account for this possibility, the CRSSANT
pipeline first partitions the weighted reads graph G into subgraphs of connected
components, and then extracts clusters using two possible deterministic cluster-
ing methods: cliques-finding and spectral clustering.

Each method has its benefits and drawbacks. By definition, all vertices in a
clique are fully connected, i.e. each vertex is accessible from every other vertex.
In the biological setting, this can be interpreted as: all reads whose network
representations comprise a clique must overlap in both the left and right arms
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beyond threshold t,. Intuitively, this implies that these reads are all highly simi-
lar, and that the read arm start and stop positions have low variability. Similarly,
the arm start and stop positions of the DG comprising these reads can be ob-
tained with high confidence. However, the requirement of full connectivity also
has the undesirable potential to exclude a large number of reads which could
discard valuable sequencing information. Furthermore, the problem of finding a
maximal clique is often very computationally demanding [5].

Spectral clustering, on the other hand, does not require full connectivity
between all vertices assigned to the same cluster, and thus provides a more
flexible method of grouping vertices in a graph. In addition, it is simple to
implement, can typically be solved efficiently using modern software, and often
outperforms simple clustering algorithms like k-means clustering [32]. However,
implementing spectral clustering depends on carefully choosing heuristics for a
particular problem setting.

In the following subsections, we describe the two clustering methods and rel-
evant parameters. The clustering parameter that is shared by both methods is
the overlap threshold t,, which strongly affects subgraphs and, subsequently, the
final DGs that PARIS reads are clustered into using cliques-finding or spectral
clustering. In general, a large t, results in a larger number of subgraphs con-
taining fewer reads, since the reads must overlap more before an edge is drawn
between their respective nodes. Exactly how the number of subgraphs and their
composition affects the outcome of each clustering method is discussed in each
of the following subsections.

Clustering method 1: Cliques This method, an adaptation of [35], is built
into the core NetworkX library and was used off-the-shelf. It divides each sub-
graph into cliques, or sets of nodes such that all nodes in the set share an edge
with all other nodes. However, this implementation identifies all possible cliques
that exist in the subgraph, meaning that a single read may exist in multiple
cliques. This is in conflict with our goal of matching each read to a single DG.
To deal with this ambiguity, we filter the list of all possible cliques using a greedy
approach: cliques are sorted in descending order based on the number of reads in
each clique, and candidate cliques are kept only if the set of kept cliques do not
contain any of the reads in the candidate clique. The final set of cliques that are
kept are declared to be the DGs. This method tends to discard a large number
of reads, but has the benefit of resulting in DGs with highly similar reads, i.e.
that share significant overlaps in both arms.

Clustering method 2: Spectral clustering The spectral clustering method
of cluster extraction is adapted from the Shi and Malik method described in [32],
which we outline here briefly. For each subgraph G5 = (V;, Es) containing m > 1
vertices, we calculate the m x m dimensional degree matrix D whose components
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d; ; are

deg(v;) ifi=j
dij = .

0 otherwise
Vv; € Gs. The degree deg(v;) of a vertex is the number of times an edge termi-
nates at that vertex. In terms of the PARIS reads, deg(v;) represents the number
of reads overlapping the read represented by v; with overlap ratio exceeding t,.
We also calculate the m x m dimensional unnormalized Laplacian matrix L of
G, as

L=D-A,

where A is the adjacency matrix of Gy with components A; ; = 1., 4,,a;; €
{0,1} indicating whether or not there exists an edge between vertices v; and
v;. In terms of the PARIS reads, A; ; indicates whether or not the sum of the
overlap ratios of both arms of v; and v; exceed t,. With D and L, we solve
the generalized eigenproblem Lv = ADw using an eigengap heuristic based on
the sorted eigenvalues and their corresponding eigenvectors to identify clustering
parameter k, the number of clusters contained within the subgraph.

The eigengap heuristic chooses k such that the first k eigenvalues are “rela-
tively small,” and the gap between the k' eigenvalue A and the (k+1)'" eigen-
value Ag41 is “relatively large.” In practice, the variability of reads assigned to
the same subgraph can result in eigenvalues that are not well separated, mak-
ing it hard to choose the first relatively large eigengap. This choice is further
complicated by the presence of large eigengaps among larger eigenvalues, which
disqualifies decision rules based on a global analysis of all eigenvalues. To address
these challenges, our implementation of the eigengap heuristic considers only the
first meig eigenvalues. Then, the £ — 1 eigengaps are calculated. For each eigen-
gap we calculate what we call an “eigenratio,” i.e. the i*" eigenratio is the ratio
between the i*" eigengap and the median of the preceding i — 1 eigengaps. The
first eigenratio is simply the first eigengap. Finally, k is determined to be one
less than the index of the first eigenratio that exceeds an eigenratio threshold
Leig-

Intuitively, the goal of clustering is to create groups such that the edges
connecting different groups have very low weights, while the edges connecting
vertices within a group have high weight. Note that the Laplacian matrix L may
be thought of as quantifying all edges emanating “out” from vertices, which are
exactly the components that are used as the basis of clustering. Thus, solving the
generalized eigenproblem involving the Laplacian L and identifying the first &k
largest eigengaps may be interpreted as the solution to the principal components
problem of identifying the k& dimensions which provide optimal separation of
vertex groups.

In practice, we observed that PARIS data tended to result in first eigengaps
(the difference between the first and second eigenvalues) that were small, and
whose ratios rarely exceeded tci,. This resulted in a preponderance of k = 0
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or k > 3, even in situations where a human arbiter would have decided on
k = 2. To allow for the possibility of splitting subgraphs into just two DGs,
we added a second component to the eigengap heuristic that first checks if the
magnitude of the second eigenvalue is large (empirically, greater than 1), and
then if the remaining nej; — 2 eigenvalues are much smaller than the second
eigenvalue (empirically, if the median of the remaining eigenvalues is at least
an order of magnitude smaller than the magnitude of the second eigenvalue). If
these conditions are met, then k is set to 2. Once k is chosen, we use the first &k
eigenvectors to perform k-means clustering [15] on the subgraph vertices. Each
resulting cluster is a DG.

Spectral clustering parameters nej; and tejz have opposite effects on DG clus-
tering. A larger number of candidate eigenvalues, neig, results in more eigengaps
considered during execution of the eigengap heuristic. Considering more eigen-
gaps increases the possibility of choosing a larger k, which results in splitting
the subgraph into a larger number of DG clusters, each containing fewer reads.

On the other hand, increasing the eigengap threshold t.;; tends to result in
smaller k£ which, in turn, results in splitting the subgraph into a smaller number
of DG clusters. Each of these clusters will contain more reads than those that
would have otherwise resulted from splitting the subgraph into a larger number
of reads based on a smaller es.

DG analysis

DG filtering After reads are grouped into DGs, the DGs are filtered to remove
low-quality DGs, and to arrive at a final set of DGs. Singleton DGs containing
only a single read are eliminated and the read is excluded from further analysis.
This filtering criterion creates a direct relationship between the graph and clus-
tering parameters t,, Ncig and teig and the final number of DGs and final number
of reads included for subsequent analysis. When the parameters are chosen such
that there are fewer reads allocated to each DG, this increases the possibility
that there exist singleton DGs, and in turn increases the possibility that more
reads are eliminated from later analysis steps.

In addition to eliminating singleton DGs and reads, DGs are also checked for
duplicate reads. If any DG contains only reads that are all identical in sequence,
the reads are deemed to be duplicates. The DG is again eliminated, and the
duplicate reads are excluded from further analysis.

DG attribute calculations After DGs are filtered, various biologically signifi-
cant attributes for each DG are calculated. The attributes are: number of reads,
arm start and stop positions, coverage and non-overlapping group.

Since the PARIS method produces one read per RNA stem structure, the
number of reads in each DG approximately corresponds to the cellular abundance
of the stem structure represented by the DG. Potential DGs with very few reads
may either represent structures with low abundance, or they may be clusters of
reads that were incorrectly mapped due to sequencing errors. Thus, the number
of reads making up a DG are recorded as an important attribute.
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The 4-tuple of DG arm start and stop positions are calculated as the median
of arm start and stop positions of all reads in the DG, and are an approxima-
tion of the gene sequence underlying the reads that engages in stem structure
formation.

The coverage of DG i is defined in [24] to be

g
b
1M

where n; is the total number of reads in DG ¢, n;; is the number of reads whose
left arms overlap the left arm of DG ¢ and n,, is the number of reads whose right
arms overlap the right arm of DG 4. Coverage is a score with range (0, 1], and is an
approximation of how much the genomic region spanned by a DG engages in the
formation of multiple RNA structures. A coverage score equal to the maximum
value of 1 indicates that the genomic region spanned by the DG gives rise to
only one RNA stem structure. On the other hand, a low coverage close to zero
suggests that the genomic region spanned by the DG produces numerous RNA
stem structures, in other words, that the genomic region engages in formation
of multiple alternative RNA stem structures.

Finally, for each DG a non-overlapping group (NG) is calculated. DGs are
assigned to NGs such that there are no overlaps between any of the reads in all
DGs assigned to a given NG. NG assignments allow DGs to be easily viewed
in genomic visualization software, like the popular Interactive Genomics Viewer
[29].

C =

SG analysis

The ultimate goal of clustering PARIS reads is to identify regions of a gene that
undergo base-pairing to form RNA stem structures. In order to identify these
regions, DGs that pass the quality filter are further processed to produce stem
groups (SGs) summarizing the characteristics of the stem structures.

SG assembly The first step is to assemble SGs by filtering from the DGs all
reads that are above a certain length threshold. The filtering process as follows:
all reads from DGs that passed the quality filter are aggregated, and the pt"
percentile arm length is calculated. Then, any read comprising an arm that is
longer than the pt* percentile arm length is discarded.

The SGs are then reviewed to remove any SGs that may have had all reads
eliminated during the reads filtering process.

SG attribute calculations As with DGs, the number of reads in each SG and
SG arm start and stop positions are reported. Since SGs approximate regions
of genes participating in RNA stem structure formation, we additionally use
state-of-the-art RNA folding software to test the stem formation potential of the
regions spanned by SGs. For each SG tested, we report the base pairs composing
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the stem, the number of potential psoralen cross-linking sites, and the length of
the stem.

As with DGs, the number of reads in an SG are recorded. Since a number of
reads may have been removed from the corresponding DG during SG assembly,
it is important to re-calculate the number of reads in all SGs.

Unlike the arm start and stop positions of DGs, those for SGs are calculated
by considering the minimum and maximum arm start and stop positions, respec-
tively. Biologically, reads grouped together in the same SG can be thought of as
randomly digested sections of the same stem structure formed by different RNA
molecules. In other words, each read reveals some valuable information about
the underlying stem structure. As a result, we take the minimum left arm start
position of all reads to be the left arm start position of the SG. Similarly, we
take the maximum right arm stop position of all reads to be the right arm stop
position of the SG. However, the left arm stop and right arm start positions are
not so simple, since in order for the SG arms to hybridize, they must not over-
lap. To account for this fact, plus the possibility of overhanging single-stranded
regions between the arms, we calculate the SG’s left arm stop position to be
the minimum of the maximum of the left arm stop positions and the minimum
of the right arm start positions. Similarly, the SG’s right arm start position is
taken to be the maximum of the maximum of the left arm stop positions and
the minimum of the right arm stop positions.

The potential of the RNA sequences spanned by the arms of the reads mak-
ing up each SG to form a stable RNA stfem structure is tested using the Vi-
ennaRNA software package’s RNAfold method, as outlined in the Methods sec-
tion. RNAfold contains a number of RNA folding test functions, and we use the
fold_compound function because it both allows the setting of hard constraints on
RNA base-pairing consistent with stem formation, and also returns biologically
significant information about the stem. To ensure that ViennaRNA produces
canonical Watson-Crick base-paired stems from the SG’s left and right arm se-
quences without allowing portions of each arm to basepair with themselves, we
set the hard constraints that a base at genomic position 4 in the SG’s left arm
must pair with a base at position j, where i < j, and vice versa for the bases in
the SG’s right arm. Stems with a negative minimum free energy are considered
to be molecularly stable; all other stems are discarded. For the recorded stems,
we save the returned base pairs in the stem (reported using dot-bracket notation
[14]), the estimated minimum free energy of the folded stem and the number of
paired bases in the folded stem as attributes of the SG.

Finally, we also examine the SG arm sequences for the presence of stag-
gered uridine bases and staggered uridine-cytosine base pairs, which are the
preferred substrates for psoralen cross-linking [7]. The number of urdine-uridine
and uridine-cytosine base pairs is also recorded as an SG attribute.

Output files

The CRSSANT pipeline analyzes reads by gene pairs and produces up to five
types of output files for reads overlapping a given gene pair (g1, g2). Gene pairs
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may be either automatically generated from the set of all genes represented by
the reads in the input SAM file, or may be specified individually by the user.
Restricting analysis to a single gene is represented by the gene pair (g1, g1). For
each gene pair, only reads from the input SAM file whose left arms map to ¢;
and whose right arms map to go are analyzed. If reads from the gene pair form
valid DGs that do not contain any non-overlapping reads, the two output files
are produced: a SAM file and a BED file [1]. It is important to check for non-
overlapping reads within the same DG, since the presence of a read left arm
begins downstream of other reads’ right arms in the same DG is invalid—there
is no biological basis for such reads being clustered together and no evidence
that they originated in the same genomic region. As a result, if any DGs contain
non-overlapping reads, DG results are not written to output files.

All reads successfully clustered into DGs that passed the filtering step are
written to the output SAM file. This SAM file is identical to the input SAM
file, with two additional annotations for DGs and NGs. For each read assigned
to DG N, the string DG:i:N is appended to the read line in the SAM file. The
string NG:1i:M is also appended to the read line, where M is the NG to which DG
N belongs. Attributes of these DGs are written to the output BED file which
includes the genomic region of the DG, the DG identification number, coverage,
number of reads, arm start and stop positions and arm lengths.

Next, SG results are checked. If SGs are successfully assembled from the
DGs, i.e., if not all SGs are filtered out after the percentile thresholding step,
an additional three output files are produced: an SG base-pairing file, an SG
arcs file and an auxiliary file containing miscellaneous SG information. The SG
base-pairing and SG arcs files are formatted as BED files, and are intended to
help the user visualize the RNA structures implied by SGs that were successfully
assembled from DGs. The SG base-pairing file specifies arcs for each base pair
in the stems formed by the SGs. The SG arc file specifies arcs between the
centers of each SG’s left and right arms. Finally, the SG auxiliary file contains
all remaining SG attributes that were calulated for each SG, including SG ID
number and coverage of the corresponding SG, number of reads, number of
uridine-uridine and uridine-cytosine base pairs and number of base pairs in the
stem. The SG auxiliary file also contains the minimum, maximum and standard
deviation of each arm’s start and stop positions, a quick summary of the reads
composing each SG.


https://doi.org/10.1101/668491

bioRxiv preprint doi: https://doi.org/10.1101/668491; this version posted June 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20 Irena Fischer-Hwang, Zhipeng Lu, James Zou, and Tsachy Weissman

References

1. Bed format. https://genome.ucsc.edu/FAQ/FAQformat.html, accessed: 2019-04-
08

2. Anger, A.M., Armache, J.P., Berninghausen, O., Habeck, M., Subklewe, M., Wil-
son, D.N., Beckmann, R.: Structures of the human and Drosophila 80S ribosome.
Nature 497(7447), 80 (2013)

3. Aw, J.G.A., Shen, Y., Wilm, A., Sun, M., Lim, X.N., Boon, K.L., Tapsin, S., Chan,
Y.S., Tan, C.P., Sim, A.Y., et al.: In vivo mapping of eukaryotic RNA interactomes
reveals principles of higher-order organization and regulation. Molecular cell 62(4),
603-617 (2016)

4. Batey, R.T., Rambo, R.P., Doudna, J.A.: Tertiary motifs in RNA structure and
folding. Angewandte Chemie International Edition 38(16), 2326-2343 (1999)

5. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques.
Theoretical Computer Science 407(1-3), 564-568 (2008)

6. Cech, T.R., Steitz, J.A.: The noncoding RNA revolution—trashing old rules to forge
new ones. Cell 157(1), 77-94 (2014)

7. Cimino, G.D., Gamper, H.B., Isaacs, S.T., Hearst, J.E.: Psoralens as photoactive
probes of nucleic acid structure and function: organic chemistry, photochemistry,
and biochemistry. Annual review of biochemistry 54(1), 1151-1193 (1985)

8. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
Chaisson, M., Gingeras, T.R.: STAR: ultrafast universal RNA-seq aligner. Bioin-
formatics 29(1), 15-21 (2013)

9. Eddy, S.R.: How do RNA folding algorithms work? Nature biotechnology 22(11),
1457 (2004)

10. Guil, S., Esteller, M.: RNA-RNA interactions in gene regulation: the coding and
noncoding players. Trends in biochemical sciences 40(5), 248-256 (2015)

11. Gutell, R.R.: Comparative studies of RNA: inferring higher-order structure from
patterns of sequence variation. Current Opinion in Structural Biology 3(3), 313—
322 (1993)

12. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.)
Proceedings of the 7th Python in Science Conference. pp. 11 — 15. Pasadena, CA
USA (2008)

13. Helwak, A., Kudla, G., Dudnakova, T., Tollervey, D.: Mapping the human miRNA
interactome by CLASH reveals frequent noncanonical binding. Cell 153(3), 654—
665 (2013)

14. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L..S., Tacker, M., Schuster,
P.: Fast folding and comparison of RNA secondary structures. Monatshefte fiir
Chemie/Chemical Monthly 125(2), 167-188 (1994)

15. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical
learning, vol. 112. Springer (2013)

16. Jaouad, I.C., Laarabi, F.Z., Elalaoui, S.C., Lyonnet, S., Henrion-Caude, A., Sefiani,
A.: Novel mutation and structural RNA analysis of the noncoding RNase MRP
gene in cartilage-hair hypoplasia. Molecular syndromology 6(2), 77-82 (2015)

17. Kudla, G., Granneman, S., Hahn, D., Beggs, J.D., Tollervey, D.: Cross-linking,
ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Pro-
ceedings of the National Academy of Sciences 108(24), 10010-10015 (2011)

18. Lander, E.S., Waterman, M.S.: Genomic mapping by fingerprinting random clones:
a mathematical analysis. Genomics 2(3), 231-239 (1988)


https://doi.org/10.1101/668491

bioRxiv preprint doi: https://doi.org/10.1101/668491; this version posted June 12, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Cross-linked RNA Secondary Structure Analysis using Network Techniques 21

19. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., Durbin, R.: The sequence alignment/map format and SAMtools.
Bioinformatics 25(16), 2078-2079 (2009)

20. Lorenz, R., Bernhart, S.H., Zu Siederdissen, C.H., Tafer, H., Flamm, C., Stadler,
P.F., Hofacker, I.L.: ViennaRNA package 2.0. Algorithms for Molecular Biology
6(1), 26 (2011)

21. Lu, Z., Chang, H.Y.: Decoding the RNA structurome. Current opinion in structural
biology 36, 142-148 (2016)

22. Lu, Z., Chang, H.Y.: The RNA base-pairing problem and base-pairing solutions.
Cold Spring Harbor perspectives in biology 10(12), a034926 (2018)

23. Lu, Z., Gong, J., Zhang, Q.C.: PARIS: Psoralen analysis of RNA interactions
and structures with high throughput and resolution. In: Gaspar, I. (ed.) RNA
Detection, pp. 59-84. Springer (2018)

24. Lu, Z., Zhang, Q.C., Lee, B., Flynn, R.A.; Smith, M.A., Robinson, J.T., Davi-
dovich, C., Gooding, A.R., Goodrich, K.J., Mattick, J.S., et al.: RNA duplex map
in living cells reveals higher-order transcriptome structure. Cell 165(5), 12671279
(2016)

25. Marz, M., Stadler, P.F.: Comparative analysis of eukaryotic U3 snoRNA. RNA
biology 6(5), 503-507 (2009)

26. Mathews, D.H.: Revolutions in RNA secondary structure prediction. Journal of
molecular biology 359(3), 526-532 (2006)

27. Nguyen, T.C., Cao, X., Yu, P., Xiao, S., Lu, J., Biase, F.H., Sridhar, B., Huang,
N., Zhang, K., Zhong, S.: Mapping RNA-RNA interactome and RNA structure in
vivo by MARIO. Nature communications 7, 12023 (2016)

28. Patel, A.A., Steitz, J.A.: Splicing double: insights from the second spliceosome.
Nature reviews Molecular cell biology 4(12), 960 (2003)

29. Robinson, J.T., Thorvaldsdéttir, H., Winckler, W., Guttman, M., Lander, E.S.,
Getz, G., Mesirov, J.P.: Integrative genomics viewer. Nature biotechnology 29(1),
24 (2011)

30. Sharma, E., Sterne-Weiler, T., OHanlon, D., Blencowe, B.J.: Global mapping of
human RNA-RNA interactions. Molecular cell 62(4), 618-626 (2016)

31. Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., DAmbrogio, A.,
Luscombe, N.M., Ule, J.: hiCLIP reveals the in vivo atlas of mRNA secondary
structures recognized by Staufen 1. Nature 519(7544), 491 (2015)

32. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17(4),
395-416 (2007)

33. Weeks, K.M.: Advances in RNA structure analysis by chemical probing. Current
opinion in structural biology 20(3), 295-304 (2010)

34. Wu, J., Niu, S., Tan, M., Huang, C., Li, M., Song, Y., Wang, Q., Chen, J., Shi, S.,
Lan, P., et al.: Cryo-EM structure of the human ribonuclease P holoenzyme. Cell
175(5), 1393-1404 (2018)

35. Zhang, Y., Abu-Khzam, F.N.; Baldwin, N.E., Chesler, E.J., Langston, M.A., Sam-
atova, N.F.: Genome-scale computational approaches to memory-intensive applica-
tions in systems biology. In: SC’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing. pp. 12-12. IEEE (2005)

36. Ziv, O., Gabryelska, M.M., Lun, A.T., Gebert, L.F., Sheu-Gruttadauria, J., Mered-
ith, L.W., Liu, Z.Y., Kwok, C.K., Qin, C.F., MacRae, I.J., et al.. COMRADES
determines in vivo RNA structures and interactions. Nature methods 15(10), 785
(2018)


https://doi.org/10.1101/668491

