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Abstract

Label-Free Quantitative mass spectrometry based workflows for dif-
ferential expression (DE) analysis of proteins impose important chal-
lenges on the data analysis due to peptide-specific effects and context
dependent missingness of peptide intensities. Peptide-based workflows,
like MSqRob, test for DE directly from peptide intensities and outper-
form summarization methods which first aggregate MS1 peptide inten-
sities to protein intensities before DE analysis. However, these meth-
ods are computationally expensive, often hard to understand for the
non-specialised end-user, and do not provide protein summaries, which
are important for visualisation or downstream processing. In this work,
we therefore evaluate state-of-the-art summarization strategies using a
benchmark spike-in dataset and discuss why and when these fail com-
pared to the state-of-the-art peptide based model, MSqRob. Based on
this evaluation, we propose a novel summarization strategy, MSqRob-
Sum, which estimates MSqRob’s model parameters in a two-stage
procedure circumventing the drawbacks of peptide-based workflows.
MSqRobSummaintains MSqRob’s superior performance, while provid-
ing useful protein expression summaries for plotting and downstream
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analysis. Summarising peptide to protein intensities considerably re-
duces the computational complexity, the memory footprint and the
model complexity, and makes it easier to disseminate DE inferred on
protein summaries. Moreover, MSqRobSum provides a highly modu-
lar analysis framework, which provides researchers with full flexibility
to develop data analysis workflows tailored towards their specific ap-
plications.

1 Introduction
Label-Free quantitative (LFQ) mass spectrometry (MS) based workflows
have become standard practice in quantitative proteomics (e.g. Goeminne
et al. [2018], Tebbe et al. [2015]). This technology typically starts with
protein extraction followed by an enzyme digestion step to produce shorter
peptides. The thus obtained peptide mixture is then analyzed in a mass
spectrometer where intact peptide masses and their intensities are measured,
resulting in a so-called MS1 spectrum. In typical LFQ, the intensities of the
thus recorded peaks are taken as proxies for peptide abundance. In order
to identify the peaks observed in the MS1 spectrum, these peaks are first
isolated in the instrument, and then subjected to fragmentation. Each of the
resulting fragmentation spectra (so-called MS2 spectra) is then used for pep-
tide identification. In LFQ, each sample is separately analyzed on the mass
spectrometer, and differential expression is obtained by comparing relative
intensities between runs for the same identified peptide. Goeminne et al.
[2018]

However, this workflow also induces challenging data analysis problems.
First, different peptides from the same protein often have very distinct physio-
chemical properties, leading to large differences in their MS1 intensities even
though these peptides are all equally abundant (Supplementary Figure 1
panel A1). Second, due to technological constraints not all peptides can be
subjected to fragmetation. Indeed, only those peptides with the highest MS1
intensities within a certain retention window are typically selected for frag-
mentation. Tu et al. [2014] As a result, the identification in any given run
depends not only on the abundance of that peptide, but also on the abun-
dances of any co-eluting peptides. There can thus be context-depending
missingness in a given run. Moreover, there are many other potential sources
of (random or non-random) missingness, including peptide misidentification,
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ambiguous matching of MS1 peaks, and poor quality MS2 spectra. Lazar
et al. [2016] Hence, there is considerable variation in terms of the peptides
that are identified in each of the different MS runs in an experiment. Taken
together, the identification issue and the peptide specific effects on quantifi-
cation have a severe impact on the downstream summarization of peptide
intensities towards protein abundances. Goeminne et al. [2015]

Indeed, because of these issues, simple summarization methods such as
the mean or median peptide intensity are known to give unreliable protein
abundance estimates Goeminne et al. [2015] and more advanced summariza-
tion strategies have therefore been proposed for LFQ data in the literature
Silva et al. [2005], Cox et al. [2014], Zhang et al. [2018], Choi et al. [2014].
In Figure 1 panel A we show the performance of these different data analy-
sis strategies on a benchmark dataset. Notably, we observe huge differences
in performance between the different summarization strategies, which are
driven by the absolute abundance, and any differences in this abundance, of
a protein between conditions. Moreover, none of the summarization strate-
gies outperforms the others across all conditions.

In order to avoid these summarization issues, peptide-based models, such
as MSqRob Goeminne et al. [2016], allow to test for differentially expression
(DE) of proteins directly from the observed peptide intensities. The result
is that these methods uniformly outperform summarization based methods
(Figure 1 panel A). Indeed, by modeling peptide intensities directly, MSqRob
naturally accounts for differences in peptide characteristics, and for differ-
ences in the number of identified peptides for a given protein in each sample,
resulting in a bias reduction and a better uncertainty estimation on the fold
change estimates. However, the MSqRob method also suffers from some
drawbacks compared to summarization methods. MSqRob has to introduce
random sample effects to account for correlation between the peptide in-
tensities for a given protein in the same sample. This makes data analysis
computationally more demanding, renders appropriate degrees of freedom of
the test statistics unavailable, and even approximating these is impossible
due to imbalances in the peptides across samples. The use of random effects
also makes it difficult to disseminate the method towards non-specialised
end-users as the interpretation of the result becomes correspondingly more
complex. Moreover, MSqRob does not readily provide protein summaries for
each sample, which are important for end-users to explore and visualise the
data, and for further processing in downstream applications.

We therefore here introduce a novel estimation strategy for MSqRob us-
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ing a two stage approach, which we call MSqRobSum. MSqRobSum provides
robust protein level summaries that account for peptide specific effects, which
are then further processed using robust ridge regression. Hence, MSqRob-
Sum combines the advantage of MSqRob’s robust inference framework with
the benefits of summarization, which allows fast and modular data analysis
workflows. In addition, these workflows benefit from the straightforward vi-
sualization and interpretation of results at the protein level that is offered
by MSqRobSum. We illustrate the high performance of MSqRobSum on a
spike-in dataset and illuminate why it outcompetes existing state-of-the-art
summarization-based tools for DE in LFQMS-based quantitative proteomics.

2 Materials and methods
We performed a comparison of current state-of-the-art software tools for DE
analysis of proteins on a benchmark spike-in dataset. We compared one
peptide based tool, MSqRob and four summarization based tools: Proteus,
Perseus, MSstats, and Differential Enrichment analysis of Proteomics data
(DEP). For all tools we aimed to use the default workflow as suggested by the
respective documentation. We also introduce our own novel summarization
strategy for DE analysis, MSqRobSum, which aims to maintain MSqRob’s
superior performance while also providing useful protein expression sum-
maries.

2.1 Spike-in Dataset

The performance of MSqRobSum and other state-of-the-art software tools
for differential expression analysis is benchmarked using a publicly available
dataset (PRIDE identifier: PXD003881 Shen et al. [2018]). E. Coli lysates
were spiked at five different concentrations (3%, 4.5%, 6%, 7.5% and 9%
wt/wt) in a stable human background (four replicates per treatment). The
twenty resulting samples were run on an Orbitrap Fusion mass spectrometer.
Raw data files were processed with MaxQuant (version 1.6.1.0, Cox and Mann
[2008]) using default search settings unless otherwise noted. Spectra were
searched against the UniProtKB/SwissProt human and E. Coli reference
proteome databases (07/06/2018), concatenated with the default Maxquant
contaminant database. Carbamidomethylation of Cystein was set as a fixed
modification, and oxidation of Methionine and acetylation of the protein
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Figure 1: Comparison of current state-of-the-art tools for DE anal-
ysis of proteins. We compare one peptide based tool, MSqRob (red) and
four summarization based tools: Perseus (green) and Differential Enrich-
ment analysis of Proteomics data (DEP) with mixed imputation (blue) are
both based on maxLFQ protein intensities. MSstats uses median polish
summarised protein intensities (purple), while Proteus uses high-flyers sum-
marization (green). The data consists of E. Coli proteins spiked at different
concentrations (a, b, c and d) in a human proteome. The plot in Panel A
shows the performance of each method for all pairwise comparisons. MSstats
outperforms Proteus, DEP and Perseus at higher fold changes but drops in
performance to Perseus levels at the lowest fold change. Proteus outper-
forms Perseus at higher fold changes, but is less performant at the lowest
fold change. MSqRob always outperforms the other methods. The box-
plots in panel B show estimated log fold changes of differentially (E. Coli)
and non-differentially (human) expressed proteins in the a vs b comparison.
Perseus has biased fold changes for the E. Coli proteins, but has more precise
fold changes for human proteins than DEP and MSstats. MSqRob has more
precise and more acurrate fold changes than any other method.
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amino-terminus were allowed as variable modifications. In silico cleavage
was set to use trypsin/P, allowing two miscleavages. Match between runs
was also enabled using default settings. The resulting peptide-to-spectrum
matches (PSMs) were filtered by MaxQuant at 1% FDR. In all analyses,
E.coli proteins are labeled as DE (true positives), and all human proteins as
equally expressed (true negatives).

To benchmark performance and FDR control of these different quantifi-
cation strategies, the False Discovery Proportion (FDP) and True Positive
Rate (TPR) of a set of proteins returned by the method were calculated,
with

FDP =
false positives

true positives + false positives
,

and,

TPR =
true positives
all positives

.
We define a set of significant DE proteins as the proteins with a p-value

lower then a certain threshold. The FDP is then the fraction of human
proteins in the set of human and E. Coli proteins recovered, while the TPR
is the fraction of all E. Coli proteins recovered.

2.2 Proteus analysis

We performed the default workflow in the R package Proteus (0.2.9) start-
ing from the PSM values as reported in the evidence.txt file in MaxQuant’s
output.Gierlinski et al. [2018] Proteins that are only identified as contami-
nants or reversed sequences are removed from the data set. The intensities of
PSMs in a given sample that can be assigned to the same peptide sequence are
summed. Peptide intensities are summarised to protein intensities using the
high-flyer method. Silva et al. [2005] Peptides were assigned to their leading
razor protein. Protein intensities are normalized to the median, and median
intensities in each sample are equal. Protein intensities are log2 transformed.

DE of proteins is analysed in Proteus with empirical Bayes moderated t-
tests using the bioconductor limma package Ritchie et al. [2015]. Note, that
we surpress an index for protein in all our model specifications for notational
convenience.
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In the limma analysis the following protein-wise linear models are con-
sidered:

yst = β0 + βtreatment
t + εst

with yst the normalised log2-transformed protein intensity in sample s of
treatment t, β0 the intercept, βtreatment

t the effect of spike-in condition t, and,
εst the protein-wise random error terms, which are assumed to be normally
distributed with mean 0 and variance σ2. The variances σ2 are estimated
with empirical Bayes, which stabilises the estimates by borrowing strength
across proteins. Proteus corrects for multiple testing using the Benjamini-
Hochberg FDR procedure.

2.3 Perseus analysis

We performed a standard Perseus workflow starting from the MaxLFQ pro-
tein summaries calculated by MaxQuant. MaxLFQ protein summaries are
normalized and summarised intensity values for each protein in a given sam-
ple. We can summarise the maxLFQ method as follows. The median ratio
of the common peptides from a protein in all pairwise sample comparisons
is calculated. Non-linear least-squares regression on these ratios is used to
define an optimal protein expression profile across samples. This profile is
rescaled to match the total summed peptide intensities from this protein in
all samples. Cox et al. [2014] MaxLFQ protein summaries, as reported in
MaxQuant’s proteinGroups.txt file were further assessed in Perseus version
1.6.0.7. Proteins that are only identified by a modification site, contami-
nants, and reversed sequences are removed from the data set. Protein-wise
two-sample t-tests on the log2 transformed maxLFQ values are performed
for all pairwise treatment combinations. Perseus corrects for multiple testing
using the Benjamini-Hochberg FDR procedure.

2.4 MSstats analysis

A standard MSstats (version 3.12 Choi et al. [2014]) workflow starts from the
peptide intensities reported in MaxQuant’s evidence.txt file. Peptides with
only one or two measurements across all samples, and peptides that occur in
more then one protein are filtered out. When a peptide is measured multiple
times in a sample, only the maximum intensity is kept. The log2 peptide
intensities are median normalized and missing values are imputed using an
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Accelerated Failure Model (AFM). Peptide intensities are summarised to
protein intensities using Tuckey’s median polish algorithm. Holder et al.
[1979] MSstats build protein-wise linear models on these protein summaries.

yst = β0 + βtreatment
t + εst

with yst the normalised log2-transformed protein intensity in sample s of
treatment t, β0 the intercept, βtreatment

t the effect of spike-in condition t, and,
εst the protein-wise random error terms, which are assumed to be normally
distributed with mean 0 and variance σ2. The multiple testing problem is
corrected using the Benjamini-Hochberg FDR procedure.

2.5 Differential Enrichment analysis of Proteomics data
(DEP)

MaxLFQ values are analysed with the standard workflow in the Bioconductor
software package DEP version 1.2.0. Zhang et al. [2018] Proteins that are
contaminants or that originate from reversed sequences are removed from the
data set. Only proteins with no missing values in at least one treatment group
are kept. The data are normalised using Variance Stabilizing Normalisation
(VSN). von Heydebreck et al. [2002]

Missing values are imputed differently for proteins that are missing com-
pletely at random (MCAR), and proteins that are missing not at random
(MNAR). Lazar et al. [2016] MCAR proteins are defined as proteins ob-
served in at least one replicate for every condition, and these are imputed
with k-nearest neighbors averaging. MNAR proteins are assumed to be miss-
ing under low abundance and are thus considered left-censored data. Proteins
are labeled MNAR when completely missing in at least one condition and
are imputed with a stochastic minimal value approach. In short, a value is
drawn from a normal distribution centered around the first percentile of all
observed protein expressions in the sample, and with a standard deviation
estimated as the median protein-wise standard deviation.

DE of proteins is analysed in DEP with empirical Bayes moderated t-
tests using the bioconductor limma package Ritchie et al. [2015], similar to
the Proteus workflow. Multiple testing is corrected using an empirical FDR
estimation approach as implemented in the R package fdrtool.
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2.6 MSqRob analysis

The data is preprocessed using the MSnBase R/Bioconductor package version
2.6.2. Gatto and Lilley [2011] The analysis is done using the summarised
peptide intensities as reported in the peptides.txt file in MaxQuant’s output.
The data is normalised using Variance Stabilizing Normalisation (VSN). von
Heydebreck et al. [2002] Proteins that are only identified by a modification
site, contaminants, and reversed sequences are removed from the data set.
To avoid ambiguity, peptide sequences attributed to both E. coli and human
proteins are removed. Peptides that are only observed once across all samples
are also removed. Finally, treatments in which a protein is only observed in
one replicate are still included in the DE analysis for this protein.

MSqRob is a linear regression peptide-based mixed model.
We consider the protein-wise models:

ytsp = β0 + βtreatment
t + βsample

s + βpeptide
p + εtsp,

with ytsp the normalised log2-transformed intensity of peptide p in sample s
with treatment t, β0 the intercept, βtreatment

t the effect of spike-in condition t,
βsample
s a random effect that corrects for the correlation in measured expres-

sion levels between the peptides from the same protein in samples (pseudo
replication on the sample level), and, βpeptide

p the effect of peptide p. Again
the error term εtsp is assumed to be normally distributed with mean 0 and
variance σ2.

When only one peptide is measured for a protein in all samples, the model
reduces to:

yts = β0 + βtreatment
t + εts

The parameters for treatment and peptide are tuned using penalised es-
timation by exploiting the link between random effects and ridge regression.

Variability in the parameter estimators is reduced by shrinkage towards
zero when there are only few observations. This protects against overfitting
and makes the estimators more stable and accurate. The influence of outliers
is weighed down by M-estimation using Huber weights. The variance of
the protein-wise random error terms εtsp are again estimated with limma’s
empirical Bayes variance estimator.

Multiple testing is corrected using the Benjamini-Hochberg FDR proce-
dure.
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2.7 MSqRobSum analysis

MSqRob’s mixed model can also be estimated through a two-stage regression
analysis. Molenberghs and Verbeke [2000] Here we first summarise peptide
intensities to the protein level and subsequently test for DE on these protein
summaries.

The same preprocessing is used as for the MSqRob analysis described in
section 2.6. In the first stage we aggregate all normalised peptide intensities
of a protein using robust regression with M-estimation using Huber weights.
We consider the protein-wise linear model:

ysp = βsample
s + βpeptide

p + εsp

With ysp the normalised log2-transformed intensity of peptide p in sample s
and βpeptide

p the effect of peptide p. By encoding the peptide effect as a sum
contrast, βsample

s can be interpreted as the mean intensity in sample s for this
protein. The error term εsp is assumed to be normally distributed with mean
0 and variance σ2

peptide.
In the second stage, we perform an MSqRob analysis on protein intensities

with the reduced model:

yts = β0 + βtreatment
t + εts

With yts the summarised log2-transformed protein intensity in sample s of
treatment t, β0 the intercept, and, the effect of spike-in condition t. Again,
the error term εts is assumed to be normally distributed with mean 0 and
variance σ2. We correct for multiple testing using the Benjamini-Hochberg
FDR procedure.

We can expect a drop in performance in MSqRobSum compared to MSqrob
because we lose information on the measured intensities, and introduce some
random variation during summarization. We also don’t take into account
that the covariance matrix of the estimated sample estimates is highly de-
pendent on the number of measured peptide intensities in the sample Molen-
berghs and Verbeke [2000]. However, we expect that the resulting impact on
performance is minimal in practice.

2.8 Software

Data preprocessing, statistical analysis and figures were done using the R pro-
gramming language version 3.5.1. All R code is open sourced for reproducibil-
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ity (https://github.com/statOmics/MSqRobSumPaper). The MSqRob al-
gorithm has been implemented in R previously. Goeminne et al. [2016] How-
ever, we re-implemented MSqRob in R, and extended it to also allow for our
proposed two-stage parameter estimation strategy, MSqRobSum. Because we
fit a mixed model for each protein separately, we could easily parallelize the
computations, which greatly speeds up the MSqRob and MSqRobSum analy-
sis. In a full MSqRob peptide-level analysis, we typically allow for twenty it-
erations in the M-estimation using Huber weights for robust estimation of the
model parameters. However, the MSqRob protein-level analysis in MSqRob-
Sum only does one iteration by default. This sufficiently robustifies against
outliers while maintaining proper FDR-control. The robust summariza-
tion, MSqrob and MSqrobSum algorithms are implemented as a open source
R package msqrobsum (https://github.com/statOmics/MSqRobSum). The
robust summarization algorithm is also ported to the combineFeatures func-
tion for summarization in the R bioconductor package MSnbase.Gatto and
Lilley [2011]

3 Results
State-of-the-art methods and our novel MSqRob approach are all bench-
marked using a dataset where an E. Coli proteome was spiked at five different
concentrations in a human background. We first compare existing tools for
DE analysis of LFQ based quantitative proteomics, and critically assess why
the performance of summarization based approaches breaks down. Next, we
show that our novel summarization based method, MSqRobSum, maintains
the high performance of the peptide-level based approach MSqRob. We con-
clude this section by illustrating that MSqRobSum unlocks MSqRob towards
modular data analysis workflows and we explain how and why MSqRobSum
improves upon competitive summarization based approaches.

3.1 Comparison between methods

In this section we compare four summarization-based methods (Proteus,
MaxQuant-Perseus, DEP, and MSstats), and one peptide-based model (MSqRob).

The Proteus workflow corrects for missingness of peptides under low abun-
dance by summarizing using the high-flyer method, which provide protein-
level intensities by taking the mean intensity of the three most intense pep-
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tides. Silva et al. [2005] Gierlinski et al. [2018]
However, this method does not correct for peptide specific effects and

removes information by only using the top three peptide intensities. This
introduces variability and bias in the estimated protein summaries (Supple-
mentary Figure 1 panel B2). Indeed, the most abundant peptides typically
differ between samples, leading to a low performance compared to all other
methods (Figure 1 panel A).

The widely used MaxQuant-Perseus workflow is based on MaxQuant’s
MaxLFQ summarization and subsequent statistical analysis with Perseus
using t-tests (Cox et al. [2014]). MaxLFQ corrects for peptide specific effects
by looking at pair-wise abundance ratios of shared peptides between samples.
However, the heuristics in MaxLFQ often remove considerable information,
which leads to increased missingness and imprecise summaries (Supplemen-
tary Figure 1 panel C3). In particular, comparisons that involve low spike-in
concentrations often have too few shared peptides between samples, i.e. less
than two, and these ratios are considered to be unreliable for summariza-
tion. Even though MaxLFQ corrects for peptide species by calculating ratios
for shared peptides, it still appears to produces biased fold change estimates.
The use of t-tests also results in suboptimal analysis as their variance estima-
tor only includes the information of the data for the samples that are involved
in the comparison. The summarization method combined with the less ef-
ficient downstream analysis often results in a low performance compared to
the other methods (Figure 1).

The recent Differential Enrichment analysis of Proteomics data (DEP)
software package greatly improved MaxLFQ based analysis by adopting a
mixed imputation strategy for missing protein intensities that infers whether
random missingness or missingness due to low abundance occurs Zhang et al.
[2018]. It also provides a more robust downstream DE analysis using protein-
wise linear models combined with empirical Bayes statistics (through the
limma package Ritchie et al. [2015]). Hence, DEP produces both more ac-
curate as well as more precise fold change estimates and vastly outperforms
the Perseus analysis (figure 1).

MSstats Choi et al. [2014] is another popular software suite for proteomics
data analysis. Initially, MSstats performed peptide-based modeling using
linear mixed models. However, recent releases adopt summarization based
workflows in which peptide intensities are first summarised to protein in-
tensities, and linear modeling is then performed on the protein level. The
default choice of summarization in MSstats is median polish, which corrects
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for peptide specific effects and is robust against outliers. Median polish is,
however, unstable in the presence of too much missing data but this is alle-
viated in MSstats by imputing missing peptide intensities by default using
an Accelerated Failure Model (AFM). However, unlike DEP’s mixed impu-
tation strategy, AFM assumes that all intensities are missing because of low
abundance, thus neglecting to take into account other sources of missingness.

The median polish summarization in MSstats produces more accurate fold
change estimates compared to MaxLFQ (figure 1 panel B). However, while
MSstats outperforms MaxLFQ based workflows at high fold changes (figure 1
panel A comparison b-a, c-a and d-a), its performance becomes increasingly
worse in comparisons with low fold changes (figure 1 panel A c-b and d-
c). This happens because the high fold change comparisons are achieved
by a low concentration of spike-in proteins, with missingness predominantly
caused by low abundance, while the low fold change comparisons contain a
high concentration of spike-in proteins, with missingness often derived from
other reasons. The missingness by low abundance assumption of MSstats is
therefore much more likely to be violated for the low fold change, leading to
a suboptimal ranking and a breakdown of MSstats for these comparisons. In
contrast, DEP, which also accounts for random missingness, does not break-
down for these comparisons.

It should be noted that DEP’s default preprocessing includes more strin-
gent filtering for dubious proteins and thus returns less proteins overall than
MSstats, which renders the better performance of MSstats in comparisons in-
volving concentration a (b-a, c-a, d-a) superficial. Indeed, when only consid-
ering common proteins, DEP actually shows higher sensitivity then MSstats
(supplementary figure 2 panel A).

MSqRob, finally, uses a peptide-based approach that provides robust-
ness against outliers and overfitting by adopting M-estimation, ridge regres-
sion and a limma style empirical Bayes procedure for variance estimation
Goeminne et al. [2016]. MSqRob thus derives unbiased fold change esti-
mates with high precision and outperforms all summarization based models
(figure 1 panel A). The increase in performance is even more apparent at low
fold changes (figure 1 panel B comparison c-b and d-c).

3.2 MSqRobSum has similar overall performance to MSqRob

In this section, we show that we can fit the MSqRob model in a two-stage
approach, with minimal impact on performance.
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In the first stage of MSqRobSum we summarise peptide intensities in a
sample to protein intensities using robust regression. This summarization is
precise, and more robust than both high-flyer and maxLFQ summarization
(Supplementary Figure 1). In the second stage, MSqRobSum provides precise
and unbiased fold change estimates, comparable to MSqRob (Supplementary
Figure 3).

MSqRobSum has a similar performance to MSqRob for medium to highly
differentially expressed proteins (Figure 2 comparison b-a, c-a, d-a, and d-
b). While the performance of MSqRobSum is lower than that of MSqRob for
increasingly lower fold changes (Figure 2 comparison c-b and d-c), it should
be noted that all summarization methods suffer from a drop in performance
at lower fold changes (Figure 1).

A major contributor to the performance drop of MSqRobSum is human
protein Q9BZJ0, which has relatively low protein summaries for the samples
in condition c due to outlying intensities of one peptide in all samples of
condition c (Supplementary Figure 4). As a result, this protein receives a
very low p-value from the MSqRobSum analysis for comparison d-c and is
thus returned as a false positive at 1% FDR (Supplementary Figure 5). The
MSqRob analysis, however, explicitely models the variance at the peptide
level and the between sample variability and correctly rejects this protein.

The FDR is controlled at the 1% and 5% level for both MSqRob and
MSqRobSum across almost the whole range of fold changes in differential
expression (Figure 2), except in comparison c-a and d-a. The loss of FDR con-
trol in the latter comparison occurs because overspiking (high spike-in con-
centrations) causes increased ion competition between the peptides molecules
in the sample Milac et al. [2012], Goeminne et al. [2015]. This in turn causes
peptides with equal abundance in two samples to be less ionized in the sam-
ple with the higher total protein concentration, resulting in a lower measured
intensity for those peptides in that sample.

This effect is clearly visible as the average estimated fold changes of the
human proteins steadily decreases as the spiked-in E. Coli concentration
increases (Supplementary Figure 6 A). At higher spiked-in E. coli concentra-
tions, more human proteins thus appear to be differentially down regulated,
and these additional false positives artificially inflate the estimated FDR
(Supplementary Figure 6 B).

The rationale for switching to MSqRobSum instead of MSqRob is based
on two issues with MSqRob. The first issue is that it is unclear which de-
grees of freedom should be used for the test with MSqRob. MSqrob uses the
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degrees of freedom of the variance at the peptide level (within sample vari-
ance), but these do not correspond to the degrees of freedom of the standard
errors on the fold change estimates. Indeed, these standard errors include
both the within sample variance and the between sample variance, and the
correct degrees of freedom therefore vary between those of the within sample
variance, and those that would be obtained for a tool that models the data at
protein level. For unbalanced data, the correct degrees of freedom cannot be
approximated and the results of MSqRob are thus bound to be too liberal.

The second issue is speed, as fitting the large mixed models in a peptide-
level MSqRob workflow is computationally quite expensive. In contrast,
the robust summarization in the first stage of MSqRobSum is a relatively
cheap operation computationally. By switching to the two-stage approach in
MSqRobSum, analysis time is reduced to less than a third of the MSqRob
computation time. Parallelization of both methods maintains this speed dif-
ference, while decreasing processing time even further (Supplementary Figure
9).

3.3 MSqRobSum allows for a modular data analysis
workflow

The MSqRobSum workflow consists of three steps: preprocessing, summa-
rization with robust regression, and DE analysis with robust ridge regression.
Because each step can have an important impact on the performance of the
entire data analysis workflow, the decoupling of summarization and inference
provides optimal flexibility to combine each of the MSqRobSum steps with
other tools in modular workflows. To illustrate the usefulness of such mod-
ular workflows, we will start from the default Perseus workflow and we will
show how each step in the MSqRobSum workflow ramps up the performance.

The default Perseus workflow consists of maxLFQ summarization com-
bined with t-tests for statistical inference. Its performance is relatively low
and the FDR is not controlled at either the 1% or the 5% level (Figure 3).
However, exploratory data analysis revealed a strong batch effect across the
samples which is undocumented in the experimental design. Batch effects
should be corrected for during the statistical analysis but if undocumented,
it is not always obvious if and how samples are organized in batches (Sup-
plementary Figure 7). Often, normalization strategies already sufficiently
correct for these sample effects. We can thus improve the performance and
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Figure 2: Comparison of performance in MSqRob and MSqRob-
Sum. We compare the performance of MSqRob (red) and MSqRobSum
(blue). The data consists of E. Coli proteins spiked at different concentra-
tions (a, b, c and d) in a human proteome. The estimated 1% (circle) and
5% (triangle) FDR is controlled if it remains below 1% and 5% FDP, respec-
tively (indicated by vertical grey lines). Performance of MSqRobSum is close
to MSqRob in all comparisons, and MSqRobSum even outperforms MSqRob
in the b-a comparison. The performance of MSqRobSum does decline a bit
compared MSqRob at decreasing fold changes between treatments (eg. c-b
and d-c), but the FDR is controlled in all comparisons except c-a and d-a,
which both suffer from ion competition.
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FDR control of the Perseus analysis by preprocessing the maxLFQ sum-
marised intensities with VSN (Figure 3).

The statistical inference in Perseus is based on t-tests, which are un-
derpowered when dealing with more than two conditions and other more
complex study designs. We can therefore further improve performance by
modeling intensities with MSqRob’s robust ridge regression approach, which
allows for higher performance and good FDR control. Note, however, that
FDR is not controlled in conditions c-a and d-a due to ion competition, as
also highlighted above (Figure 3).

MaxLFQ’s summarization strategy, based on pairwise ratios between
samples, is inefficient for samples with low concentrations, which leads to
unstable summaries and/or missingness. DEP dealt with this through a
context-dependent imputation strategy, which increases the power of the
subsequent statistical inference (Figure 3). At high protein concentrations,
there is low missingness and the effect of imputation will be small (Figure 3
comparison d-c).

With MSqRobSum, we correct for peptide-specific effects through a model-
based robust summarization strategy which models the log-transformed pep-
tide intensities directly through robust regression. This robust regression
efficiently uses all available protein intensities and imputation such as used
in MaxLFQ is therefore not required (Supplementary Figure 8). The full
MSqRobSum workflow thus further boosts performance while maintaining
good FDR control (Figure 3). Moreover, this MsqRobSum workflow uni-
formly outperforms all other modular approaches.

4 Discussion
In this work, we introduced MSqRobSum, a novel summarization-based method
for LFQ which offers stable protein intensity estimation and highly perfor-
mant protein DE analysis. We performed a benchmark study of different
existing software implementations for summarization based LFQ methods
and a state the state-of-the-art peptide based model, MSqRob. MSqRob
uses the information on all peptides during statistical inference and outper-
forms all summarization based methods, which can only carry out inference
on the protein summaries. However, MSqRob models are computationally
quite expensive, can be hard to understand by experimentalists, include tests
with unspecified degrees of freedom, and do not provide protein summaries
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Figure 3: Improvements of DE analysis using a modular data anal-
ysis workflow We show incremental improvements in DE analysis by in-
crementally changing components in the workflow. The data consists of E.
Coli proteins spiked at different concentrations (a, b, c and d) in a human
proteome. The circle and triangle are at 1% and 5% FDR, respectively, as es-
timated by the method. Perseus default performs t-tests on maxLFQ protein
summaries for DE analysis. However the performance is low and FDR is not
controlled. Adding VSN normalisation to the protein summaries boosts the
performance of the DE analysis (perseus vsn). This workflow is further im-
proved by swapping t-tests for MSqRob in the inference step (MSqRobSum
maxLFQ). Adopting DEP’s mixed imputation scheme results in additional
gain in perfomance (MSqRobSum DEP), and the best results are obtained
by replacing maxLFQ and mixed imputation with our robust summarization
(MSqRobSum default).
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for visualization and downstream processing. These MSqRob drawbacks are
not present in summarization based methods. Indeed, summarization is usu-
ally a relatively cheap operation and reduces the number of data points, while
the obtained protein summaries allow easy visual inspection of the data. The
use of protein summaries also reduces model complexity and enables statis-
tical inference with t-statistics that have well-defined degrees of freedom.
However, many existing summarization-based methods suffer a considerable
drop in performance compared to MSqRob (Figure 1). Our analysis shows
that this drop in performance is dependent on issues with the summarization
method used. Methods that do not take into account peptide specific effects,
such as the high-flyer method in Proteus, show a clear drop in performance,
while a method like MaxLFQ does consider peptide specific effects, but is
based on heuristics and is not very data efficient. In MSqRobSum, we in-
stead rely on robust regression for summarization, which allows to correct
for peptide-specific effects, effectively exploits all data in its model based
summarization, and is robust against outliers. Taken together, the result is
a considerable boost in performance in the DE analysis when compared to
MaxLFQ.

We also show that preprocessing is crucial for the performance of a DE
workflow. The first type of such preprocessing is normalization, which can
have a large impact on DE analysis (Figure 3). The second type of prepro-
cessing is imputation of missing values, and this too can be beneficial (Fig-
ure 3). However, because several different imputation methods exist, and
because each of these applies to different sources of missingness, best results
are typically achieved when using a mixed imputation, where randomly miss-
ing values and values missing under low abundance are imputed differently
Zhang et al. [2018]. It should be noted, however, that the robust modelling in
MSqRobSum can safely omit imputation altogether (Supplementary Figure
8).

Another crucial component in LFQ is the statistical model for discov-
ering DE proteins. Perseus utilises standard t-tests, but these are vastly
underpowered compared to linear regression based models in more complex
experimental designs. Moreover, MSqRob extends the linear model to ro-
bustify it against outliers and to improve uncertainty estimation Goeminne
et al. [2015]. In the MSqRobSum workflow, we therefore use MSqRob’s ro-
bust linear model approach instead of t-tests on the protein summaries. This
considerably improves performance of the DE analysis, reaching a level com-
parable to MSqRob for a wide range of DE proteins (Figure 3). And while
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MSqRob does show lower performance for increasingly lower fold changes in
DE (Figure 2), all summarization methods suffer from a drop in performance
in these cases, often more severe than that of MSqRobSum (Figure 3).

Moreover, the robust summarization approach has the merit that the
entire analysis workflow has become modular: the provided robust protein
abundance estimates can be used for visualisation and integration in other
tools for DE, while MSqRob can now also start from protein summaries pro-
vide by other tools. This gives users considerable additional flexibility to
develop modular workflows that are tailored towards their specific applica-
tions, and renders MSqRob future proof when novel and more performant
summarization procedures become available.
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Figure 1: Comparison of different methods for estimating protein
intensities Rows A, B and C show the log2 intensities in each sample for one
DE protein (POA912), and for two non-DE proteins (PO7814 and Q5C9Z4),
respectively. Column 1 shows measured peptide intensities, with different
peptides indicated by different colors. Columns 2, 3 and 4 show protein
summaries estimated by high flyer, maxLFQ, and robust regression summa-
rization, respectively. Plot A1 clearly illustrates peptide specific effects and
context dependent missingness. Measured intensities from different peptides
from the same protein show high variation and are prone to missingness for
low abundant peptides (eg. purple peptide in samples a versus e). Robust re-
gression provides stable protein intensity estimates that are more consistent
for samples with the same concentration compared to high-flyer or maxLFQ
summarization (eg. row A). high-flyer summaries are more unstable when
high intensity peptides are missing in some samples (row B). MaxLFQ esti-
mates are sometimes missing for proteins with few peptides (row C).
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Figure 2: Comparison of current state-of-the-art tools for DE anal-
ysis of shared proteins. We compare one peptide based tool, MSqRob
(red) and four summarization based tools: Perseus (green), and Differen-
tial Enrichment analysis of Proteomics data (DEP) with mixed imputation
(blue), are both based on MaxLFQ protein intensities. MSstats uses median
polish summarised protein intensities (purple). Proteus uses high-flyer sum-
marization (green). The data consists of E. Coli proteins spiked at different
concentrations (a, b, c and d) in a human proteome. the plot is based on pro-
teins identified by all methods. The plots in Panel A show the performance
of each method for all pairwise comparisons. MSstats outperforms Proteus,
DEP and Perseus at higher fold changes, but its performance drops to Perseus
levels at the lowest fold change. Proteus outperforms Perseus at higher fold
changes, but is less performant at the lowest fold change. MSqRob always
outperforms all other methods. The boxplots in panel B show estimated
log fold changes of differentially (E. Coli) and non-differentially (human)
expressed proteins in the a versus b comparison. Perseus has biased fold
changes for the E. Coli proteins, but has more precise fold changes for hu-
man proteins than DEP and MSstats. MSqRob has more precise and more
acurrate fold changes than any other method.
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Figure 3: Comparison of current state-of-the-art tools for fold
change estimation in proteins. We compare one peptide based tool,
MSqRob (red) and four summarization based tools: Perseus (green), and
Differential Enrichment analysis of Proteomics data (DEP) with mixed im-
putation (blue), are both based on MaxLFQ protein intenstities. MSstats
uses median polish summarised protein intensities (purple). Proteus uses
high-flyer summarization (green). The data consists of E. Coli proteins
spiked at different concentrations (a, b, c, d and e) in a human proteome.
Boxplots show estimated log fold changes of differentially (E. Coli) and non-
differentially (human) expressed proteins. Perseus has biased fold changes for
the E. Coli proteins, but has more precise fold changes for human proteins
than DEP and MSstats. MSqRob and MSqRobSum both have more precise
and more accurate fold changes than the other methods.
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Figure 4: Peptide intensities and protein summaries for the human
protein Q9BZJ0 The first panel shows the measured log2 intensities of
the two peptides (green and blue) assigned to the human protein Q9BZJ0
for each sample. The other panel shows the protein summaries estimated
by high-flyer, maxLFQ, and robust regression summarization, respectively.
There is high variability on the log2 intensities of the green peptide be-
tween the samples and all four measurements in condition c are relatively
low which results in a downward bias on the protein summaries. This lead to
high uncertainty in the protein abundance estimates, especially for condition
c. This uncertainty on the protein summaries, however, is not accounted
for in summarization-based workflows. Peptide-based models like MSqRob
explicitely model the variability at the peptide level as well as the between-
sample variability and they are therefore less prone to flag this very specific
edge case as a false positive.
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Figure 5: Performance comparison between MSqRob and MSqRob-
Sum. We compare the performance of MSqRob and MSqRobSum on all
proteins (respectively red and green) and all proteins except human protein
Q5C9Z4 (respectively blue and purple). The data consists of E. Coli proteins
spiked at different concentrations (a, b, c and d) in a human proteome. The
estimated 1% (circle) and 5% (triangle) FDR is controlled if it remains below
the 1% and the 5% FDP, respectively (vertical grey lines). Performance in
MSqRobSum is close to MSqRob in all comparisons. MSqRobSum outper-
forms MSqRob in the b-a comparison. The performance of MSqRobSum is
reduced compared to MSqRob at decreasing fold changes between treatments
(eg. c-b and d-c). FDR is controlled in all comparisons except c-a and d-a
due to ion competition. The sudden spike in the False discovery proportion
in the d-c comparison can be explained by a low p-value for the human pro-
tein Q5C9Z4. Treatment c has relatively low protein summaries for Q5C9Z4
and removing this protein from the data results in an increased performance
of MSqRobSum for all comparisons involving treatment c.
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Figure 6: Overspiking can inflate the false discovery proportion.
Panel A shows the false discovery proportion of a DE analysis controlled at
1% or 5% FDR for each comparison with different spike-in concentrations.
At high E. coli spike-in concentration there is suppression of the MS1 inten-
sities of the human proteins compared to low spike-in concentration due to
ion competition. Panel A shows that the larger the difference in total pro-
tein concentration between samples, the larger the difference in estimated
protein intensity of the non-DE human proteins, and the more likely these
proteins appear down regulated. Panel B shows that the estimated FDR
(grey line) is an underestimation of the true FDP (labelled boxes). Neither
MSqRob nor MSqRobSum correctly controls the FDR for comparisons with
high differences in spike-in concentration.
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Figure 7: The effect of normalization on batch effects. Panel A shows
MDS plots of the log2 sample intensities without normalization, and with
VSN. Without normalization we see a clear separation of the samples in two
groups along the first leading dimension. The spike-in condition effect (in-
dicated by the 5 colours) only shows in the second dimension. After VSN,
the unknown batch effect is still present but only in the second dimension;
the condition effect now dominates the first dimension. Panel B shows the
performance of MSqRobSum with and without normalization, and with and
without inclusion of the batch effect into the model. Samples are assigned to
two batches based on the MDS plot. Including the batch effect improves per-
formance of the DE analysis considerably. The performance of the MSqRob-
Sum analysis with VSN is similar to, or better than, the MSqRobSum model
with the batch effect. Including a batch effect in the model after normaliza-
tion does not improve performance further. The circle and triangle are at
1% and 5% FDR, respectively, as estimated by the method.
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Figure 8: DEP’s mixed imputation does not improve MSqRobSum
performance. The circle and triangle are at 1% and 5% FDR, respectively,
as estimated by the method. Imputing the missing values in the protein
summaries after robust summarization with DEP’s mixed imputation strat-
egy does not improve the performance of MSqRobSum compared to the no
imputation approach. Imputing missing values in the measured peptide in-
tensities before robust regression actually degrades the performance of the
DE analysis, and also often leads to loss of FDR control.
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Figure 9: Speed comparison between MSqRob and MSqRobSum.
All analyses were performed on the E.Coli spike-in benchmark data set.
The same preprocessing is applied in all analyses and this preprocessing is
excluded from the time measurements. Every analysis is run twenty times
on a DELL Latitude laptop with eight i7-7820HQ CPU cores at 2.9 GHz and
31.3 GiB of RAM memory. The parallelized versions were allowed to use all
eight available cores.
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