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Abstract The biconcave disk shape of the mammalian red blood cell (RBC) is unique to the RBC and is vital
for its circulatory function. Recent experiments have demonstrated that the biconcave shape of the RBC relies not
only on the physical properties of the membrane but also depends on the molecular constituents of the membrane
cytoskeleton, including the contractile activity of the nonmuscle myosin IIA (NMIIA) motor protein. Here, we use
the classical Helfrich model for the RBC membrane and incorporate heterogeneous force distributions along the
membrane to mimic the contractile activity of NMIIA. We find that the biconcave shape of the RBC depends on
the ratio of forces per unit volume in the dimple and donut regions of the RBC. Experimental measurements of
NMIIA densities at the dimple and donut validate our prediction that (a) membrane forces must be non-uniform
along the RBC membrane and (b) the force density must be larger in the dimple region than the donut region to
produce the observed membrane curvatures. Furthermore, we find that the tension of the RBC membrane plays an
important role in regulating this force-shape landscape. Our findings of heterogeneous force distributions on the
plasma membrane for RBC shape maintenance have implications for shape maintenance of many cell types.
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1-Introduction

Cell shape and function are intricately coupled; cells must maintain specific shapes to migrate, divide normally,
support tissue and organ function [1, 2]. Maintenance or modification of cell shape is a concerted action of the
actomyosin network at the whole cell level that allows for a stable actin network in polarized cells or a rapidly
remodeling actin network for cell spreading and motility [3, 4]. Thus, networks of actin filaments (F-actin) and the
F-actin-activated motor protein non-muscle myosin II (NMII) specify cell shape by exerting force on the plasma
membrane to control membrane tension and curvature [5–8]. Disruption of these actomyosin networks can lead to
dysregulation of cell shape and has been implicated in cancer [9–11], congenital hemolytic anemias [12–14], and
neurodegeneration [15]. Local, nanoscale changes in actomyosin organization can lead to micron-scale changes in
cell shape to support normal cell function [16].

Human red blood cells (RBCs) have a biconcave disk shape, with a central, narrow, dimple region surrounded
by a thicker donut rim [13] (Fig. 1). This shape enables efficient gas and ion exchange and increases RBC de-
formability and resiliency in the circulation [17–19]. Deviations from biconcavity interfere with RBC function in
diseases such as congenital hemolytic anemias [12], sickle cell disease [20], and malaria [21, 22]. Historically,
the biconcave disk shape of the RBC has been modeled as a thin elastic shell using the Helfrich-Canham energy
model [23, 24], treating the RBC as a lipid bilayer. This model, a classic in the field of membrane mechanics, was
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able to explain the observed shape of the RBCs as a one-parameter family of solutions. The biconcave shape is ob-
tained as the minimum energy configuration in response to a specified reduced volume or asymmetry between the
membrane leaflets (termed spontaneous curvature) assuming homogeneous membrane properties across the entire
surface [23–25].

However, the discovery of the molecular constituents of the RBC cytoskeleton has made it clear that the RBC
membrane is not simply a lipid bilayer. It is now known that the biconcave morphology of an RBC is supported by a
2D quasi-hexagonal lattice of short (∼ 37 nm) actin filaments interconnected by long (∼ 200 nm), flexible (α1β1)2-
spectrin heterotetramers [26–28]. The spectrin-F-actin membrane skeleton binds to membrane proteins to maintain
membrane tension, curvature, and mechanical properties of the RBC [17, 18, 27–29]. In addition to the spectrin-
actin network, RBCs contain NMII (predominantly the NMIIA isoform), with biochemical properties similar to
NMII isolated from other cell types [30, 31]. Our recent study [32] demonstrates that in intact RBCs, NMIIA
molecules assemble into bipolar filaments with F-actin-binding motor domains at either end and that NMIIA motor
activity exerts forces on membrane skeleton F-actin to control RBC membrane tension, biconcave disk shape and
deformability (Fig. 1A). These NMIIA filaments are sparsely distributed along the RBC membrane (∼ 0.5 filaments
per square micrometer) [32] and thus would be expected to apply localized forces to the membrane and skeleton,
but this has not been tested.

In this study, we investigated the role of heterogeneous forces in modulating the shape of the RBC. We revisit
the classical Helfrich model and modify it to account for localized forces to represent the NMIIA-generated forces
on the plasma membrane. We test uniformly applied forces and a range of heterogeneously applied forces to
determine the set of distributions that most closely reproduce experimentally observed RBC shapes. Our model
predicts that the best match between simulations and experiments for RBC shapes is obtained when there are two
curvature-dependent force domains – a dimple region with negative curvature and greater forces at the center of
the RBC and a donut region with positive curvature and lower forces at the periphery (Fig. 1B). Experimental
measurements of the NMIIA distribution validated our prediction of non-uniform force distribution; more NMIIA
puncta are found in the dimple region than in the donut. Our model also predicts that membrane tension is a key
determinant of the forces required in the dimple and donut regions, providing a potential design principle for RBC
shape maintenance despite variations in NMIIA puncta localizations.

2-Model development

The RBC membrane is a thin elastic material that can bend but resists stretching. This feature enables the RBC to
deform and adjust its shape in response to applied stresses. Here, we outline the governing equations of our model.
This approach will allow us to predict how the induced surface forces by NMIIA motor activity can regulate the
biconcave morphology of RBCs in mechanical equilibrium. To develop our model and solve it numerically, we
make some assumptions as listed below.

2-1-Assumptions

• We consider that the curvature of the membrane is much larger than the thickness of the bilayer [25]. This
allows us to treat the lipid bilayer as a thin elastic shell and model the bending energy of the membrane by
the Helfrich–Canham energy, which depends only on the local curvatures of the surface [23, 24].

• Due to the high stretching modulus of lipid bilayers, we assume that the membrane is locally incompress-
ible/inextensible [33]. We use a Lagrange multiplier to implement this constraint [34–36].

• We assume that the applied force by the NMIIA motor proteins is local and it is primarily normal to the
membrane (see Fig. 1A) [37, 38]. The tangential contributions from the NMIIA-mediated forces are assumed
to be negligible. This assumption can be justified based on the preferably orthogonal orientation of the short
actin filaments to the erythrocyte membrane in the resting condition [39, 40].

• We assume that the RBC is at mechanical equilibrium at all time scales, allowing us to neglect inertia [41–
43]. This assumption is consistent with the experimentally observed shapes for the resting RBCs in both vivo
and vitro [37, 44].
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Figure 1: Interaction of the membrane and cytoskeleton controls the shape of the RBC. (A) Schematic depiction
of the biconcave disk shape of an RBC plasma membrane and the cytoskeleton underneath. The effect of NMIIA
filaments (shown in green) is modeled by local forces applied to the plasma membrane (red and gray arrows). (B)
Two distinct regions are identified in a biconcave RBC – the dimple region and the donut region. In the dimple
region (blue cylinder), each RZ cross-section of the shape has a negative curvature along its arclength. In contrast,
in the donut, the curvature of each RZ section is positive along the arclength. (C) The geometry of a simulated
RBC in axisymmetric coordinates and the three characteristic length scales that represent the biconcave shape of
the RBC. 2hmin is the minimum height at the dimple, 2hmax is the maximum height at the rim, and 2L denotes the
cell’s maximum diameter. The dotted red curve shows the computational domain for our mechanical model.

• We assume that the total surface area of the RBC membrane is constant (∼135 µm2) [45, 46].

• For simplicity in the numerical simulations, we assume that the RBC is rotationally symmetric and also has
a reflection symmetry with respect to the Z = 0 plane (see Fig. 1C) [24, 45, 47, 48]. This assumption reduces
the computational cost of the simulation into just one curve as shown by the red dotted line in Fig. 1C.

2-2- Membrane mechanics

In mechanical equilibrium, the RBC shapes can be obtained as the result of minimization of the membrane bending
energy including the applied forces by the cytoskeleton and the given physical constraints such as a local surface
incompressibility condition. Here, to model the bending energy of the membrane, we use the Helfrich-Canham
energy, defined by [23, 24, 34, 49–51],

W (H,K, θα) = κH(θα)2 + κGK(θα), (1)

where W is the energy density per unit area, θα denotes the surface coordinate where α ∈ {1, 2}, H(θα) is the
local mean curvature, and K(θα) is the local Gaussian curvature. κ and κG are constants representing the bending
and Gaussian moduli respectively [52]. To minimize the bending energy (Eq. 1) and obtain the RBC shapes from
simulations under the action of local forces, we used the variational approach which yields the so-called “shape
equation” [49, 50],
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∆[κH] + 2κH(H2 −K)︸ ︷︷ ︸
Elastic effects

= p+ 2λH︸ ︷︷ ︸
Capillary effects

+ F︸︷︷︸
Force due
to skeleton

, (2)

where ∆ is the surface Laplacian (also known as the Beltrami operator), p is the pressure difference across the
membrane, λ is the membrane tension, and F is the force density (force per unit area) representing the normally
applied force density to the membrane surface by the NMIIA motor proteins. The shape equation (Eq. 2) basically
represents the relationship between the forces applied by NMIIA motor proteins and the resulting shape of RBCs.
A complete derivation of the governing equations of the motion, the notations used, and the non-dimensionalization
procedure are presented in the supplementary online material (SOM).

2-3- Parametrization of RBC biconcave morphology and shape error estimation

The geometry of human RBCs has been studied extensively using a variety of different methods such as light
microscopy [53, 54] , interference holography [55, 56], resistive pulse spectroscopy [57], micropipette aspira-
tion [58, 59], and light scattering [60, 61]. In Fig. 2A, we summarize the reported values for the RBC geometrical
parameters from the literature [53, 55, 58, 61–63], in terms of the three characteristic lengths (hmin , hmax and L)
(Fig. 1C), the volume (V), the surface area (A), and the sphericity index (SI).

During the last few decades, several parametric models have been proposed to describe the biconcave morphol-
ogy of the RBC [55, 56, 64–68]. Funaki proposed the Cassini oval model with two coefficients to represent the
RBC geometry [64]. Kuchel et al. [65] and later Yurkin [66] modified the Cassini oval model to implicit equations
with three and four coefficients, respectively. Borovoi et al. introduced a function in spherical coordinates to char-
acterize the RBC morphology [67]. The most realistic model was proposed by Evans and Fung [55], where they
first obtained images from 50 human RBC samples using light microscopy and then fitted a parametric equation
to the RZ cross-sectional shape of the RBCs (Fig. 1C) using statistical analysis. The Evans and Fung proposed
function is given by

Z(R) = ±0.5

√
1− (

2R

L
)2(0.81 + 7.83(

2R

L
)2 − 4.39(

2R

L
)4) (3)

where R is the radius from the axis of rotation and Z is the height from the base plane. In Fig. 2B, we plotted the
different proposed parametric models for the biconcave shape of an RBC. We observed that for the fixed height of
the dimple (2hmin), height of the rim (2hmax), and the maximum diameter (2L), all models generate similar shapes,
but with slight differences. In this study, we used the Evans and Fung parametric equation in Eq. 3 as the reference
data for the experimental shape of an RBC, since Eq. 3 was developed based on direct experimental measurement
and fit well with the observed RBC shapes [69, 70].

To quantify the deviation between simulated geometries obtained from our mechanical model and the paramet-
ric shape equation (Eq. 3) for the RBC, we define three errors εhmin, εhmax and εL as

εhmax = |hmax,par − hmax,sim| = |∆hmax|
εhmin = |hmin,par − hmin,sim| = |∆hmin|

εL = |Lpar − Lsim|| = |∆L|,
(4)

where (.),par is the experimentally measured length scale fitted to the parametric equation (Eq. 3) and (.),sim is the
length scale obtained from the numerical simulation (Eq. 2). The total error (εtotal) in the shape of the simulated
RBCs is then calculated by the root mean square (RMS) between every two mapped points in the parametric shape
of an RBC and the simulated geometries (Fig. 2C) given by

εtotal =

√√√√ 1

N
[

i=N∑
i=1

(Zi,sim − Zi,par)2 + (Ri,sim −Ri,par)2] (5)
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Figure 2: (A) Healthy human RBC dimensions from the literature [53, 55, 58, 61–63]. (B) Comparison between the
proposed parametric models describing the biconcave morphology of an RBC. There is a close match between the
four models for the fixed minimum height of the dimple, maximum height of the rim, and the maximum diameter.
(C) Discretization scheme of the parametric shape of an RBC (Eq. 3) (dotted blue line) and the simulated geometry
obtained from our mechanical model (Eq. 2) (solid red line). Each experimental and simulated shape is discretized
into N nodes where i indicates the node index. These nodes are used to compute the total error in the simulated
RBC geometry (Eq. 5).

where N is the total number of nodes across the RBC shapes, i is the index node, Zi,sim and Zi,par are the height of
the simulated and the parametric (Eq. 3) RBC shape at index i, respectively. Ri,sim is the radius of the simulated
shape at index i, and Ri,par is the radius of the RBC parametric shape (Eq. 3) at index i.

While Eq. 5 represents the error in the simulated shapes compared to the RBC parametric shape, it does not
capture the measurement errors since Eq. 3 was developed based on the average dimensions of experimentally
observed RBCs. However, there are standard deviations in the measured dimensions as reported by Evans and
Fung [55], and also the microscopy images are noisy, making it difficult to extract the exact shape of the membrane
without uncertainty. Here, to account for these uncertainties, we assume that the given parametric equation by
Evans and Fung [55] can be written as

Z(R) = Zmean(R) + Zerror(R) (6)

where Zmean(R) is the given function in Eq. 3 and we define Zerror(R) as the fitting error of the Evans and Fung
parametric equation to the actual shape of an RBC. In this study, we assume that Zerror(R) is 10% of the Zmean(R)
in order to represent the variance of RBC dimensions.

2-4-Numerical implementation

Simplifying the shape equation (Eq. 2) for a rotationally symmetric RBC gives us a set of first order differential
equations (Eq. S9). In order to obtain the RBC shapes from simulation and determine the role of NMIIA-generated
forces in maintaining the biconcave morphology, we need to solve the coupled differential equations (Eq. S10)
along with the defined boundary conditions (Eq. S10). Here, we used the commercially available finite element
solver COMSOL MULTIPHYSICS 5.3a to solve the governing differential equations (Eqs. S9 and S10). In all our
simulations, the transmembrane pressure is set to zero (p=0).

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 12, 2019. ; https://doi.org/10.1101/668582doi: bioRxiv preprint 

https://doi.org/10.1101/668582


3- Results

3-1- Uniform distribution of force density across the membrane surface is not sufficient to recover
the biconcave shape of an RBC

Modeling studies of RBC shapes have been based on the assumption that the RBC membrane and cytoskeleton
are spatially homogeneous [17, 18, 27, 52]. In this study, we aimed to incorporate the effect of NMIIA on the
RBC membrane and therefore modeled the interactions between the membrane and NMIIA as a local force applied
on the membrane. We first performed simulations applying a uniform pulling force density (Funiform) across the
cell membrane surface (Figs 3A, B). This uniform pulling force density can be interpreted as a pressure difference
between the inside and outside of the RBC which specifies the change in the RBC volume compared to an equiv-
alent sphere (known as the reduced volume) [25, 71, 72]. Considering the RBC membrane rigidity and elasticity,
experimental measurements showed that a small pressure difference – on order of ∼ 1 pN/µm2– is sufficient to
form and maintain a biconcave RBC from a spherical cell [72–75].

To perform our simulations, we assumed that the RBC membrane area is large enough that the lateral membrane
tension is negligible (λ = 0) [76–78]. We also set the bending modulus to be in the range of physiologically
reported values for the RBC membrane (κ = 9× 10−19J) [77]. As shown in Fig. 3C, for a given value of uniform
pulling force, we were able to match two out of three characteristic length scales of the simulated shapes with the
parametric shape of an experimentally observed RBC (Eq. 3). Furthermore, we can see that for all configurations
in Fig. 3C, the calculated uniform force density from our mechanical model is in the range of the reported pressure
difference for a biconcave RBC (Funiform ∼ 1 pN/µm2), which validates the accuracy of our numerical results (Fig.
3C, bottom row).

Based on the results in Fig. 3C, we observe that for the large value of the pulling force density (Funiform ∼
1.88 = pN/µm2) the maximum and the minimum heights of the simulated shape match well with the parametric
shape, while the maximum diameter does not (Fig. 3C left). For the intermediate pulling force density (Funiform ∼
1.81 = pN/µm2), the minimum height and the maximum diameter of the simulated shape are in good agreement
with the parametric shape, but the maximum height is not (Fig. 3C center). Finally, for the small pulling force
density (Funiform ∼ 1.02 = pN/µm2), the mismatch between the simulated geometry and the parametric shape of
the RBC is in the minimum height of the dimple (Fig. 3C right).

For each value of the applied pulling force density, we plotted the error for each of the characteristic lengths (L,
hmax or hmin) (Eq. 4) and the total error (Eq. 5) (Fig. 3C). We found that both the characteristic and the total shape
errors have the lowest value (εhmax ∼ 0.4 µm and εtotal ∼ 0.32 µm) at the intermediate uniform force density,
when there is only a relatively small mismatch in the maximum height (∆hmax) (Fig. 3C center). Thus, we can
predict that among the three main characteristic length scales of an RBC, the maximum height of the rim (hmax)
appears to be the least critical dimension in order to minimize the shape error of the simulated geometries. It should
be mentioned that for each case here, we first calculated the mean errors based on the given parametric equation
(Eq. 3) and then we computed the error bars using Eq. 6.

3-2- Local force density at the RBC dimple reduces the shape error

Given that the shape mismatch even for the intermediate uniform force density is relatively large compared to the
described RBC dimensions in Fig. 2, we next asked if we could change the distribution of the non-uniform pulling
force density to reduce the shape error and obtain a better agreement between the experimentally reported shapes
for RBCs and our model. We conducted simulations of Eqs (S10) and (S11) but this time assuming that the applied
force per unit area is locally concentrated in the dimple region (Fdimple), and that there is no force along the surface
of the donut region (Figs. 4A, B). This heterogeneous force distribution along the membrane was implemented
using a hyperbolic tangent function (Eq. S21).

In Fig. 4C, we compare the RBC shapes obtained from the simulation with the application of increasing local
pulling force density at the dimple. We find that the total error is a nonlinear function of the Fdimple; as Fdimple
increases, the total error in shape mismatch decreases and then increases again. Based on the shape of the simulated
RBC, we can identify three different regimes (Fig. 4C). For low dimple force density ((Fdimple < 1.81 pN/µm2), the
simulated geometry has a spherical shape (hmax = hmin) and therefore the shape error is large (εtotal > 2 µm, yellow
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Figure 3: Mismatch between the parametric shape of an experimentally observed RBC (Eq. 3) and the shapes
obtained from simulations (Eqs. S10) with a uniform distribution of the pulling force density across the membrane
surface. (A) RZ view of the center of an RBC from a confocal Z-stack of an RBC stained for the membrane marker
glycophorin A. (B) Schematic of a biconcave RBC with a uniform distribution of the normal pulling force density
(red arrows). Funiform represents the magnitude of the pulling force density. (C) Calculated error in the characteristic
length scales (Eq. 4) and total shape error (Eq. 5) for different values of the force density. In each case, two out of
three main length scales of the simulated geometries are matched closely to the parametric shape of an RBC. The
total shape error (εtotal) calculated by Eq. 5 is minimum for Funiform = 1.81 pN/µm2, when there is only a mismatch
in the maximum height of the RBC morphology (center bar).

area in Fig. 4C). By increasing the magnitude of dimple force density (1.81 pN/µm2 < Fdimple < 3.73 pN/µm2)
the dimple forms — biconcave shapes where hmax > hmin — and the shape error decreases sharply (purple area in
Fig. 4C). At higher levels of force applied at the dimple (Fdimple > 3.73 pN/µm2, the error increases because the
distance between the two bilayers in the dimple becomes too narrow (kissing shapes where hmin → 0) (Fig. 4C).

Based on our results in Fig. 4C, the shape error has the minimum value of εtotal ∼ 0.22 µm for the case that
Fdimple = 3.73 pN/µm2 This total error is less than that for all the simulated shapes determined in the case of a
uniform force applied to the membrane (Fig. 3C). We also observed a similar nonlinear trend in the calculated
errors for the characteristic lengths (Eq. 4) as a function of dimple force density (Fig. S1). From these results, we
conclude that there is a better match between the simulated shape and the parametric shape of an experimentally
observed RBC when a localized force is applied at the RBC dimple compared to the case with a uniform force
distribution (Fig. 3).

3-3- Non-uniform distribution of force density in the RBC dimple region versus the RBC donut
region minimizes the shape error

While local force density at the dimple decreased the error in our simulated RBC shapes, NMIIA is known to be
distributed throughout the RBC [32]. Therefore, we next asked if the shape error can be minimized by including a
force at the donut region in addition to the applied force at the dimple region (Fig. 5A). This analysis will allow us
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Figure 4: A local distribution of the pulling force density at the RBC dimple results in a better match between the
parametric shape of an experimental observed RBC (Eq. 3) and the shape obtained from the simulation. (A) RZ
view of the center of an RBC from a confocal Z-stack of an RBC stained for the membrane marker glycophorin A.
(B, upper) A schematic depicting a biconcave RBC with a local force at the dimple area (red arrows) and no force in
the donut region. Fdimple represents the magnitude of the pulling force density in the dimple region. (B, lower) The
applied force density at the dimple as a function of the arclength (Eq. S21). (C) The simulated shape of the RBC
with a local pulling force density in the dimple (solid green line) in comparison with the RBC parametric shape
(dotted blue line). (C) The nonlinear behavior of the total error when increasing the dimple force density (Fdimple).
Three different regimes can be identified based on the shape of the simulated RBC; (i) the spherical shapes where
hmax = hmin for the low Fdimple (yellow area), (ii) the biconcave shapes where the dimple forms (hmax > hmin)
for the average Fdimple (purple area), and (iii) the kissing shapes where hmin → 0 for large Fdimple (gray area). The
shape error has the lowest value at Fdimple = 3.73 pN/µm2 when the minimum height of the dimple in the simulated
geometry matches closely with the minimum height of the parametric shape.

to predict the RBC shape not only in terms of absolute values of forces in the dimple and donut regions, but also as
a function of force per unit volume ratio in these two regions. In our model, based on the given force density per
unit area in the dimple (Fdimple) and donut (Fdonut) regions, we define the ratio of forces per unit volume as

Fratio =
Fdimple

Fdonut
×

Adimple × Vdonut

Adonut × Vdimple
(7)

where Adimple and Adonut are the area of the membrane surface in the dimple and donut regions, and Vdimple and
Vdonut are the volume occupied by the dimple and donut regions, respectively. For a given RBC shape, the area and
the volume of the dimple and donut regions can be calculated by Eq. S11a and Eq. S11b, respectively.

We begin our analysis with the case that the pulling force in the dimple area is larger than the pulling force
in the donut section (Fdonut < Fdimple). We implemented this distribution of force along the RBC membrane via
a hyperbolic tangent function (Eq. S21) and performed the simulations over a range of forces at the dimple and
the donut regions (Fdimple = 3.5 - 14 pN/µm2and Fdonut = 0 - 3.5 pN/µm2. The range of dimple force (Fdimple)
is chosen based on our previous results (Fig 4) to have a close comparison with the parametric shape and obtain
biconcave shapes from simulations with hmax > hmin and hmin > 0. The donut force (Fdimple) is set between Fdonut
= 0 and Fdonut = 3.5 pN/µm2to impose the condition of Fratio <1 for all simulations.

The heat map in Fig. 5B represents the magnitude of the shape error for a given force density at the dimple
and donut region. The simulations were stopped when the height at the RBC dimple tends to zero, shown as white
domains in the heat map (Fig. 5B). Based on these calculations, we found that the shape error has the lowest value
(εtotal ∼ 0.16 µm) when Fdimple = 4.05 pN/µm2 and Fdonut = 0.28 pN/µm2 (the X point on the heat map). For
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these specific force values, the parametric shape of the RBC (Eq. 3) and the shape obtained from the simulation at
point (X) are very well-matched (Fig. 5B lower panel).

To further understand the relationships between Fdonut and Fdimple in governing the shape of the RBC, we
plotted the shape error as the function of Fdimple for five different values of the force density at the donut section
(Fig. 5C). We found that the shape error shows the same nonlinear dependence for different values of Fdonut. By
increasing the value of Fdimple, the shape error initially decreases by an order of magnitude and attains a relative
minimum for each curve (Fig. 5C). Any further increase in the dimple force density results in a larger shape error
(Fig. 5C), similar to Fig. 4B. As expected from Fig. 5B, the shape error has the lowest value on the red curve (Fdonut
= 0.28 pN/µm2) when Fdimple = 4.05 pN/µm2 Using Eq. 7, this set of dimple and donut forces in Fig. 5B is
equivalent to Fratio ∼ 16.24, which reflects the prediction that to obtain the best match between the simulated RBC
shape and the experimentally observed morphology, 16.24 times larger force per unit volume should be applied in
the dimple region than the donut area.

Thus far, we have only considered the cases in which NMIIA motors were able to exert small pulling forces
in the donut area. However, two other force configurations are possible; (i) NMIIA motors apply a larger force

(A) (B)

(C)

Fdimple

s
Fdonut

Fratio =
Fdimple

Fdonut

Simulated shape
Parametric shape (Eq. 3) 

(μm
)

ϵtotal = 0 . 16 μm

Fdimple

Fdonut

s

(μm)R

Z

Figure 5: The applied force densities at the RBC dimple and donut regions regulate the shape error. (A, upper)
Schematic of a biconcave RBC with a large force density (red arrows) at the dimple and a small force density
(gray arrows) at the donut section. Schematic is overlaid on an RZ view of the center of an RBC from a confocal
Z-stack of an RBC stained for the membrane marker glycophorin A. (A, lower) The applied force density along
the membrane as a function of the arclength (Eq. S21). (B) Heat map shows the calculated shape error (Eq. 5) for
a range of the force densities at the dimple (Fdimple) and donut (Fdonut) regions. We stopped the simulations when
the height at the dimple tends to zero (hmin → 0). The marked point (X) shows the case that has the lowest value
of the error in the heat map at Fdimple = 4.05 pN/µm2 and Fdonut = 0.28 pN/µm2. A comparison between the
parametric shape of an RBC (dotted blue line) and the shape obtained from the simulation at point X (dashed red
line) is shown in the lower panel. (C) The shape error as the function of force density at the dimple (Fdimple) for
five different values of the applied force density at the donut area. The dotted purple line shows a discontinuous
transition in the shape error by increasing the dimple force density for Fdonut = 2 pN/µm2. Similar to Fig. 4B,
independent of the value of Fdonut, the total error is a nonlinear function of the dimple force density (Fdimple).
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density in the donut region than the dimple area (Fdonut > Fdimple) (Fig. S2A), and (ii) NMIIA motors exert pushing
forces in the donut region (Fig. S3A). We found that having a large pulling force in the donut region (Fdonut >
Fdimple) generates a shape resembling a peanut-shaped vesicle with a large shape error of εtotal � 1 µm (Fig. S2).
We also observed that applying a pushing force in the donut region (Fdonut = 3.73 pN/µm2 (no force in the dimple)
causes a large error of εtotal ∼ 0.46 µm (Fig. S3B). Even adding a small pushing force in the donut area (Fdonut =
0.53 pN/µm2 with Fdimple = 3.73 pN/µm2 increases the shape error to εtotal ∼ 0.38 µm (Fig. S3C). Our major
prediction is that RBC biconcave shape depends on a heterogeneous distribution of NMIIA forces, which could be
accomplished by more NMIIA motors in the dimple and less in the donut.

3-4- RBC dimple region has a higher concentration of NMIIA puncta compared to the donut region

Our simulations suggest that NMIIA-mediated force densities are not uniformly distributed across the RBC mem-
brane but instead are larger in the dimple than the donut region (Fig. 5). Therefore, we hypothesized that the NMIIA
distribution in RBCs is also non-uniform, with more NMIIA in the dimple region than the donut region. To test
this hypothesis, we localized NMIIA motor domain puncta in three-dimensional reconstructions of AiryScan con-
focal Z-stacks [32, 79]. This assay detects myosin bipolar filaments and other higher-order structures, as individual
NMIIA molecules are too dim to detect in AiryScan images.

We divided each RBC into dimple and donut regions based on F-actin staining at the membrane (Fig. 6A) and
quantified the number of NMIIA motor domain puncta in each region and the volumes of each region and the
RBC using Volocity software. The dimple region accounted for about 7.4% of the total RBC volume (based on the
F-actin staining, Fig. 6B). This value agrees with calculations of dimple volume (∼ 7.1% of total volume) from our
simulated shapes, in which we classify the dimple and donut regions based on the sign of the local mean curvature
(Fig. 1B). The number of NMIIA puncta varies between RBCs, with 125 ± 47 puncta in the whole RBC, 113± 42
puncta in the donut, and 12± 9 puncta in the dimple (all values are mean± SD). The dimple region contains about
9.1% of the total NMIIA motor domain puncta (Fig. 6C). In the dimple and donut regions as well as the whole
RBC, the number of NMIIA puncta tends to increase with increasing region or cell volume (Fig. S4).

The number of NMIIA puncta per unit volume (µm−3) in an RBC region is likely proportional to the number
of NMIIA filaments that interact with membrane skeleton F-actin to exert force on the RBC membrane. The
whole RBC and the donut region have similar NMIIA puncta densities (1.73 ± 0.562 µm3 and 1.70 ± 0.556 µm3,
respectively), while the dimple region has a ∼25% higher density (2.15 ± 0.888 µm3 (Fig. 6D). Thus, the dimple
region has ∼ 1.29 times higher NMIIA puncta density compared to the donut region (Fig. 6E).

To determine whether differences in NMIIA densities relate to RBC biconcavity, we related NMIIA density to
the minimum and maximum heights of XZ slices at the center of each RBC (Fig. S5). In both whole RBCs (Fig.
S5A) and the dimple region (Fig. S5C), RBC biconcavity increased with increasing NMIIA density, while NMIIA
density in the donut region was not related to biconcavity (Fig. S5B). These results agree with the results of our
simulations, which predict that the maximum height of the rim (hmax) is the least critical dimension to minimize the
shape error (Fig. 3) and furthermore, that NMIIA exerts a larger force density at the RBC dimple (Fig. 5). Together,
our simulations and experimental data suggest that this non-uniform force distribution is required to specify RBC
biconcave disk shape.

3-5- Effective membrane tension regulates the required force densities ratio in the RBC dimple
versus the donut region

In Fig. 5, we found that for the simulated RBC shapes, the error is minimized when the applied force density in the
dimple region is about 16.24 times larger than the donut area (Fratio = 16.24), in a tensionless membrane. However,
our experimental measurement reveals that in a healthy human RBC, the dimple region has only ∼25% higher
density of NMIIA puncta than the donut region (Fig. 6). If we assume that the NMIIA density is proportional
to the force generation capacity, then the induced force in the dimple region should be 1.25 times larger than
the donut area. Therefore, we set out to reconcile this apparent discrepancy in the predicted Fratio and measured
NMIIA density ratio. We found an interesting observation in the literature that the membrane tension in RBCs can
vary from 10−1 pN/nm to 10−4 pN/nm [52, 77, 80]. Here, we interpret membrane tension to be the effective
contribution of the membrane in-plane stresses and the membrane-cytoskeleton interactions [81]. We hypothesized
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Figure 6: Figure 6: The RBC dimple has a higher average NMIIA puncta density than the RBC donut. (A)
Optical section of a super-resolution Airyscan confocal Z-stack of human RBC immunostained with an antibody
to the motor domain of NMIIA (green) and rhodamine-phalloidin for F-actin (orange). The top left image shows
a perspective view of the optical section. Top right and bottom left images show YZ and XZ slices, respectively,
of the RBC from planes perpendicular to this optical section. The bottom right image shows an XY view of the
optical section. The blue cylinder represents the region identified as the dimple region. The rest of the RBC is
identified as the donut region. (B) The percent of total RBC volume occupied by the dimple region. Mean±S.D.
= 7.37±1.79. (C) The percent of total NMIIA puncta in the dimple region. Mean±S.D. = 9.11±3.30. (D) The
RBC dimple region has a 25% higher density of NMIIA puncta than whole RBCs (Total) (p = 0.0051) or the
donut region (p = 0.0023) by Tukey’s multiple comparisons test. Mean±S.D.: Total = 1.73±0.562; Dimple =
2.15±0.888; Donut = 1.70±0.556. (E) Ratio of dimple and donut region NMIIA puncta densities for each RBC.
Mean±S.D. = 1.29±0.452. (B-E) n = 55 RBCs from 3 individual donors.

that this in-plane tension of the RBC could play a critical role in relating the RBC shape and the NMIIA-generated
force ratio in dimple and donut regions.

To investigate how this variation in membrane tension can modulate Fratio and the shape error, we repeated
the simulations as in Fig. 5 for three different effective membrane tensions: (i) low membrane tension (tension =
10−4 pN/nm) (Fig. 7A), (ii) intermediate membrane tension (tension = 10−3 pN/nm) (Fig. 7B), and (iii) high
membrane tension (tension = 10−2 pN/nm) (Fig. 7C). The marker (X) in each heat map shows the point with
minimum shape error for that set of simulations. To visualize the geometry of the simulated RBC at each point
marked with an ‘X’, we plot the shapes that were obtained from simulations (solid yellow line) versus the reference
experimental data (dotted blue line) [55].

We observe that the shape error is almost constant (εtotal ∼ 0.15 µm) with increasing the membrane tension
from zero to low and intermediate values (Fig. 7A, B). However, varying the membrane tension alters the force
ratio that gives the minimum shape error. For example, at the low tension, the minimum shape error occurs at Fratio
= 3.88 and at the intermediate tension the shape error is minimum when Fratio = 1.35 (Fig. 7A, B). In the case of
the high membrane tension, we found that the simulated shape deviates significantly from the biconcave disk and
becomes closer to pancake and the error goes up noticeably to about half a micrometer (εtotal ∼ 0.5 µm) (Fig. 7C).

Additionally, we found that for low and intermediate tension independent of the value of Fdonut, the shape
error has the same non-linear relationship with increasing Fdimple as observed before for the tensionless membrane
(Fig. 7D, E). At the low tension, the minimum shape error occurs when Fdonut = 5.04 pN/µm2 and Fdonut = 1.4
pN/µm2 (blue square line) (Fig. 7D). At the intermediate tension, a combination of Fdonut = 12.53 pN/µm2 and
Fdonut = 10 pN/µm2 gives the minimum shape error (green triangle line) (Fig. 7E). However, for high tension,
because of the stiffness of the membrane, we observe not only a deviation from the biconcave shape but also a
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Figure 7: Effective membrane tension is a key parameter in regulating the RBC shape in addition to applied forces in
the dimple and donut regions. (A-C) Heat maps show the total error in the shape of the simulated RBCs for (A) low
tension (tension = 10−4pN/nm), (B) intermediate tension (tension = 10−3pN/nm), and (C) high tension (tension
= 10−2pN/nm). In each heat map, the point with the minimum error is marked with X. Also, for each marked
point, the shape of the simulated RBC (solid yellow line) is shown in comparison with the reference experimental
data in Eq. 3 (dotted blue line). At the intermediate tension, the shape error has the lowest value when Fratio = 1.35
consistent with our experimental results in Fig. 6. (D-F) The calculated shape error (Eq. 5) as a function of the
dimple force density (Fdimple) for different values of the donut force density and the membrane tension.

deviation from the nonlinear error - dimple force relationships (Fig. 7F).
Based on these results we can conclude that in addition to a non-uniform force distribution along the RBC

membrane, a non-zero intermediate tension is required to obtain a close match between the shape of the simulated
RBC and the experimental data. Furthermore, the intermediate value of tension (tension = 10−3pN/nm) gives
an excellent quantitative match for the predicted value of Fratio (Fig. 7B) and the experimentally observed NMIIA
density ratio (Fig. 6).

4- Discussion

The biconcave disk shape of mammalian RBCs provides a maximum surface-area-to-volume ratio, which enables
efficient gas and ion exchange and increases RBC deformability and resiliency [82]. This shape has been studied
extensively from a mechanical standpoint to identify stress-strain relationships in cell membranes. Most studies
modeling RBC shapes have been based on the work of Canham and Helfrich [42, 47] and have reinforced the
idea that mechanical force balance on the membrane by itself can provide a good insight into the unique shape of
the RBC. Canham and Helfrich suggested that the minimization of the membrane bending energy, the asymmetry
between the inner and outer membrane leaflets, and the osmotic pressure difference across the membrane generate
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the RBC biconcavity [23–25].
In RBCs, the cytoskeleton underneath the plasma membrane is an elastic network of spectrin linked to short

actin filament nodes and attached to the membrane by anchoring proteins [26]. Different studies have demonstrated
the importance of membrane/cytoskeleton interaction in the formation of unusual RBC shapes and as well as the
RBC deformability in shear flow [38, 83–86]. However, few theoretical models for RBC biconcave shape have con-
sidered an active role for the RBC cytoskeleton (e.g., the role of motors) in regulating RBC morphology [84, 87].
Studies of human and mouse congenital hemolytic anemias have established a role for the RBC cytoskeleton in
maintaining the RBC biconcave shape in circulation [17, 18, 27]. Recently, Smith et al. [32] showed that active
motor-dependent interactions of NMIIA with F-actin in the RBC cytoskeleton control RBC membrane tension
and curvature to maintain the biconcave disk shape. Building upon the previous studies of mechanical force bal-
ances, here we have extended a membrane mechanics model to include non-uniform forces due to NMIIA-actin
interactions.

There are two main conclusions that we can draw from our study. First, the density of the NMIIA-generated
force must be non-uniform along the RBC membrane to produce the best fit with the shapes measured experimen-
tally. By conducting a parameter sweep of the force density configurations, we found that the non-uniform force
distribution must be such that Fdimple is larger than Fdonut (Figs. 4, 5). Experimental measurements of NMIIA den-
sity in the dimple and donut regions of RBCs using immunofluorescence showed that indeed NMIIA density was
higher in the dimple than in the donut (Fig. 6) by about 25%. Our combined computational and experimental re-
sults highlight that a non-uniform force distribution of NMIIA plays an important role in maintaining the biconcave
shapes of RBCs.

Second, we found that the effective membrane tension is an important physical parameter in modulating the
required NMIIA-mediated force density ratio in the RBC dimple versus the donut region (Fratio) (Fig. 7). When
compared to tensionless or low-tension membranes, the intermediate tension values Fratio for minimum shape error
(∼ 1.35) match closely with the experimentally reported NMIIA density ratio at the dimple versus the donut.
Furthermore, we found that varying the membrane tension to lower or higher values not only leads to deviation of
the simulated shapes from the reference experimental data but also changes the required NMIIA force density ratio
(Fig. 7).

Therefore, we predict that in mature, healthy biconcave RBCs, NMIIA motor domains exert force on a mem-
brane under intermediate membrane tension (∼ 10−2 pN/nm). The exact value of membrane tension in an intact
RBC is hard to measure [88] because of the contributions from both the membrane and underlying cytoskeleton
such that a wide range of values are reported in the literature across three orders of magnitude (from 10−1 pN/nm
to 10−4 pN/nm) [52, 77, 80]. This range can be attributed to dynamic lipid rearrangements [89], membrane-
cytoskeletal interactions [90], and rearrangement of force-generating NMIIA molecules [32]. Our theoretical
analyses, supported by experimental measurements, implicitly suggests that for a biconcave RBC, the effective
membrane tension should be on the order of 10−2 pN/nm.

Our conclusions of non-uniform force density and tension regulation can be used to obtain insight into the
effective activity of NMIIA motor domains at any given time. Assuming that a single NMIIA motor domain
produces an average force of ∼ 1 pN [91], the calculated force densities in Fig. 7B correspond to 178 and 1628
myosin motor domains in the dimple and donut regions, respectively. This means that the force generated by
a total ∼1,800 active NMIIA motor domains, distributed between the dimple and the donut as we predicted, is
sufficient to sustain the biconcave disk shape of an RBC. Previous studies estimated that each mature human RBC
contains ∼6,000 NMIIA molecules, ∼12,000 motor domains [30, 31] and at any given time, roughly 40-50% of
these molecules are bound to the cytoskeleton. Our calculations suggest that approximately 30% of these bound
NMIIA molecules are active and exerting forces (heterogeneously). It is also possible that the amount of force
generated by a single NMIIA motor domain varies due to the stiffness of the membrane cytoskeleton network, the
processivity (the duration over which the motor stays attached to actin), and the cross-linking activity of NMIIA
myosin filaments [92, 93]. Therefore, further research is required to determine the quantitative relationship between
the copy number of NMIIA molecules and their activity, measured by the magnitude of force they exert on the RBC
membrane.

The idea of the asymmetrical distribution of the membrane cytoskeleton and its components in the dimple and
donut areas of RBCs was initially introduced by Hoffman [94, 95]. Recently, Svetina et al. modeled RBC vol-
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ume regulation according to permeability of the Piezo1 channel. Based on their simulation results, they found that
Piezo1 channels are distributed non-uniformly in a biconcave RBC, tending to localize in the dimple region [96].
They speculated that the simulated localization of Piezo1 channels in the dimple region is controlled by the mem-
brane curvature. It is possible that the RBC membrane curvature and induced tractions [97] can also influence the
localization of NMIIA motor proteins, as has been observed in other cell types [15]. Alternatively, a shear-induced
Ca2+ influx through localized Piezo1 channels could locally activate NMIIA through phosphorylation of the regu-
latory light chain, leading to enhanced NMIIA binding to F-actin in the dimple and enhanced local contractility at
dimple, activating Piezo1 and Ca2+ influx in a feed-forward loop. We believe our findings in this work are a moti-
vation for future studies to develop quantitative relationships between the myosin-mediated forces, Ca2+ influxes,
and the membrane curvature of the cell surface.

We acknowledge that despite the conclusions from our studies, there are some limitations and simplifying as-
sumptions that will need to be revisited for future studies. First, we limited our model to axisymmetric shapes, while
RBCs often adopt non-axisymmetric shapes [98]. Future studies will involve simulations without any assumptions
of symmetry. Second, we modeled the net effects of NMIIA motor proteins as local forces applied normally to the
membrane surface. However, there is evidence that these molecules also exert forces on the membrane surface (tan-
gential to the membrane) and inclusion of these effects may be important in refining our interpretation of tension.
Experimental tests probing wether NMIIA activity is non-uniform across the RBC membrane will also give insight
into NMIIA density distribution versus activity distribution. And finally, we assumed that the contributions from
thermal fluctuations and the deformation of the membrane cytoskeleton are negligible compared to the bending
energy [37, 99]. However, for a more general quantitative model, these effects should be considered.

5- Materials and methods

(a) Immunofluorescence staining of RBCs. Human peripheral whole blood was collected from healthy human
donors into EDTA tubes (BD Diagnostics). 20 µl of whole blood was added to 1 ml of 4% paraformaldehyde
(PFA, Electron Microscopy Sciences) in Dulbecco’s PBS (DPBS – Gibco), mixed, and incubated at room
temperature overnight.

(i) NMIIA immunostaining and rhodamine phalloidin staining. Fixed RBCs were washed three times
in DPBS by centrifuging for 5 minutes at 1000 x g, permeabilized in DPBS + 0.3% TX-100 for 10
minutes, and then blocked in 4% BSA, 1% normal goat serum in DPBS (Blocking Buffer, BB) at 40C
for at least 4 days or up to 1 week before immunostaining. Permeabilized and blocked RBCs were then
incubated with rabbit anti-NMIIA motor domain antibody (Abcam ab75590) diluted in BB (1:1000)
for 2-3 hours at room temperature, washed two times in BB as above, and then incubated in Alexa-488-
conjugated goat anti-rabbit secondary antibody (Life Technologies A11008, diluted 1:1000) mixed with
rhodamine-phalloidin (Life Technologies R415, at a final concentration of 130 nM) in BB for 1-2 hr at
room temperature, followed by washing three times in BB as above. Stained cells were cytospun onto
slides and mounted with ProLongTM Gold mounting medium (Invitrogen) and coverslipped prior to
imaging.

(ii) Glycophorin A (GPA) immunostaining. Fixed RBCs were washed three times in DPBS by centrifug-
ing for 5 minutes at 1000 x g, blocked for 1 hour in BB, and stained with FITC-conjugated mouse
anti-GPA antibody (BD Pharmingen 559943) for 1 hour at room temperature. GPA-stained RBCs were
washed twice in DPBS by centrifugation as above, then cytospun onto glass slides and mounted with
ProlongTM Gold and coverslipped prior to imaging.

(b) Fluorescence microscopy.

(i) RBCs immunostained for NMIIA and rhodamine phalloidin for F-actin. RBCs were imaged us-
ing a Zeiss LSM 880 Airyscan laser scanning confocal microscope with a 63×1.46 NA oil Plan Apo
objective. Z-stacks were acquired at a digital zoom of 1.8 and a Z-step size of 0.168 µm.
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(ii) RBCs immunostained for GPA. RBCs were imaged using a Zeiss LSM 780 laser scanning confocal
microscope with a 100×1.4 NA oil Plan Apo objective. Z-stacks were acquired at a digital zoom of
1.0 and a Z-step size of 0.25 µm. To correct for Z-stretch in the images used in this manuscript, the
distance between Z-steps was set to 0.18 µm.

(c) Image analysis. To correct for Z-stretch in the Airyscan confocal stacks, the distance between Z-steps
was set to 0.1 µm. Numbers of NMIIA puncta in whole RBCs, in the dimples, and in the donuts were
counted automatically from Airyscan confocal stacks in Volocity (Quorum Technologies) using the “Find
Spots” function in the “Measurements” module. The volumes of whole RBCs, the dimples, and the donuts
were measured from the rhodamine phalloidin (F-actin) fluorescence in Volocity using the “Find Objects”
function, with gaps in staining filled using the “Close” function. RBC height measurements were acquired
manually from XZ views of the center of each RBC in Volocity using the line function to measure the distance
between the edges of fluorescent F-actin staining signal at the widest and narrowest regions of each RBC.

(d) Statistical analysis. Data are presented in dot plots as mean ± standard deviation (SD), or in scatter plots
showing the best-fit line from the linear regression. Differences between the variances of the two samples
were detected using F-tests. Differences between means were detected using unpaired t-tests with Welch’s
correction. When more than one comparison was made, differences between means were detected using
one-way ANOVA followed by Tukey’s multiple comparisons test. Statistical significance was defined as p <
0.05. Statistical analysis was performed using GraphPad Prism 7.03 software.
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Rendus Mécanique, vol. 346, no. 6, pp. 439–448, 2018.

[71] H. Deuling and W. Helfrich, “The curvature elasticity of fluid membranes: a catalogue of vesicle shapes,” Journal de Physique, vol. 37,
no. 11, pp. 1335–1345, 1976.

[72] E. A. Evans, Mechanics and Thermodynamics of Biomembranes: 0. CRC press, 2018.

[73] P. Zarda, S. Chien, and R. Skalak, “Elastic deformations of red blood cells,” Journal of biomechanics, vol. 10, no. 4, pp. 211–221,
1977.

[74] P. Zarda, S. Chien, and R. Skalak, “Sphering and formation of red blood cells,” in Biomechanics Symposium. R. Skalak and RM Nerem,
editors. AMD, vol. 10, p. 49, 1975.

[75] P. R. Zarda, Large deformations of an elastic shell in a viscous fluid. UMI Dissertation Services, 2004.

[76] A. H. Lewis and J. Grandl, “Mechanical sensitivity of piezo1 ion channels can be tuned by cellular membrane tension,” Elife, vol. 4,
p. e12088, 2015.

[77] J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical
properties and lack of atp dependence,” Biophysical journal, vol. 94, no. 10, pp. 4134–4144, 2008.

[78] Z. Shi, Z. T. Graber, T. Baumgart, H. A. Stone, and A. E. Cohen, “Cell membranes resist flow,” Cell, vol. 175, no. 7, pp. 1769–1779,
2018.

[79] J. Huff, “The airyscan detector from zeiss: confocal imaging with improved signal-to-noise ratio and super-resolution,” Nature meth-
ods, vol. 12, no. 12, 2015.

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 12, 2019. ; https://doi.org/10.1101/668582doi: bioRxiv preprint 

https://doi.org/10.1101/668582


[80] G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Optical
measurement of cell membrane tension,” Physical review letters, vol. 97, no. 21, p. 218101, 2006.
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