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Abstract  

Cellular differentiation is a tightly regulated process involving intricate network of interacting 

signaling and transcription factors. Signaling information provides the extracellular cue 

interpreted by the transcription factor to drive cellular response, but cross regulation between 

signaling and transcription factor provides the complexity to the system making it robust and 

stable. Differential equation based mathematical models provide an important theoretical tool to 

understand the behavior of these intricate networks. Here we have used differential equation 

based models to understand the spatiotemporal dynamics of a signal-transcription factor gene 

networks controlling spinal cord cell maturation. We show that the behavior of dynamic signaling 

information and downstream transcriptional readout depends upon the strength of interaction 

among network partners. Our results supports the idea that signaling factors provides spatio-

temporal cues to transcription network that ultimately determines the response. Finally, our results 

outline the possible interaction conditions that could explain observed in vivo development 

patterns.  
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Introduction 

Cellular differentiation entails sequential transition in cellular state from high potency stem cell 

to low-potency specialized cell, guided by the intercellular signaling regulating the activity of 

underlying transcription factors. Signals provide spatio-temporal information to the decision 

making transcription factor network active in the cell (Basson, 2012; Egli et al., 2008; Housden 

and Perrimon, 2014; Perrimon et al., 2012). In turn, transcriptional network dictates cell’s 

competence and response to the extracellular signaling (Halfon et al., 2000; Zaret and Carroll, 

2011; Zaret et al., 2008). Response to signaling information in turn changes the transcriptional 

components thus creating an intricate dynamic cross-regulatory system responsible for a cell’s 

differentiation down the lineage (Basson, 2012; Housden and Perrimon, 2014; Perrimon et al., 

2012).  

Vertebrate spinal cord provides an advantageous model to study the cross-regulatory dynamics 

involved in central nervous system development in particular, and differentiation in general. The 

head (rostral) to tail (caudal) development of spinal cord during vertebrate body extension results 

into a characteristic spatial separation of temporal differentiation events (Gouti et al., 2015; 

Henrique et al., 2015; Wilson et al., 2009), facilitating the study of the regulation of stage 

specific events. Briefly, the spinal cord neural progenitors (NPs) are derived from bipotent 

neuro-mesodermal progenitor (NMP) population; that also has the potency to give rise to 

mesodermal precursors. NMP are located at the caudal most end of the neural tube in a region 

termed as caudal lateral epiblast and node streak border, in early embryo, and in caudal neural 

hinge at later stages (Gouti et al., 2015; Henrique et al., 2015; Wilson et al., 2009). During NP 

maturation, cells exit of the NMP domain and are guided by a GRN that drives their sequential 
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cell state transition as they become part of the elongating spinal cord (Gouti et al., 2014; 

Henrique et al., 2015).  

NP maturation is driven by the antagonistic FGF/WNT-RA activities turning on or off key 

transcription factors as the cell undergoes caudal-to-rostral maturation events (Fig 1A). In the 

caudal to rostral direction, FGF/WNT-RA gradients drive the expression of bipotency markers 

T/Bra, Sox2, and Nkx1.2 characteristic of NMP , then the loss of T/Bra in early NP, followed by 

the loss of Nkx1.2 and the induction of Pax6 in late NP (ref), and finally the transcription of NP 

mauration marker Ngn2 (Fig 1B) (Diez del Corral and Storey, 2004; Gouti et al., 2015). These 

transcription factors are essential for the identity and function of the cell as it undergoes 

progressive maturation. Until recently, however, little is known about the translation of the 

signaling information at the transcriptional factor level that results into proper spatio-temporal 

segregation of cellular states. We recently showed that CDX4 is at the core of the GRN that 

regulate the sequential maturation of NP  into mature neuronal precursors (Fig 1C,(Joshi et al., 

2019)).  

Here we dynamically analyze the GRN driving NP maturation using differential equation. As, 

the transcription factor depend upon the overlying FGF-WNT-RA interactions, we first analyzed 

the effectives of this signaling network to work as a signaling switch as postulated by Olivera and 

Storey (Olivera-Martinez and Storey, 2007). Then we used the signaling dynamics as the input to 

evaluate the performance of the underlying transcription network in its ability to generate pattern 

of wild type cellular states as observed in wild type. Our results suggests that interaction strength 

among network partners is the dominant predictor of the response of the GRN. Our results show 

that signaling interaction can give rise to various developmentally observed phenotypes based on 

a subset of interaction parameters, and these behaviors are stable to minute changes in these 
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parameters. Our results also suggest that strength of transcriptional activation/repression can 

modulate the response of GRN to a given overlying information.  Further, due to intensive cross-

regulation the system is robust to noisy signal. Finally, we outline conditions that could explain 

the in vivo observed behavior of the postulated GRN during NP maturation.  

 

Methods 

Transcriptional regulation of genes in the interaction network were modeled by differential 

equations describing the rate of change of mRNA and protein (Santillan, 2008; Sherman and 

Cohen, 2012; Shi et al., 2017), as follows 

mRNA dynamics: 

��
�� �  �� �� �  	���� 

Protein dynamics: 

�

�� �  ����� �  	�
�� 

,where, 

 �� = Transcription rate constant.  	�= mRNA decay rate constant.  ��= Translational rate 

constant.  	�= protein decay rate constant. 

M and P are mRNA and protein concentrations, respectively. 

 �� , ��, ��, ��; are Hill functions describing regulatory interaction by upstream factors. 

Hill function describing activation is of the form: 
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,where � is the concentration of activator protein, �� is the Hill constant and n is the Hill 

coefficient of cooperativity. 

Multiple activators can be described with the equation 

 �� �
� �1
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The Hill function describing repression is of the form: 

 �� � 1
1 � � �

��


� 

,where � is the concentration of repressor protein, �� is the Hill constant and m is the Hill 

coefficient of cooperativity. 

Multiple repressors can be described with the equation 

 �� � 1

1 � � �1
�1�


��

� � �2
�2�


��
 

Finally, a regulation where both an activator and a repressor act together can be represented with 

the equation: 

AND configuration: Where activator and repressor can bind on separate regulatory regions. 
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OR configuration (Competitive inhibition): Where activator and repressor competes for a 

regulatory region. 

 �� �
� �

��


	

1 � � �
��



	

� � �
��



�  

In case of a diffusing molecule, a diffusion term, μ 



��
  ,was added on the left side of the 

equation (μ is diffusivity coefficient, x is the spatial dimension). 

Differential equations representing the interaction network were numerically solved using 

MATLAB solver. Partial differential equations showing interactions among factor with diffusing 

molecules were solved using MATLAB pdepe solver. Ordinary differential equations were 

solved using MATLAB ode45 solver. MATLAB was also used to plot the simulations of the 

equation systems. 

 

In situ hybridization 

Analysis of gene transcription by in situ hybridization was done using digoxigenin (DIG)-labeled 

antisense RNA probes synthesized and hybridized using standard protocol (Wilkinson and Nieto, 

1993).  Briefly, embryos were harvested at the appropriate stage and fixed with 4% 

paraformaldehyde diluted in 1x PBS at 4° C overnight, before processing for in situ 

hybridization.  After a series of washes, embryos were exposed overnight in hybridization 
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solution to DIG-labeled antisense RNA probes against Pax6, Nkx1.2, Bra, Sox2, Cdx4 or Ngn2.  

mRNA expression was detected using an Alkaline Phosphatase coupled Anti-DIG antibody 

(Roche) and developing embryos with nitro-blue tetrazolium salt (NBT, Thermo Scientific) and 

5-bromo-4-chloro-3-indolyl-phosphate (BCIP, Biosynth) at room temperature until dark purple 

precipitate deposited revealing the areas of gene transcription. Post-development, embryos were 

washed with 1x TBST and then fixed in 4% PFA.   

 

Results and discussion 

 

FGF-WNT-RA signaling interaction network could drive signaling switch under specific 

conditions 

For the objective of simulating signaling dynamics, we based our model on previously 

experimentally defined regulatory interactions between FGF, WNT and RA signaling factors 

(Diez del Corral et al., 2003; Olivera-Martinez and Storey, 2007). As several FGF and WNT 

factors are transcribed within and around the caudal neural plate performing redundant function 

(Lunn et al., 2007; Olivera-Martinez and Storey, 2007), for simplicity we focused on the factors 

shown to have the most influence on the system: FGF8 and WNT8C (Olivera-Martinez and 

Storey, 2007).  Fgf8 is transcribed in the caudal stem zone (Fig 1A), where it inhibits Raldh2 

transcription (no RA production), and promotes Cyp26a transcription (high RA degradation) 

(Diez del Corral and Storey, 2004). In the caudal stem and transition zone, FGF8 also activates 

Wnt8c transcription (Olivera-Martinez and Storey, 2007). WNT8C then induces Raldh2 

transcription in the region where activation outcompetes FGF8-mediated repression (Olivera-
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Martinez and Storey, 2007). RA produced by RALDH2 activity diffuses into the caudal spinal 

cord from Raldh2 expressing somites where it inhibits Fgf8 transcription (Diez del Corral and 

Storey, 2004; Kumar and Duester, 2014). Together these interactions give rise to an extended 

negative feedback loop (Fig 2A). Our model also postulates a positive autoregulation of Raldh2 

by RA, as in developing embryos once activated Raldh2 expression is maintained in the somites 

even in the absence of inducing WNT8C signal. 

Cell proliferation in the stem zone drives the caudal-ward extension of the vertebrate axis 

resulting in differentiated tissues at the rostral end (Henrique et al., 2015). The signaling 

interaction were simulated  in a caudally moving spatial domain of constant length extending 

rostrally from the stem cell zone, thus appearing stationary from the perspective of caudal end 

(Fig 2B). We used partial differentiation equations to simulate the modelling interactions as 

diffusing signaling factor were involved. As each parameter including rate constants of 

synthesis/degradation, diffusion and interactions strengths could potentially impact system 

behavior; for the purpose of our study we focused on varying the interaction parameter, namely, 

Hill constant; keeping rest of the parameters unchanged. Hill constant in the Hill equation is the 

concentration of a factor at which the rate of reaction, regulated by the factor, is half of the 

maximum possible rate. Hence, Hill constant can act as the measure of interaction strength 

(Supplemental information, Fig S1).   

The model simulates how the signaling interaction system will behave with a given initial 

exponential Fgf8 transcript gradient in a spatial domain, generated as a result of the caudal 

movement of the stem zone which is the source of Fgf8 transcription. Starting with the same 

initial exponential Fgf8 and its inducer concentration and varying the interaction strength 

between FGF, WNT and RA we obtained various temporal signaling information profiles that 
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can be grouped into four broad behaviors: FGF-dominant, FGF-RA balance, FGF-RA switch, 

and aberrant. 

FGF8 dominance: Interaction conditions where FGF8 dependent repression of Raldh2 

transcription outweighs RA dependent repression of Fgf8 transcription (such as combination I, 

Table 1), the system doesn’t show appreciable Raldh2 transcription and RA production (Fig 2 C, 

Fig S2). Such a system would lead to maintenance of pluripotent stem progenitor cells without 

differentiation. 

 

Table 1. Hill constant values for various observed signaling factor 
dynamics 
Hill 
constants 

I II III IV V VI 

FFW 10 10 10 10 10 10 

FFR1 1 1 5 10 10 10 

FFR2 2 10 15 10 10 10 

WWR 1 1 0.2 0.5 0.2 0.5 

RRF 10 1 0.2 0.1 0.3 0.45 

RRR 50 50 50 50 50 50 

 

 

 FGF8-RA balance: Under appropriate interaction conditions; FGF8, WNT8C and RA signaling 

domains settle to a stable steady state profile after initial dynamics (II, Table 1; and Fig 2D, Fig 

S2A, B ). Such steady state is achieved when the activating and repressive interactions of the 

system have reached an equilibrium, and if other conditions don’t change (such as:  speed of 

caudal movement), then the differentiation front, as defined by the region of overlap of FGF8 
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and RA (Goldbeter et al., 2007), will continue to move caudally along with the stem zone at the 

same speed.   

FGF-RA switch: The most interesting behavior obtained from simulation is where the system 

starts with an initial Fgf8 mRNA gradient and ends with high, broad RA distribution (III, Table 

1; and Fig 2E, Fig S1A). This behavior simulates the possibility where the system starts with a 

stem cell zone and as time progress the differentiation front move closer and closer to the stem 

cell zone finally overtaking the stem zone. As the differentiation front moves closer to the caudal 

end, the size of the stem cell zone decreases progressively and in the end a fully differentiated 

region is left. Importantly, this is the mechanism by which axial elongation is thought to cease in 

embryos (Cunningham et al., 2016; Olivera-Martinez et al., 2012). The speed of differentiation 

also depends on interaction that in turn could possibly determine the axial length (IV, V, VI; Fig 

3A, B, and C). 

Aberrant behaviors: In addition to above described behavior, the FGF-WNT-RA interaction 

system also resulted in certain ‘unnatural’ profiles that we termed as aberrant behaviors. 

Especially in the absence of strong RA feedback on Raldh2 production, we observed a peak of 

RA signaling abutted by RA deficient region on either side or temporal oscillation in the size of 

FGF-RA domains (Table S1 VII, VIII; Fig S3).  

Altogether, our results show that the FGF8-WNT8C-RA interaction network as postulated by 

Olivera-Martinez et al. (Olivera-Martinez and Storey, 2007) could indeed give rise a signaling 

switch that could travel caudally with the caudal elongation of embryonic axis. However, the 

behavior of the switch depends on the interaction parameters, which regulates the position and 

the speed of the differentiation font.  
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Transcription factor interactions dictates the transcription factor domains driven by the 

signaling switch 

For the objective of simulating transcription factor dynamics, FGF-RA balance profile was 

chosen as the representative signaling input for the downstream transcription network. The 

simulation focused on the transcriptional profile of a cell that is located in the stem cell zone at 

the start of simulation (t=0). As the time proceeds, this cell exits out of the stem zone and 

progressively matures (Fig 4A). For simplicity, the cell is assumed not to undergo any cell 

division during its maturation from NMP state to the neurogenic state. As the NMP domain and 

associated signaling domain moves caudally, this cell is stationary, however, from the point of 

view of the NMP domain it appears to move rostrally, thus experiencing a switch from high 

FGF-low RA to low FGF-high RA signaling profile (Fig 4B). Additionally, from the point of 

view of the cell the spatial signaling information is perceived temporal information. The 

temporal change in signaling information drives temporal changes in transcription factors 

expression. Cells exiting out the NMP domain go through the same changes in the transcription 

factor expression as they are under the same signaling input, for the case of FGF-RA balance 

profile. As these cells are arranged spatially in order of their birth, from the caudal NMPs to the 

rostral differentiated cells, the temporal changes in transcription factors give rise to spatial 

changes in profiles. 

Previously our and other groups have described the transcription factor network regulating 

graduation maturation of NMPs into neurogenic cells (summarized in Fig 4C). We simulated 

the expression domain of these markers to study the role of transcription factor interactions 

strengths in properly regulating the maturation events. We also included two putative factors, X 

and Y, for CDX4 and PAX6 dependent indirect repression (Joshi et al., 2019).   
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FGF8 is involved in activating genes including T (Bra) and Cdx4 at the caudal end (Bel-Vialar et 

al., 2002; Boulet and Capecchi, 2012). Wnt8c is involved in the activation of Nkx1.2 (Tamashiro 

et al., 2012) and Cdx4 (Nordstrom et al., 2006). Nkx1.2 in turn inhibit itself (Tamashiro et al., 

2012)  and is indirectly inhibited by Cdx4  (Joshi et al., 2019).  Pax6 is activated by CDX4, and 

that activation depends on presence of RA (Joshi et al., 2019). RA also independently activate 

Pax6 (Novitch et al., 2003). In addition, NKX1.2 inhibits Pax6. PAX6 is the sole activator Ngn2 

(Bel-Vialar et al., 2007), which is inhibited indirectly by CDX4 (Joshi et al., 2019). X is a 

putative repressor downstream of CDX4, whose expression is assumed to be negatively 

regulated by FGF8; that is responsible for CDX4 dependent repression of Nkx1.2 in the early NP. 

Similarly, Y is a putative repressor downstream of PAX6, also assumed to be inhibited by FGF8, 

that is responsible for PAX6 dependent inhibition of Cdx4 in late NP (Joshi et al., 2019). 

An overview of the interactions suggests that the spatial dynamics of the signaling factor 

network would be sufficient to drive the transcription network and give rise to the correct spatio-

temporal generation of fates. As FGF8 concentration is high on the caudal (left) side of spatial 

domain and RA is high on the rostral (right) side of spatial domain, transcription factors 

regulated by each should be present only on their respective side. In the middle the cross-

repressive interaction should be able to achieve the observed transition in cellular state. 

However, if all the interactions in the network are equally moderate (Hill constants =20, Fig 4D) 

or equally strong (Hill constants =2, Fig 4E), than the network doesn’t result in proper spatial 

resolution of temporal states seen in wild type embryos. Only a subset of interaction strengths, 

on such condition set listed in Table2, give rise to correct spatial order of identities (Fig 4F). 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2019. ; https://doi.org/10.1101/668640doi: bioRxiv preprint 

https://doi.org/10.1101/668640
http://creativecommons.org/licenses/by-nc/4.0/


Table 2: Hill constant for correct spatio-temporal distribution of cellular states. 

Hill constants Description Value 

��
 FGF8 dependent activation of T 10 

��� 

FGF8 dependent activation of Sox2 50 

��� FGF8 dependent activation of Cdx4 5 

��� FGF8 dependent repression of X 1 

��� FGF8 dependent repression of Y 1 

��� WNT8C dependent activation of Nkx1.2 10 

��� WNT8C dependent activation of Cdx4 10 

��
  

SOX2 dependent repression of T 20 

�
� 

T dependent  repression of Sox2 2 

��� NKX1.2 dependent repression of Nkx1.2 100 

��� NKX1.2 dependent repression of Pax6 20 

��� CDX4 dependent activation of X 10 

��� CDX4-RA complex dependent activation of Pax6 10 

��� 

RA dependent activation of Sox2 1 

��� RA dependent activation of Pax6 10 

��� X dependent  repression of  Nkx1.2 1 

���� X dependent  repression of Ngn2 1 


�� PAX6 dependent activation of Y 5 


��� PAX6 dependent activation of Ngn2 20 

���  Y dependent repression of Cdx4 5 
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Signaling factors encode spatio-temporal information read out by the transcription 

network 

To evaluate the individual role of signaling and transcription factors in driving maturation 

events, we tested for changes in the transcription readout upon disruption in the signaling 

information or transcription regulations. First, we tested the response of the transcription network 

to the noise in overlying signaling information.  In the simulations, both periodic disturbance 

(Fig 5A) and random noise (Fig 5B) were very much tolerated by the transcription network 

without any distortions in the spatio-temporal resolution of the cellular states. This suggest that 

transcription network has built in robustness to the extrinsic noise. 

Then, we evaluated the role of signaling gradients in determining the spatio-temporal resolution. 

Replacing the exponential gradient of all the signaling factors with a Boolean switch (Fig 5C) or 

with linear gradients (Fig 5D), resulted in loss of proper resolution of transition zone identity. 

This suggests that the signaling factors encode the spatial information which otherwise is absent 

in the transcription network. A change in the spatial information will result in different read out 

by the transcription network.  

We previously proposed a central role of CDX4 in regulating proper maturation of NPs in the 

PNT. To theoretically test the role of CDX4 in the transcription network in silico, we evaluated 

the transcription profile generated by increasing (Fig 6A), elimination (Fig 6B) and with noise in 

CDX4 activity (Fig 6C). Gain of Cdx4 downregulated Nkx1.2 and Ngn2 transcription, similar to 

what we have shown in vivo (Joshi et al., 2019). Conversely, loss of Cdx4 leads to overlap in 

expression domains of Nkx1.2, Pax6 and Ngn2. In ovo experiments lacked a proper knockdown 

strategy, and were supplement by overexpression of repressive form of CDX4 rather than a 
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genetic knockout. Hence, there are discrepancies between the loss of Cdx4 simulation output and 

phenotypes obtained from ENRCDX4 overexpression experiments. Both overexpression and loss 

of Cdx4 simulations suggest the role of Cdx4 in proper segregation of transition zone and neural 

tube identities. We investigated the robustness of the system by introducing noise in the 

transcription of Cdx4, that was observed to be well tolerated by the GRN 

 

Conclusions 

 

Signaling factor simulation recapitulates signaling dynamics observed in natural systems. 

Our simulations describe the various behaviors the FGF8-WNT8C-RA system can exhibit under 

various possible interaction conditions. We propose a model of vertebrate body extension where 

by modulating interaction strength by the means of transcriptional-epigenetic factors, a 

combination of described behaviors could regulate spatio-temporal dynamics involved in 

vertebrate body extension.  For example: initially the system could start with FGF dominant 

system, then switch to FGF-RA balance to continue steady extension of the axis and finally 

move to FGF-RA switch mode to end any further elongation of the body axis. Indeed the FGF8-

RA balance system could explain the elongated axis of some vertebrates, such as snakes, that has 

numerous vertebrae and a long neural tube form. The third behavior, FGF-RA switch describes a 

process that involves RA signaling overtaking the FGF signaling in the progenitor/stem cell 

spatial field causing the cells to differentiate, and eliminating all precursor cells that could 

elongate the body axis. The time duration of RA takeover could also decide the length of the 

body axis, as faster RA takeover will lead to shorter body axis and vice versa.  
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Interaction strengths dictate the interpretation of signaling information. 

Strength of cross-regulatory interactions (here Hill constants) are important in determining the 

output of the signaling information. In other words, systems can use same signaling information 

to drive different physiological outputs by playing with the interaction strengths of the 

transcription regulation. As observed in simulations (Fig 4C, 4D and 4E), varying the Hill 

constants resulted into different spatio-temporal dynamics of the transcription network under the 

same signaling information. The interaction strength is a measure of the threshold of regulatory 

factor required for transcription factor regulation. A possible way of modulating the threshold is 

via modulating strength of the enhancer. A weak enhancer requires a greater amount of regulator 

to be active, hence a higher Hill constant. Conversely, a strong enhancer is active even with low 

amounts of regulator due to its lower Hill constants. By utilizing enhancers of different strength 

or by varying the strength of an enhancer, transcription factor expression dynamics could be 

varied in a natural system (Miyagi et al., 2006; Simmons et al., 2001; Woodcock et al., 2013).   

In living systems, one of the ways of modulating strength of an enhancer is by epigenetic 

regulation (Calo and Wysocka, 2013). Chromatin modification, by masking/unmasking enhancer 

regions, modulates the ability of transcription factors to bind to regulatory regions (Doyle et al., 

2014; Kim et al., 2004; Patel et al., 2013; Plachetka et al., 2008). Also epigenetic modification of 

histone residue can modulate the activity of enhancers (Stonestrom et al., 2015; Wu et al., 2011; 

Zhang et al., 2012). Another possible way of regulating the strength of enhancer interaction is the 

presence of cofactors (McClellan et al., 2013; Merino et al., 2015). In fact, a combination of 

chromatin and cofactors determines the enhancer activity during development (Fry and Farnham, 

1999; Voss and Hager, 2014). Altogether, the data about regulatory strengths could be tested in 

vivo to validate the model and further refine the parameter set. 
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Transcriptional network recapitulates NMP to neurogenic state transition as seen in caudal 

neural tube. 

Results from our in silico simulation reemphasize the role of CDX in coordinating upstream 

signaling factors and downstream transcription network. In the present model, CDX4 plays a 

determining role in generation of caudal transition zone (Nkx1.2+ Pax6- Ngn2-) and rostral 

transition zone (Nkx1.2- Pax6+ Ngn2-).  In the Cdx4 manipulation simulations (Fig 6), Cdx4 

overexpression results in loss of Nkx1.2 and Ngn2 suggesting that CDX4 promotes acquisition of 

rostral transition identity, and inhibits both caudal transition identity and neurogenic identity. As 

in the present model RA limits CDX4’s regulation of Pax6, over loading the system with CDX4 

didn’t expand its caudal domain of expression. Conversely, in the loss of Cdx4 results in 

expansion of Nkx1.2 and Ngn2 domains rostrally and caudally, respectively; suggesting the role 

of CDX4 in separating caudal transition zone from neurogenic zone. In these conditions, changes 

in Pax6 domain weren’t significantly altered, even in the absence of CDX4, because RA was 

able to activate Pax6. However, due to expansion of Nkx1.2 and Ngn2 the rostral transition 

identity was lost. Both gain and loss of Cdx4 simulations suggest that CDX4 is involved in 

establishing rostral transition zone (Nkx1.2-Pax6+Ngn2-) that separates caudal transition zone 

(Nkx1.2+Pax6-Ngn2-,) from neurogenic zone (Nkx1.2-Pax6+Ngn2+), hence regulates the pace 

of differentiation. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure legends 

Figure 1. FGF-WNT-RA signaling results in nested transcription factor expression 

domains in the caudal spinal cord. A) Schematic representing expression domain of Fgf8. 

Wnt8c and Raldh2 in caudal spinal cord and consequent transcription factor domains as bars on 

left in a stage HH10-11 chicken embryo. B) Expression domains of key transcription factors 

involved in caudal spinal cord maturation detected via in situ hybridization. C) Postulated gene 

regulatory network showing interaction between signaling factors and transcription factors. 

 

Figure 2. FGF-WNT-RA signaling interaction could result into various dynamic behaviors. 

A) Schematic representing interaction among FGF8, WNT8C and RA signaling. B) Schematic 

showing the spatial domain of constant length moving caudally at a constant rate where signaling 

interactions were simulated. Initially the entire domain is undifferentiated tissue that later start 

differentiating at the rostral end with the differentiation domain overtaking the undifferentiated 

domain proportion. C) Heat-map depicting FGF8 (left) and RA (middle) spatial domains over the 

duration of simulation in the region of focus. Left panel shows expression domains of FGF8 

(red), WNT8C (pink) and RA (purple) at t=6000 min.  

 

Figure 3. Spatio-temporal dynamics FGF-RA switch dictates length of body axis. A, B and 

C) FGF-RA mutual repression dictates the temporal duration of FGF-RA switch that in turn 

dictates the length of body axis. 

 

Figure 4. Transcriptional interaction strengths dictates the response to the overlying 

signaling information. A) Schematic of spatio-temporal domain of simulation of transcription 

factor interactions and response to signaling input. The circle represent the reference cell that is 
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exposed to the overlying dynamic signaling information. B) Reference signaling factor input for 

simulation in D. C) Schematic of interactions between transcription and signaling factors. X  and 

Y are  hypothetical candidates responsible for CDX4 and PAX6 dependent indirect repression, 

respectively. D) Transcription profile of cell with all interactions equally moderate (hill 

constants=20), E) all interaction equally strong (hill constants=1), and F) interaction defined in 

Table 2. 

 

Figure 5. Signaling information is important in defining transcription factor domains. 

Noisy A) oscillatory or B) random fluctuation in signaling information affect transcriptional 

factor expression domains compared to Fig 4F. Manipulating signaling gradient information 

from exponential to C) discrete or D) linear also affect transcriptional factor expression domains 

compared to Fig 4F. 

 

Figure 6. CDX4 regulate transcription factor domains downstream of signaling 

information. A) Loss of Cdx4 expression expands Nkx1.2 and Ngn2 domains, with small 

reduction in Pax6 domain. B) Overexpression of Cdx4 reduces Nkx1.2 and Ngn2 domains. C) 

Noisy transcription of Cdx4 has very minute effect on transcription factor domains. Grey empty 

rectangle depicts loss in spatial expression and black filled rectangle depict gain of expression of 

particular gene compared to expression domain in Fig 4F. 
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Supplementary information 

Supplementary figure legends 

Figure S1. Hill constant determine the strength of activating/repressive interactions. For a 

constant amount of activator (A), downstream targets with lower Hill constant (H1=1 vs H4=100) 

have higher rate of production with a higher value of final concentration. In the case of graded input 

of activator (B), downstream targets with lower Hill constant are activated first. For a constant 

amount of repressor (C), downstream targets with lower Hill constant have faster decline in 

concentration with a lower value of final concentration. In the case of graded input of repressor (D), 

downstream targets with lower Hill constant are repressed first. Blue: Input. Red: Hill constant 

(H1) =1. Orange: Hill constant (H2) =10. Purple: Hill constant (H3) =20. Green: Hill constant (H4) 

=100. 

 

Fig S2. FGF-WNT-RA signaling interaction results in different stable mRNA profiles.  mRNA 

profile associated with protein profile at t=6000 min shown in in Fig 2C left panels. B) FGF-RA 

balance simulation ran for t=30,000 min show the profile it stable for longer simulation time too. 

 

Fig S3. Unnatural RA profile in the absence of positive RA feedback. Weak positive feedback of 

RA on Raldh2 production results in A) Aberrant RA peak in the middle of spatial field or B) 

oscillatory RA behavior. 
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