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Abstract 
Somatic structural variants play a significant role in cancer development and evolution. 

Accurate detection of these complex variants from whole genome sequencing data is 

influenced by many variables, the effects of which are not always linear. With increasing 

demand for the application of whole genome sequencing in clinical settings, there is an unmet 

need for clinician scientists to easily make technical decisions for every unique patient and 

sample. To address this, we have developed Shiny-SoSV, an interactive web application for 

evaluating the effects of five common variables on the sensitivity and precision of somatic 

structural variant calls, thereby enabling users to quickly make informed sequencing and 

bioinformatics decisions early on in their study design. 

 
Availability: Shiny-SoSV is freely available at https://hcpcg.shinyapps.io/Shiny-SoSV and 

source code available at https://github.com/tgong1/Shiny-SoSV 

 

Introduction 
Somatic structural variations (SVs) are large (> 50 bp) genomic rearrangements that arise in 

tumours and significantly contribute to cancer development and progression (Tubio, 2015; 

Northcott et al., 2014; Baca et al., 2013). The advent of next generation sequencing (NGS) 

has facilitated an increase in the efficiency and accuracy of detecting somatic variants in 

cancer genomes. However, due to limitations of short-read NGS, large SVs can only be 

inferred through alignment signatures. For example, read pairs that map farther apart than 

expected are suggestive of a deletion event. Attempts to improve SV detection have thus 

spurred many computational developments, resulting in the publication and availability of 

numerous SV detection tools (Chen et al., 2009; Ye et al., 2009; Rausch et al., 2012; Layer 
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et al., 2014; Chen et al., 2016; Cameron et al., 2017). These tools are based on different, 

sometimes overlapping, algorithms and therefore can differ substantially in their sensitivity 

and breakpoint precision (Liu et al., 2015; Tattini et al., 2015).  

 

SV detection is further complicated in cancer samples due to variable tumour purity 

(proportion of cancer to non-cancerous cells in a sample) and variant allele frequency (VAF, 

proportion of the sequencing reads harbouring the variant at a given genomic locus). 

Although histopathology can provide an overall estimate of tumour purity, it typically only 

reflects the upper bound of observed VAF, due to the possibility of sub-clonality. Moreover, 

although deeper sequencing may increase sensitivity, numerous studies have shown that the 

benefit of increasing coverage does saturate (Chaisson et al., 2019; Griffith et al., 2015; Sims 

et al., 2014). Thus, knowing how much sequencing depth to increase is not obvious with 

decisions typically based on experience or “gut instinct”.  

 

Taken together, there are many alterable variables that can affect somatic SV detection in 

NGS analyses. Yet, informed decisions on these variables are rarely easy, especially by non-

bioinformaticians in clinical settings. To address this, we have developed Shiny-SoSV, a web-

based interactive application to help evaluate and guide decisions on modifiable parameters 

impacting SV detection in cancer genomes.  

 

Methods 
Simulation data generation and Somatic SV calling 
To evaluate the sensitivity and accuracy of SV detection, a simulation study was devised. In 

short, two sets of SVs including six SV types (deletion, duplication, inversion, domestic 

insertion, foreign insertion and translocation) were simulated using SVEngine (Xia et al., 

2018). SVs were randomly distributed along the genome (GRCh38) without overlap, masking 

gap, centromeric and telomeric regions as recommended (Dixon et al., 2018; Xia et al., 2018). 

The first set of 1,200 SVs were used as germline SVs and spiked into both the germline and 

tumour genomes (fasta). The second set of 1,200 SVs were used as tumour SVs and further 

added to the tumour genome. Paired short-reads were sampled using SVEngine (Xia et al., 

2018) from the altered fasta (detail in Supplementary Methods), then aligned to GRCh38 

using BWA-MEM (Li and Durbin, 2009), generating alignment bam files. Tumour purity (VAF) 

was emulated by merging different ratios of normal to tumour aligned reads to create the final 
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tumour bam files. Here, tumour purity and VAF are used interchangeably as SVs are 

assumed independent of each other. In all, 216 pairs of bam files, imitating varying depths of 

coverage of the normal samples (15x, 30x, 45x, 60x, 75x, 90x), tumour samples (20x, 30x, 

45x, 60x, 75x, 90x) and VAF (5%, 10%, 20%, 50%, 80%, 100%) were generated, each then 

replicated three times for a total of 648 datasets.  

 

Somatic SVs were called using three SV callers (Manta, Lumpy and GRIDSS) for each 

tumour/normal pair. The union and intersection callsets for each pair of SV callers were also 

generated (see Supplementary Methods), resulting in a total of 15 callsets for each simulated 

dataset. Sensitivity and precision of SV calls were determined by comparing against the set 

of simulated tumour SVs, requiring matching SV type for consideration as true positives, and 

evaluating precision of breakpoint positions. Further details of the evaluation criteria for true 

and false positive calls are in Supplementary Methods. 

 
Prediction model fitting 
Predictions of sensitivity and precision were based on a generalised additive model (GAM), 

fitting on SV caller, VAF, depth of coverage of tumour and normal samples and breakpoint 

precision threshold as predictors. The choice of GAM was motivated by non-linear 

relationships observed between some response and predictor variables (Figure S3). In 

particular, we found that VAF has a non-linear effect on sensitivity, and both VAF and 

breakpoint precision threshold have non-linear impact on precision. Therefore, smooth 

functions were applied to these predictors using restricted maximum likelihood (Wood, 2011). 

As the response variables are proportions with values between 0 and 1, the beta regression 

(betar) with logistic link function was used. See Supplementary Methods for full model 

specification with implementation using the R package mgcv (Wood, 2011). 

 

Web-application design 
The web application was developed using R shiny v1.3.2 to provide a visual platform for 

evaluating the behaviour of sensitivity and precision with various predictor variables through 

two main interactive plots. Comparison and interaction effects of two or more predictors are 

possible by selecting additional variable, including selection of multiple SV callers via 

checkboxes and one or more numeric parameters via slider bars or checkboxes. Parameter 

values are easy to change and evaluation plots can be interpreted quickly. To enhance 

usability, Shiny-SoSV includes a user guide and example use cases. 
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Results 
To illustrate the utility of Shiny-SoSV, we present a common use case.  

 

Suppose, based on histopathology, a user is aware their cohort of cancer samples have 

tumour purities between 20% and 60%, and they want to know to what depth of coverage 

they should sequence their tumour samples, assuming all matched normal samples will be 

sequenced to the default of 30x.  

Fig. 1. Shiny-SoSV interface. Shown are sensitivity and precision estimates evaluated across variant 
allele frequency. In this example, the performances of two SV callers and their union callsets (distinguished 
by line colours) are displayed for three different tumour depths of coverage settings (line types). 
Confidence intervals of all estimates are shown as grey ribbons. 
 

To address this using Shiny-SoSV, as demonstrated in Figure 1, the user could select to 

evaluate the effect of “Tumour purity/VAF” (“Evaluation across”) on either or both “Sensitivity” 

and “Precision” (“evaluation measurements”). On the side bar, they could select individual or 

combination(s) of SV callers (e.g. Manta, Lumpy, and their union set) for comparison and 

select up to three tumour coverage settings (e.g. 30x, 60x and 90x) simultaneously, while 

keeping all other parameters unchanged. From this, it is immediately obvious that VAF has 

a great impact on sensitivity, while little impact on precision. Sensitivity of all SV callers 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 12, 2019. ; https://doi.org/10.1101/668723doi: bioRxiv preprint 

https://doi.org/10.1101/668723
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shiny-SoSV  Gong, et al. 2019 

 5 

increases rapidly from VAF of 5% to 30%. At VAF > 30%, improvements in sensitivity notably 

slows for all SV callers, with Manta showing relatively larger improvements until it reaches 

the limit with this combination of parameters. Depending on the user’s budget and objective 

(i.e. acceptable sensitivity and precision level), they may elect to sequence at 30x using the 

SV caller(s) chosen (e.g. union set of Manta and Lumpy) for all tumour samples. Alternatively, 

they may decide to forgo samples with tumour purity < 30%, which may free up resources 

allowing remaining tumour samples to be sequenced to 60x or even 90x depth of coverage.  

 

Conclusion 
Shiny-SoSV provides an easy to use and visually interactive platform for evaluating the 

effects of multiple variables impacting somatic SV detection. The current release allows 

evaluation of five common effectors of SV calls and three popular SV callers. Inclusion of 

addition SV callers can easily be incorporated with existing simulation datasets, while 

assessment of additional variables (such as mapping quality, insert sizes and nucleotide 

complexity) can be achieved with further simulation datasets. In sum, we believe Shiny-SoSV 

will enable bioinformatician, as well as non-bioinformatician, the ability to optimally design 

whole genome sequencing experiments for detecting SVs in cancer genomes. 
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