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Abstract 

Background: Chronic low back pain (CLBP) is characterized by an alteration in pain processing by the 

central nervous system that may affect autonomic nervous system (ANS) balance. Heart rate variability 

(HRV) reflects the balance of parasympathetic and sympathetic ANS activation. In particular, respiratory 

sinus arrhythmia (RSA) solely reflects parasympathetic input and is reduced in CLBP patients. Yet, it 

remains unknown if non-invasive brain stimulation can alter ANS balance in CLBP patients. 

Objective: To evaluate if non-invasive brain stimulation modulates the ANS, we analyzed HRV metrics 

collected in a previously published study of transcranial alternating current stimulation (tACS) for the 

modulation of CLBP through enhancing alpha oscillations. We hypothesized that tACS would increase 

RSA. 

Methods: A randomized, crossover, double-blind, sham-controlled pilot study was conducted to 

investigate the effects of 10Hz-tACS on metrics of ANS balance calculated from electrocardiogram 

(ECG). ECG data were collected for 2 minutes before and after 40 minutes of 10Hz-tACS or sham 

stimulation. 

Results: There were no significant changes in RSA or other frequency-domain HRV components from 

10Hz-tACS. However, exploratory time-domain HRV analysis revealed a significant increase in the 

standard deviation of normal RR intervals (SDNN) for 10Hz-tACS relative to sham. 

Conclusion(s): Although tACS did not significantly increase RSA, we found in an exploratory analysis 

that tACS modulated an integrated HRV measure of both ANS branches. These findings support the 

further study of how the ANS and alpha oscillations interact and are modulated by tACS. 

 

 

Keywords: Low back pain, autonomic nervous system, heart rate variability, Transcranial alternating 

current stimulation  
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Introduction 

 

Chronic pain is a severe, disabling condition that affects 25-30% of the population in the United 

States (1) and treatment options are limited (2). While opioid therapy has shown short-term 

efficacy in decreasing pain, few studies have investigated its long-term effectiveness (3) and 

systematic reviews identify multiple severe risks of long-term use, including: misuse, 

abuse/dependence, overdose, and death (3,4). Chronic low back pain (CLBP) is the second most 

prevalent cause of disability in adults in the US (5). The poor rates of recovery (58% at 1 month) 

and high rates of recurrence (73% in 12 months) contribute to high social and economic costs 

(6). 

 

CLBP often persists without clear peripheral pathology (peripheral injury may trigger but does 

not sustain CLBP) and the mechanism of pain development is not fully understood (7). In CLBP, 

the relationship between nociception and pain is often weak or lost indicating abnormal 

integration (8), which points to an alteration in pain processing by the central nervous system 

(9,10). CLBP stems from dynamic interactions between sensory and contextual (i.e., cognitive, 

emotional, and motivational) processes in the brain that are mediated by feed-forward and 

feedback processes (8). Recent neurobiological investigations support the crucial role of the 

brain within chronic pain development by showing substantial structural, physiological, and 

metabolic changes (8) including autonomic nervous system (ANS) balance (11). The ANS 

controls a range of vital involuntary physiological functions, such as regulating blood pressure, 

temperature, and heart rate at rest and in response to stressors (12). Regulatory ANS function can 

be quantitatively assessed by the analysis of the heart rate variability (HRV), which is the 
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variation in time between successive heartbeats. HRV is composed of input from the excitatory 

sympathetic and inhibitory parasympathetic nervous system as well as baroreceptors and vagal 

tone. When HRV is deconstructed through signal processing, it is possible to quantify rhythmic 

components that reflect specific pathways of the ANS neural regulation. The most salient 

components are a respiratory oscillation known as respiratory sinus arrhythmia (RSA)(13) and 

low-frequency (LF) components assumed to be related to blood pressure regulation via the 

baroreceptors and peripheral vasomotor activity (14,15). 

 

Pain signal regulation is a normal part of the defensive response mediated by the nervous system. 

The body reacts to illness by activating and sensitizing afferent nociceptive neurons (16). In the 

case of chronic pain, this process may trigger hyperarousal of the sympathetic nervous system 

(17). Based on the Polyvagal theory (18,19), an evolutionary neurophysiological model of the 

autonomic response to safety and threat, chronic maintenance of threat responses can lead to a 

compromised functional state (20). These chronic systemic functional problems are reflected in 

the regulation of the heart by the most rapidly responsive component of the nervous system, the 

ventral vagal complex, as measured by RSA (19). Previous studies have targeted the reduced 

RSA using biofeedback interventions, and HRV components have been used to measure the 

efficacy of chronic pain therapies (21–24). Yet, little is known if targeting network pathologies 

by non-invasive brain stimulation can influence ANS balance in patients with CLBP. 

 

We performed a randomized, crossover, double-blind, sham-controlled clinical trial to 

investigate the effect of transcranial alternating current stimulation (tACS), which is a form of 

non-invasive brain stimulation that applies weak sine-wave electrical current to the scalp and can 
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modulate oscillatory brain network activity (25–27), in patients with CLPB. In a separate 

publication, we reported that tACS enhanced impaired alpha oscillations and that pain relief 

correlated with the stimulation-induced increase in alpha oscillations in patients with CLBP (28). 

We hypothesized that tACS would increase RSA, and therefore reduced CLBP, based on 

previous findings that patients with CLBP show pathologically reduced RSA compared to 

healthy controls (29–34).  
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Methods 

 

Participants 

The inclusion criteria were as follows: (1) age between 18 and 65; (2) diagnosis of chronic low 

back pain by a clinician; (3) pain for at least 6�months; (3) an average daily pain rating ≥4 as 

measured by a 0-10 numeric rating scale (NRS); (4) no history of neurologic or psychiatric 

conditions and no current unstable medical conditions; (5) no contraindications to tACS; and (6) 

no current pregnancy. The study was approved by the Biomedical Institutional Review Board of 

University of North Carolina at Chapel Hill and registered on clinicaltrials.gov (NCT03243084). 

Participants were recruited from local pain and physical therapy clinics, as well as the University 

listserv email and a recruitment website (jointheconquest.org). Participation consisted of two 

sessions and two follow up emails after a telephone screening determined initial eligibility. 

Participants also met criteria for low depression (total score <17) and suicide risk as defined by 

the Hamilton Depression Rating Scale (35) (suicide question score <2). 

 

Study Design 

We conducted a randomized, crossover, double-blind, sham-controlled trial. Participants 

received both 10Hz-tACS and active sham stimulation in a randomized and counter-balanced 

order with a separation of at least one week between sessions. Each stimulation session was 

preceded and followed by ECG, clinical assessments, and electroencephalogram (EEG). 
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Brain Stimulation 

We applied 10Hz-tACS via three silicone-carbon electrodes on the scalp with Ten20 conductive 

paste (Bio-Medical Instruments, Clinton Township, MI) and the XCISTE 100 stimulator 

(Pulvinar Neuro, Chapel Hill, NC). The two stimulation electrodes (5x5cm) were placed at F3 

and F4 according to the 10-20 international coordinate system (Figure 1). Stimulation montage 

and modeling of electric field distribution were calculated by the tES LAB 1.0 software 

(Neurophet Inc., Seoul, South Korea). The return electrode (5x7cm) was placed slightly below 

Pz. The two stimulation electrodes each delivered an in-phase sinusoidal waveform with 1mA 

zero-to-peak amplitude. Stimulation ramped up and down for 10 seconds. For active 10Hz-tACS, 

the stimulation lasted for 40 minutes. Sham stimulation was identical to active, except that 

stimulation only lasted for one minute. All participants completed the 10Hz-tACS and sham 

stimulation for 40 minutes on a different day. There was a required gap of at least 7 days 

between the two sessions to reduce carry-over effects (14.4 days ± 6.5). Five-digit codes were 

used to ensure that study coordinators were blind to the stimulation condition. During 

stimulation, all participants were seated comfortably and watched Reefscapes (Undersea 

Productions, Queensland, Australia), whichdisplays tropical fish in underwater scenes, to 

minimize the phosphenes induced by stimulation. Participants were asked to stay relaxed, watch 

the video, and keep their eyes open.  

 

Clinical Assessments 

Participants completed a battery of baseline surveys including demographics, handedness, State-

Trait Anxiety Inventory (STAI) (Trait-version)(36), Behavioral Inhibition and Activation Scales 

(BIS/BAS)(37,38), and pre-treatment opinion on the likelihood of pain improvement (0-10 
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numeric rating scale). Other self-report baseline measures included the Pain Catastrophizing 

Scale (PCS)(39,40), Depression Anxiety Stress Scales (DASS-21)(41), UCLA Activity 

Score(42), and Pain Self‐efficacy Questionnaire (PSEQ)(43), which assessed pain experience, 

depression levels, physical activity limitations, and confidence in daily activities respectively. 

Pain severity and disability were assessed both prior to and after receiving stimulation. The pain 

scale utilized was an 11 point NRS (0-10) that includes word and facial descriptions and is part 

of the previously validated Defense and Veterans Pain Rating Scale (DVPRS) (44). The DVPRS 

was a repeated measure completed at the beginning and end of both sessions and a two-day 

follow up email. It also includes domain specific questions about pain interference in activity, 

mood, sleep, and stress in the last 24 hours (answered at session beginning and follow up only). 

Disability was measured by the Oswestry Disability Index (ODI) (45,46), a back pain specific 

assessment measuring perception of disability. The ODI was another repeated measure that was 

completed at the beginning of each session and at follow-up. A pressure pain threshold (PPT) 

test using the Wagner FDX Algometer (Wagner Instruments FDX-25, Greenwich, Connecticut) 

was assessed to help quantify and document levels of pain sensitivity via pain tolerance 

measurement. PPT was assessed before and after stimulation at the right brachioradialis and right 

sacroiliac joint (47). The participant was instructed to inform the assessor when they first 

perceived a sensation of pain. The amount of pressure in pounds (lb) that constituted the pain 

sensation was recorded. This process was repeated three times bilaterally at each site and the 

average of these measures was used in the data analysis. The test-retest reliability of PPT 

measurements has been established in previous studies. (48,49). 
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Data Collection and Analysis 

ECG data were collected with the Physio16 input box (Geodesic EEG System, EGI Inc., Eugene, 

OR) at a sampling rate of 1kHz. HRV components were extracted from ECG data (14,50) to 

evaluate changes in neural regulation of the ANS before and after intervention. We placed two 

disposable snap electrodes below the right collarbone and left inferior costal arch. Inter-beat 

intervals (IBI), which is the time between consecutive heartbeats expressed in milliseconds, were 

derived from detected R peaks in ECG data. The R peaks were extracted using the Cardio Peak-

Valley Detector (CPVD) (51) and the IBI event series were obtained. The unedited IBI file was 

visually inspected and edited offline with CardioEdit software (developed in the Porges 

laboratory and implemented by researchers trained in the Porges laboratory). Editing consisted of 

integer arithmetic (i.e., dividing intervals between heart beats when detections of R-wave from 

the ECG were missed or adding intervals when spuriously invalid detections occurred). The 

resulting normal RR intervals were used in analysis when abnormal beats, like ectopic beats 

(heartbeats that originate outside the right atrium’s sinoatrial node) have been removed. (52). 

HRV time and frequency components were calculated with MATLAB and CardioBatch software 

(Brain-Body Center, University of Illinois at Chicago), respectively. For HRV time components, 

the average of normal RR intervals (meanRR), the standard deviation of normal RR intervals 

(SDNN), and the root mean square differences of successive RR intervals (RMSSD) were 

calculated using custom-built scripts in MATLAB. For HRV frequency components, RSA was 

calculated using CardioBatch software, which implements the Porges-Bohrer metric (50). This 

metric is neither moderated by respiration, nor influenced by nonstationarity, and reliably 

generates stronger effect sizes than other commonly used metrics of RSA (steps are described in 

depth in (53) and validated in (50). To derive the other HRV frequency components (LF, and 
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LF/HF), the IBI event series was resampled at 2 Hz to generate an equally spaced intervals time 

series. RSA and LF were calculated based on the Porges-Bohrer method (53,54); RSA uses a 

third-order, 21 point moving polynomial filter (MPF) applied to the 2 Hz IBI time series to 

remove low frequency oscillations and slow trend. The residual detrended output of the MPF 

was filtered with a Kaiser FIR windowed filter with cut-off frequencies that removes variance 

not related to spontaneous breathing in adults (0.12 to 0.40 Hz). The filtered detrended output 

was divided into sequential 30-second epochs and the variance within each epoch was 

transformed by a natural logarithm (ln(ms2)), the mean of these epoch values was used as the 

estimate of RSA for the specific segment. LF uses a third-order, 51 point moving polynomial 

filter (MPF) applied to the 2 Hz IBI trend to remove extremely low frequency oscillations and 

slow trend. The residual detrended output of the MPF was filtered with a Kaiser FIR windowed 

filter with cut-off frequencies (0.04 to 0.10 Hz). The filtered detrended output was divided in 30 

second epochs and the variance within each epoch was transformed with a natural logarithm 

(ln(ms2)), the mean of the epochs values was used as an estimate of LF for the segment(55). 

These variables included:1) respiratory sinus arrhythmia (i.e., RSA or high frequency HRV 

defined by the frequencies of spontaneous breathing (.12-.4 Hz), 2) low frequency HRV (i.e., 

occurring within the frequencies of spontaneous vasomotor and blood pressure oscillations; .06-

.10 Hz), and 3) ratio of LF and HF (LF/HF) 

 

Statistical Analyses 

All statistical analyses were performed using custom-built scripts in R (R Foundation for 

Statistical Computing, Vienna, Austria). All analyses were run on the difference of data before 

and after stimulation (post - pre) after taking the natural logarithm (within Porges-Bohrer 
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method). A two-way repeated-measures ANOVA was run with a factor for the stimulation 

condition (10Hz-tACS vs. sham) and session (first vs. second) for all other HRV components.  

The session factor was included to control for non-specific effects that the session order might 

induce.  
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Results 

 

Demographics 

The consort diagram is presented in Figure 2 (28). Twenty of the twenty-one participants 

recruited completed the study. Eighty percent of participants reported CLBP with a duration of 

greater than two years (Table 1). The most common previous treatment reported included the use 

of NSAIDs, physical or aquatic therapy, alternative treatments, and low impact exercise such as 

yoga. All participants reported trying at least two previous treatment options. Full demographics 

are reported in Table 1.  

 

RSA and HRV components  

The HRV frequency-domain components followed normal distribution as defined by the Wilks-

Sharpiro test (p>.05). RSA was analyzed using a two-way repeated-measured ANOVA of 

condition (10 Hz-tACS and sham) and session (first visit and second visit). In this analysis the 

interaction of condition and session was considered to represent a sequence effect if present. For 

RSA we found no significant main effect for condition (F1,35 = 1.01, p =0.32), session (F1,35 = 

0.33, p = 0.57), or sequence (F1,35 = 0.66, p = 0.42) (Figure 3A, left panel). We ran the same two-

way repeated-measures ANOVA for LF and LF/HF. We found no significant effects of condition 

(F1,35=1.56, p=0.22), session (F1,35=2.91, p=0.10), or sequence (F1,35 = 1.44, p = 0.24) for LF nor 

did we find significant effects of condition (F1,35=0.14, p=0.72), session (F1,35=2.63, p=0.11), or 

sequence (F1,35 = 0.84, p = 0.37) for LF/HF (Figure 3A, middle and right panels). In the time-

domain analyses, we found a trending significant main effect of condition for meanRR 

(F1,35=2.92, p=0.096) but not session (F1,35=0.012, p=0.91) or sequence (F1,35=0.11 p=0.74; 
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Figure 3B, left panel). For the standard deviation of normal RR intervals (SDNN), we found a 

significant main effect of condition (F1,35=5.34, p=0.027), but not session (F1,35=0.00, p=0.999) 

or sequence (F1,35=0.29, p=0.59; Figure 3B, middle panel). Post-hoc paired t-tests yielded a 

significant SDNN increase in the 10Hz-tACS condition (t19=2.07, p=0.05). We found no 

significant difference in RMSSD for condition (F1,35=2.59, p=0.12), session (F1,35=0.16, p=0.69), 

or sequence (F1,35=0.02, p=0.88; Figure 3B, right panel). These findings suggest that tACS 

modulated total HRV (both sympathetic and parasympathetic input) in patients with CLBP. 

Values for the pain and HRV metrics are presented in Table 2. 

 

HRV Correlation to Pain  

To investigate the presence of a relationship between baseline RSA and pain level, we calculated 

the Pearson correlation for the pre-stimulation time point (Table 3A). Neither RSA nor SDNN 

measures correlated with baseline pain level, ODI, or PPT (Table 3A). We also investigated the 

change in RSA and SDDN with pain, ODI, and PPT change. We found neither RSA nor SDNN 

correlated with pain, ODI, and PPT change (Table 3B). 

 

Responders 

Responders in this study are defined by participants who had a decrease of two points or more on 

the DVPRS (11 point NRS) after stimulation, which indicates the minimal clinically important 

difference (MCID) in CLBP based on previously reported findings (56). Twice as many 

participants reported being a responder (>2 decrease in pain scale) in the 10Hz-tACS versus the 

sham condition (8 of responders in 10Hz-tACS vs. 4 of responders in sham). A chi-square test of 

independence was performed to examine the relation between stimulation condition and being a 
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responder. The relation between these variables did not reach statistical significance, χ² (2, N = 

2) = 14.14, p =0.15, with a high Odd’s Ratio (OR=2.67).  

 

Blinding and Side Effects 

Participants were asked how sure they were of having received stimulation on a visual analog 

scale (0-100). A t-test was used to analyze confidence in stimulation. There was no significant 

difference between conditions (t(36.74)=1.38, p=0.18), therefore blinding was considered 

successful. All participants completed a side-effect questionnaire after both sessions and there 

were no significant differences in any of the queried potential side-effects between active 10Hz 

and sham conditions (Table 4). 
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Discussion 

 

In this study, we investigated how non-invasive brain stimulation (10Hz-tACS) alters ANS 

balance measured with RSA and how these metrics correlated with the level of pain and other 

self-report characteristics. Contrary to our hypothesis, we found that there was no effect of 10Hz-

tACS on RSA. Previous studies using transcranial direct current stimulation increased RSA in 

healthy participants (57,58). However, we found a significant increase in SDNN for 10 Hz-tACS 

relative to sham. Our exploratory analyses to find a relationship between baseline RSA and pain 

severity did not show any significant correlations in agreement with previous findings that 

included no intervention (59).  

 

While both sequences had a similar tACS effect on RSA (Figure 2A, left panel), we found a 

trending effect of greater RSA in the tACS condition compared to sham before the intervention 

at both sessions (Figure 4, F1,36=3.105, p=0.08). This finding may have limited the potential 

influence that 10Hz-tACS had on RSA as there was less potential for an intervention to increase 

RSA due to ceiling effects (60). Previous evidence suggests that there is an optimal range for 

RSA based on breathing rate and vagal input (19). Furthermore, most HRV intervention studies 

including biofeedback training with a slow controlled breathing rate or meditation (61) and HRV 

changes are measured throughout a longer duration with daily sessions for six weeks (22,24,62). 

RSA adapts quickly due to both internal and external perturbations (20), therefore  a treatment to 

create a lasting effect needs to be consistent, such as structured resonance breathing training 

daily (61). 
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Within our time-domain analysis, 10Hz- tACS had a significant effect on SDNN. The time 

domain analysis reports the activity of the cardiac system (63), which may in turn broadly reflect 

ANS balance (12). SDNN is a commonly used parameter for the measurement of total HRV and 

represents the overall variability of both sympathetic and parasympathetic inputs to the heart 

(64). Many studies within chronic pain have found decreased SDNN within clinical populations 

compared to healthy controls (12) and HRV suppression has been correlated with pain severity 

or disability perception (59,65,66). One study (67) measured SDNN in patients with spinal cord 

injury (SCI) with and without neuropathic pain and found significant lower resting SDNN in SCI 

patients with pain compared to SCI without pain and healthy controls. Since SDNN includes 

input from both the parasympathetic and sympathetic input, few conclusions on the increase of 

specific ANS branches can be drawn (12), but SDNN has been hypothesized to provide objective 

quantification of analgesic response to pain treatment (67). Therefore, increasing overall HRV 

(SDNN) may be beneficial in patients with CLBP, and HRV intervention studies have shown 

increases in total HRV (24). Our findings thus suggest that SDNN may be a better target than 

RSA, at least for a single session of 10Hz-tACS. 

 

Previous studies, which investigated non-invasive brain stimulation interventions in chronic pain, 

have shown promising, but varied results (57,58,68–70). Most of these studies have focused on 

transcranial direct current stimulation and transcranial magnet stimulation. Given our findings of 

successful target engagement of alpha oscillations that correlated with clinical pain improvement 

as reported in our previous paper (28), tACS has the potential to provide a safe, scientifically-

supported, low-cost treatment option.  However, more research utilizing tACS is needed to 

replicate our results and further dissect the underlying mechanism(s). Our detailed 
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characterization (Tables 1 and 2) of the patient population provided here can be used to inform 

the planning of future tACS studies including the use of power calculations to inform sample 

size and measures collected.  

 

As with any scientific study, the work presented here has limitations. First, this was a pilot study 

and thus not designed to establish statistical significance for small effect sizes. Our within-

subject design increased our statistical power and is a strength considering large between-subject 

variation in many HRV components (71). Nevertheless, all statistical results should be 

interpreted cautiously given the small sample size. Second, we did not collect medication and 

lifestyle information unrelated to pain, such as antihistamines or caffeine use, both of which have 

been shown to influence HRV, albeit the within-subjects design should reduce impact of external 

factors (71). Third, we only analyzed two minutes of ECG data for HRV analysis following other 

studies in the field (72,73). However, the current gold standard for HRV recordings is at least 

five minutes (74) and our study may have benefited from longer recordings. Fourth, our 

crossover study design only allowed for one session of active stimulation. TACS may have an 

additive effect on modulating oscillations if a design with multiple sessions were used (75,76).  

 

Future studies involving multiple stimulation sessions are the next steps since recurring 

stimulation sessions are likely needed to produce perceptible and lasting clinical effects due to 

presumed underlying mechanisms that appear to be related synaptic plasticity (77). Several 

studies have investigated non-invasive brain stimulation techniques in patients with chronic pain, 

but treatment effects vary across the studies, and typically only clinical outcomes are reported. 

We aimed to identify objective biological targets using EEG and ECG to better understand the 
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action of 10Hz-tACS and the role of the ANS in chronic pain. Our results presented here along 

with those in our previous paper (28) show that brain network dynamics and self-reported pain 

seem to be more sensitive ways than HRV metrics to measure effects of brain stimulation for 

individuals with CLBP. 
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Figure Legends 
 
Figure 1. Stimulation montage and electric field distribution. (A) Electrode E1 and E2 deliver 
1mA (zero-to-peak) in-phase sine-wave. Electrode E3 is used as a return electrode. 
(B) Normalized electric field distribution on the cortex (left: top-view, right: left-view). 
 
Figure 2. Consort (2010) flow diagram. 

Figure 3. HRV changes [ln(post)-ln(pre)] between tACS and sham conditions for (A) 
Frequency-domain HRV components; RSA, LF, and LF/HF and for (B) Time-domain HRV 
components; meanRR, SDNN, and RMSSD. (*:p<0.05, ns: not significant) 
 
Figure 4. Baseline RSA values before stimulation (tACS and sham) in both sessions. 
 

Table Legends  

Table 1. Demographic Information. BMI: Body Mass Index, BIS/BAS: Behavioral Inhibition 
System/ Behavioral Activation System Scale, HamD-17: Hamilton Depression Rating Scale, 
HRV: Heart Rate Variability, LF/HF: ration of Low Frequency to high frequency, Mean RR: 
Mean time between RR (all R peaks) intervals, Baseline refers to the pre-stimulation measures of 
session 1. 
 

Table 2. Pre and Post Stimulation Metrics between Treatment Groups for Primary Pain and all 
HRV Outcome Variables. Each group: N=20 unless otherwise noted. *: n=19, +:n=17. 
 

Table 3. Correlations of HRV Measures (RSA and SDNN) with Pain Measures  
a) Correlations at baseline. Baseline refers to the pre-session measures of session 1., b) 
Correlations for the change (post-pre stimulation) at both sessions. N=20 participants. RSA-
Respiratory Sinus Arrhythmia, SDNN- Standard Deviation of NN intervals, DVPRS- Defense 
and Veterans Pain Rating Scale, PPT- Pressure Pain Threshold, ODI- Oswestry Disability Index, 
ll All Pearson Correlations, all p-values >.10 
 

Table 4. Side Effect Differences Between Conditions. A side effects questionnaire was 
completed after stimulation  at both sessions with 1=absent, 2=mild, 3=moderate, 4=severe. The 
Mean(SD) are reported for both conditions and paired t-tests were used to test for differences 
between groups. (*p<.05). 
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Table 1. Demographic Information. BMI: Body Mass Index, BIS/BAS: Behavioral Inhibition System/ Behavioral Activation 
System Scale, HamD-17: Hamilton Depression Rating Scale, HRV: Heart Rate Variability, LF/HF: ration of Low Frequency to 
high frequency, Mean RR: Mean time between RR (all R peaks) intervals, Baseline refers to the pre-stimulation measures of 
session 1. 
 

Demographics Participants (n=20) 

Age 43.00(13.37) 

Sex, N(%) 

   Male  

   Female 

 

8(40%) 

12(60%) 

Race, N(%) 

   Caucasian  

   African American  

 

18(90%) 

2(10%) 

Ethnicity, N(%) 

   Hispanic/Latino 

   Non-Hispanic/Latino 

 

1(5%) 

19(95%) 

BMI 25.94(4.46) 

Handedness  

   Right 

   Left 

 

18(90%) 

2(10%) 

Time in Pain (years)  

  0-2 yrs, N(%) 

  2-5 yrs  N(%) 

  5+ yrs. N(%) 

7.1(6.0)  

4(20%) 

8(40%) 

8(40%) 

 Previous Treatment, N(%) 

   Physical or Aquatic therapy 

   Opioids 

   Over the counter medications (e.g.,  NSAID) 

   Alternative Treatments (e.g., chiropractor, acupuncture) 

   Surgery 

   Counseling, Cognitive Behavioral Therapy 

   Social support (e.g., chronic pain social group) 

   Low-impact exercise (e.g., yoga, pilates) 

   Mindfulness Intervention 

   Other 

 

13(65%) 

4(20%) 

18(90%) 

13(65%) 

3(15) 

1(5%) 

1(5%) 

13(65% 

3(15%) 

5(25%) 

Self-Report Assessments (Baseline)  

Pre-treatment Opinion on likelihood of pain improvement   (0-10 

NRS, not likely at all to very likely) 

3.75(1.62) 

Defense and Veterans Pain Rating Scale 

    Pain Interference with: 

    Activity 

4.4(1.05) 

 

4.8(1.67) 
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    Sleep 

    Mood 

    Stress 

5.00(2.62) 

4.10(1.68) 

4.35(2.23) 

Oswestry Disability Index 28.52(11.51) 

UCLA Activity score 

    Low, N(%) 

    Medium, N(%) 

    High, N(%) 

5.9(2.29) 

4(20%) 

10(50%) 

6(39%) 

Pain Catastrophizing Scale (PCS) Total 

    Rumination 

    Magnification 

    Helplessness 

15.05(9.78) 

5.8(4.76) 

3.2(2.38) 

6.05(3.65) 

Pain Self Efficacy Questionnaire (PSEQ) Total 37.6(12.14) 

BIS/BAS Scale 

    BAS Drive 

    BAS Fun Seeking 

    BAS Reward Responsiveness 

    BIS 

 

10.3(2.36) 

11.9(1.97) 

17.3(1.95) 

20.3(4.12) 

State-Trait Anxiety Inventory (STAI-Trait) 43.25(10.36) 

Depression and Anxiety Subscale (DASS-21) 15.55(13.34) 

Clinical Assessments (Baseline) 

HAMD-17 8.9(3.46) 

Pressure Pain Threshold (PPT) 

   Brachioradialis (lb)  

   Sacroiliac Joint (lb) 

 

4.8(2.37) 

8.99(3.95) 

HRV Components (Baseline) 

Respiratory Sinus Arrhythmia  (RSA) or High Frequency (HF) 5.45(1.41) 

Low Frequency (LF) 4.84(1.37) 

LF/HF 0.89(0.21) 

Mean RR 899.99(149.04) 

Standard Deviation of RR Intervals (SDNN) 46.56(27.63) 

Root Mean Square of Successive Differences (RMSSD) 41.02(36.58) 
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Table 2: Pre and Post Stimulation Metrics between Treatment Groups for Primary Pain and all HRV Outcome Variables. 
Each group: N=20 unless otherwise noted. *: n=19, +:n=17. 
 

 
 
 
 

 

  

Variable  Time point Treatment Mean(SD) 
DVPRS (self-report 
pain) 

Pre 10Hz-tACS 4.20(1.36) 
Sham tACS 3.95(1.35) 

Post 10Hz-tACS 3.10(1.45) 
Sham tACS 3.45(1.77) 

2 day 
follow-up  

10Hz-tACS# 3.37(1.26) 
Sham tACS+ 3.24(1.31) 

Respiratory Sinus 
Arrhythmia  (RSA) 
or High Frequency 
(HF) 

Pre 10Hz-tACS 5.99(1.35) 
Sham tACS 5.12(1.75) 

Post 10Hz-tACS 5.98(1.04) 
Sham tACS 5.32(1.61) 

Low Frequency (LF) 
 

Pre 10Hz-tACS 5.15(1.56) 
Sham tACS 4.86(1.79) 

Post 10Hz-tACS 5.21(1.08) 
Sham tACS 5.28(1.81) 

LF/HF 
 

Pre 10Hz-tACS 0.85(0.17) 
Sham tACS 0.95(0.25) 

Post 10Hz-tACS 0.87(0.12) 
Sham tACS 1.00(0.25 

Mean RR Pre 10Hz-tACS 879.54(175.50) 
Sham tACS 881.91(126.23) 

Post 10Hz-tACS 851.57(174.90) 
Sham tACS 911.18(151.64) 

Standard Deviation 
of RR Intervals 
(SDNN) 

Pre 10Hz-tACS 40.07(23.46) 
Sham tACS 48.23(30.17) 

Post 10Hz-tACS 48.14(27.03) 
Sham tACS 48.55(28.38) 

Root Mean Square of 
Successive 
Differences 
(RMSSD) 

Pre 10Hz-tACS 34.56(28.29) 
Sham tACS 42.08(36.31) 

Post 10Hz-tACS 39.79(34.54) 
Sham tACS 42.87(37.88) 
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Table 3: Correlations of HRV Measures (RSA and SDNN) with Pain Measures  
a) Correlations at baseline. Baseline refers to the pre-session measures of session 1., b) Correlations for the change (post-pre 
stimulation) at both sessions. N=20 participants. RSA-Respiratory Sinus Arrhythmia, SDNN- Standard Deviation of NN 
intervals, DVPRS- Defense and Veterans Pain Rating Scale, PPT- Pressure Pain Threshold, ODI- Oswestry Disability Index, ll 
All Pearson Correlations, all p-values >.10 
 

 
 

 
 
 

 

Table 4. Side Effect Differences Between Conditions. A side effects questionnaire was completed after stimulation  
at both sessions with 1=absent, 2=mild, 3=moderate, 4=severe. The Mean(SD) are reported for both conditions and paired t-tests 
were used to test for differences between groups. (*p<.05). 
 
Side Effect  10Hz-tACS (N=20) Active Sham (N=20) P-value 

Headache: 1.3(0.67) 1.25(0.52) .815 
Neck pain: 1.25(0.50) 1.35(0.41) .494 
Scalp pain: 1.45(0.6) 1.50(0.6) .716 

Tingling: 2.1(0.65) 1.85(0.76) .204 
Itching: 1.7(0.81) 1.9(0.79) .480 

Ringing/Buzzing Noise: 1.00(0) 1.15(0.49) .186 
Burning sensation: 1.42(0.60) 1.35(0.59) .716 

Local redness: 1.00(0) 1.05(0.22) .330 
Sleepiness: 2.55(0.68) 2.60(0.87) .804 

Trouble concentrating: 1.65(0.92) 1.9(0.94) .287 
Improved mood: 1.45(0.69) 1.15(0.37) .259 

Worsening of mood: 1.10(0.31) 1.15(0.36) .577 
Dizziness: 1.00(0) 1.05(0.22) .330 

Flickering lights: 1.35(0.75) 1.15(0.49) .428 
 

 
 

 

 

Changes (Post-Pre) RSA SDNN 
Pearson p-value Pearson p-value 

DVPRS .080 .643 -.247 .125 
ODI .060 .712 -.060 .737 
Brachioradialis (lb) PPT .102 .530 .224 .164 
Sacroiliac Joint PPT -.058 .720 -.230 .153 

Baseline RSA SDNN 
Pearson p-value Pearson p-value 

DVPRS -.139 .557 .057 .812 
ODI .140 .559 -.169 .477 
Brachioradialis (lb) PPT -.363 .116 -.002 .993 
Sacroiliac Joint PPT -.132 .578 -.127 .592 

A) 

B) 
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Figure 2: CONSORT 2010 Flow Diagram 

 

 

 
Assessed for eligibility (n=41) 

Excluded (n=20) 

   Not meeting inclusion criteria (n=16) 

   Declined to participate (n=4) 

   Other reasons (n=0) 

Analysed  (n=10) 

 Excluded from analysis (give reasons) (n=0) 

Lost to follow-up (give reasons) (n=0) 

Discontinued intervention (give reasons) (n=0) 

Allocated to intervention (n=10): Verum then 

Sham 

 Received allocated intervention (n=10) 

 Did not receive allocated intervention (give 

reasons) (n=0) 

Lost to follow-up (give reasons) (n=0) 

Discontinued intervention (give reasons) (n=0) 

Allocated to intervention (n=11): Sham then 

Verum 

 Received allocated intervention (n=10) 

 Did not receive allocated intervention (n=1). 

Scheduling conflict by participant. 

Analysed  (n=10) 

 Excluded from analysis (n=1). Excluded 

participant who did not receive tACS due to 

scheduling conflict. 

 

Allocation 

Analysis 

Follow-Up 

Randomized (n=21) 

Enrollment 
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