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Abstract1

Medial prefrontal cortex (mPfC) plays a role in present behaviour and short-term2

memory. Unknown is whether the present and the past are represented in the same3

mPfC neural population and, if so, how the two representations do not interfere.4

Analysing mPfC population activity of rats learning rules in a Y-maze, we find pop-5

ulation activity switches from encoding the present to encoding the past of the same6

events after reaching the arm-end. We show the switch is driven by population activity7

rotating to orthogonal axes, and the population code of the present and not the past8

reactivates in subsequent sleep, confirming these axes were independently accessible.9

Our results suggest mPfC solves the interference problem by encoding the past and10

present on independent axes of activity in the same population, and support a model11

of the past and present encoding having independent functional roles, respectively12

contributing to on-line learning and off-line consolidation.13

Keywords: decision making, mPFC, learning, neural ensembles, sleep, replay14

Introduction15

The medial prefrontal cortex (mPfC) plays key roles in adaptive behaviour. It is involved in16

reshaping behaviour in response to changes in a dynamic environment (Euston et al., 2012)17

and in response to errors in performance (Narayanan and Laubach, 2008; Laubach et al.,18

2015). Damage to mPfC prevents shifting behavioural strategies when the environment19

changes (Laskowski et al., 2016; Guise and Shapiro, 2017). Single neurons in mPfC shift20

the timing of spikes relative to hippocampal theta rhythms just before acquiring a new21

action-outcome rule (Benchenane et al., 2010). And multiple labs have reported that global22

shifts in mPfC population activity precede switching between behavioural strategies (Rich23

and Shapiro, 2009; Durstewitz et al., 2010; Karlsson et al., 2012; Schuck et al., 2015; Powell24

and Redish, 2016) and the extinction of learnt associations (Russo et al., 2020).25

Adapting behaviour depends on knowledge of both the past and the present. Deep26

lines of research have established that mPfC activity represents information about both.27

The memory of the immediate past is maintained in mPfC activity, both in tasks requiring28

explicit use of working memory (Miller and Cohen, 2001; Baeg et al., 2003; Averbeck and29

Lee, 2007; Miller et al., 2005; Fujisawa et al., 2008; Machens et al., 2010; Spellman et al.,30
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2015) and those that do not (Jun et al., 2010; Maggi et al., 2018). The use of such memory31

is seen in both the impairment arising from mPfC lesions (Rich and Shapiro, 2007; Young32

and Shapiro, 2009; Laskowski et al., 2016), and the role of mPfC in error monitoring33

(Laubach et al., 2015). Representations of stimuli and events happening in the present34

have been reported in a variety of decision-making tasks (Averbeck et al., 2006; Rigotti35

et al., 2013; Erlich et al., 2015; Hanks et al., 2015; Ito et al., 2015; Siegel et al., 2015; Guise36

and Shapiro, 2017).37

Little is known though about the relationship between representations of the past and38

present in mPfC activity. Prior studies have shown that past and upcoming choices can39

both modulate activity of neurons in the same mPfC population (for example Baeg et al.,40

2003; Barraclough et al., 2004; Ito et al., 2015), but none have compared the encodings41

of the past and present, nor determined how the encoding of the present becomes the42

encoding of the past. Thus important questions remain: how the past and present are43

encoded in a mPfC population so they do not interfere with each other, and how the44

encoding of features in the present transforms into the encoding of the past.45

To address these questions, we reanalyse here mPfC population activity from rats46

learning new rules on a Y-maze (Peyrache et al., 2009). Crucially, this task had distinct47

trial and inter-trial interval phases, in which we could respectively examine the population48

encoding of the present (in trials) and the past (in the intervals) of the same task features49

or events. We first established that small mPfC populations did indeed encode both the50

present and past of the same features of the task, respectively in the trial and in the inter-51

trial interval. We found that these encodings were orthogonal, so that the present and the52

past were encoded by activity evolving along independent coding axes. This independent53

encoding was functional: population activity encoding the present was reactivated in post-54

training sleep, but activity encoding the same features in the past was not reactivated.55

Finally, we show that the pattern of synchrony across the population is also independent56

between trials and inter-trial intervals. By encoding the past and present of the same57

events on orthogonal axes, a single mPfC population prevents interference between them,58

and allows their independent recall.59

Results60

To address how the mPfC encodes the past and the present, we analyse here data from rats61

learning rules in a Y maze, which had tetrodes implanted in mPfC before the first session62

of training (Figure 1a). The animal self-initiated each trial by running along the central63

stem of the Y maze and choosing one of the arms. The trial finished at the arm’s end, and64

a reward delivered if the chosen arm matched the current rule being acquired. During the65

following inter-trial interval, the rat made a self-paced return to the start of the central66

arm to initiate the next trial. This task thus allowed us to study the representation of67

choice and its environmental context in both the present (the trial) and the immediate68

past (the inter-trial interval).69

Population activity encodes multiple features of the present70

In order to compare representations of the same choice and features in the past and present,71

we first had to establish that these were indeed represented in mPfC population activity.72

Previously we had shown that these mPfC populations encode the past choice of arm,73

the past outcome, and the past light position during the inter-trial interval (Maggi et al.,74

2018) – below we develop these findings further. We thus report here our decoding of the75
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Figure 1: Population encoding of task features and events during trials.
(a) The Y maze task. Left: task, schematic with rat at the start position. A trial runs from the
start position to the end of the chosen arm; the inter-trial interval is the return from the arm end
to the start position. Across sessions, animals were asked to learn one of 4 rules in sequence (go
to the right arm, go to the lit arm, go to the left arm, go to the dark arm). Rules were switched
after 10 correct choices (or 11 out of 12). Right: division of the maze into 5 positions for analysis
of position-dependent encoding.
(b) Graphical representation of a classifier. The population vector firing rate for each trial (shade
of blue squares) is used as input for a linear classifier that fits the weight (shade of yellow squares)
for each neuron across trials. A linear combination of weight and population firing rate for each
trial is compared to a threshold (red dashed line) to predict the category to which the trial belongs.
Classifier accuracy is the proportion of correctly predicted held-out trials.
(c) Decoding the animal’s choice (of direction), the cue position, and the outcome of each trial
as a function of maze position. We plot the relative decoder accuracy, the difference between
the absolute decoder accuracy and the shuffled control for each feature (we plot example absolute
accuracy results in Supplementary Figure 1b). Decoding accuracy above chance appear from the
choice point (position 3) to the end of the maze. Here and in all panels: symbols are mean ± SEM
over all 49 sessions; blue bars indicate positions with decoding performance significantly better
than shuffled controls (Wilcoxon sign rank test, p < 0.05 thin light blue; p < 0.01 middle thickness
blue; p < 0.005 thick dark blue line).
(d) Decoding of the previous trial’s choice, cue position, and outcome as a function of maze position
on the present trial (N = 49).
(e) Breakdown of the prospective decoding results in panel (c) by rule type (16 direction rule
sessions; 34 cue rule sessions).
(f) Breakdown of the retrospective decoding results in panel (d) by rule type.
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present choice, light position, and imminent outcome from the trials’ mPfC population76

activity.77

To examine the evolution of encoding over the trial, we divided the maze into five78

equally sized sections, and constructed population firing rate vectors for each position in79

each trial (Figure 1a,b). The set of population vectors across all trials of a session were80

used to train and test a cross-validated classifier that predicted features – direction or81

outcome or light position. Only neurons active in every trial could thus contribute to the82

population vectors; these active populations ranged from 4-22 neurons across 49 sessions,83

of between 7-51 trials each (Supplementary Figure 1a). We trained the same classifiers84

using the same population vectors but with features shuffled across trials (see Methods85

and Supplementary Figure 1b), to define appropriate chance levels for each classifier given86

the unbalanced distribution of some task features (such as outcome).87

We found that the current trial’s direction choice, light position, and outcome were88

significantly encoded in mPfC population activity, and typically from when the animal89

was at the choice point of the maze until it reached the chosen arm’s end (Figure 1c).90

Moreover, this decoding was a property of the population, not of a small number of highly91

tuned neurons within the population: when we restricted the analysis to sessions with no92

significantly tuned neurons (n = 27 for direction choice, n = 39 for the light position and93

n = 25 for outcome) we could still decode all these task features from the choice point94

onwards (Supplementary Figure 1c).95

These multiple feature encodings were present whether the rule being learnt was a96

direction (go-left, go-right) or cued (go-to-the-lit-arm) association (Figure 1e). While the97

choice of arm and the outcome are confounded for direction rules, Figure 1e shows that for98

cued rules we could still decode the trial’s outcome above chance around the choice point.99

These decodings of the present direction choice, light position, and anticipated outcome100

were strongly robust, being recapitulated by decoders applied to the whole maze rather101

than separate sections (Supplementary Figure 1d), and by a range of different classifiers102

(Supplementary Figure 2).103

In order to determine if learning itself affected any mPfC representations of the present,104

we separated the sessions into two behavioural groups: putative learning sessions (n = 10),105

identified by a step-change in task performance (Supplementary Figure 3a-c), and the re-106

maining sessions, called here “Other” (n = 39). We found population coding of task107

features was similar when comparing learning sessions and all Other sessions (Supplemen-108

tary Figure 3d-g). However, there were differences in representations between the learning109

of direction and cue rules. Direction choice could be decoded from the very first session of110

each animal, suggesting that this representation is not learnt (Supplementary Figure 4).111

By contrast, the encoding of light position was not present during the initial sessions that112

enforced a direction rule (Supplementary Figure 4), but most clearly emerged during cue113

rules when the light was relevant to solve the task, suggesting the representation of light114

position was learnt (Supplementary Figure 4).115

In contrast to the robust encoding of the present, we found scant evidence that mPfC116

activity during a trial encoded the events of the previous trial (Figure 1d,f; whole maze117

encoding is in Supplementary Figure 1e; breakdown by session type in Supplementary118

Figure 3e-g). Previous studies have reported encoding of past choices in mPfC population119

activity during trials (Baeg et al., 2003; Sul et al., 2010). We found some evidence of the120

population coding of past arm choice (Figure 1d - ‘Direction’) but the encoding was weak,121

and differed between rule types (Figure 1f - ‘Direction’). Notably, there was no evidence122

of any encoding of the previous trial’s outcome. Thus, during trials population activity123

in the prefrontal cortex had robust, sustained encoding of multiple events of the present,124
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but at best weakly and transiently encoded events of the past.125

Orthogonal encoding of the past and the present126

Having established that population activity in a trial encodes multiple features of the127

present, we then asked if this encoding is carried forward into the following inter-trial128

interval. Previously we reported that during the inter-trial interval these populations ro-129

bustly encode the features - choice, light, and outcome - of the preceding trial (Maggi130

et al., 2018). Indeed, as we show in Figure 2a, we could increasingly decode the rats’131

present direction choice as they ran to the arm end to complete the trial, and then con-132

tinue to decode this direction choice, now in the past, as the rats returned to the start133

position. Supplementary Figure 5a shows the encoding of light and outcome were similarly134

contiguous.135

One hypothesis is that sustained activity in mPfC continues from the trial into the136

inter-trial interval, creating a memory trace of the encoding during the trial. Another137

plausible hypothesis is that the population activity in the trial reactivates during the inter-138

trial interval, in some form of replay of waking activity. Both hypotheses predict that the139

population encoding of a feature in the trial and in the following inter-trial interval should140

be the same. We show here it is not.141

One simple way to rule out the memory trace hypothesis is if the active neurons during142

the trial and inter-trial interval were different. However, the active neurons during the143

trials were also active during the inter-trial interval (Supplementary Figure 5b), and we144

could decode features well from activity during the whole trial (Supplementary Figure145

1d,e) and whole inter-trial interval (Figure 2c), so this shared common population could,146

in principle, carry on encoding the same task features.147

We used this common population to test the memory trace hypothesis: if the encoding148

is broadly the same, then the activity in the trial and following inter-trial interval should149

be interchangeable when predicting the same feature, such as the chosen direction. In this150

cross-decoding test, we first trained a classifier for features of the present using the common151

population’s activity during the trials, and then tested the accuracy of the classifier when152

using the common population’s activity during the inter-trial interval. If the encoding in153

the trials really is carried forward into the inter-trial interval, then this cross-decoding154

should be accurate.155

We found that cross-decoding of features was consistently poor in both directions,156

whether we trained on trial activity and tested on inter-trial intervals, or vice-versa (Figure157

2b). Decoding of all features was at or close to chance, strikingly at odds with the within-158

trial (Supplementary Figure 1d and 3f) or within-interval (Figure 2a,c) decoding. As an159

additional control, we used leave-one-out cross-decoding instead (Methods) and this still160

resulted in decoding at or about chance levels (Supplementary Figure 5c,d). These results161

suggest that population encoding of prior events in the inter-trial interval is not simply a162

memory trace or reactivation of similar activity in the trial. Instead, they show that the163

same mPfC population is separately and independently encoding the present and past of164

the same features.165

To quantify this independence, we turned to the vector of decoding weights for the166

trials and the equivalent vector for the inter-trial intervals of the same session. These167

weights, obtained from the decoder trained once on all trials and once on all inter-trial168

intervals, give the relative contribution of each neuron to the encoding of task features. We169

found that the trial and inter-trial interval weight vectors were approximately orthogonal170

for all three features: the angles cluster at or close to π/2 (or, equivalently, their dot-171

product clusters at or around zero) (Fig 2d; see Supplementary Figure 5e for a breakdown172
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Figure 2: Orthogonal population encoding of past and present task events.
(a) Decoding of features is contiguous between the trials and following inter-trial intervals. We
plot here the decoding accuracy in the trials for the animal’s current choice of direction (left), and
the decoding accuracy in the inter-trial intervals for the animal’s past choice of direction (right).
The left panel is redrawn from Figure 1c. In panels (a-c) and (g): symbols show means ± SEM;
blue bars indicate decoding performance significantly better than chance (Wilcoxon sign rank test,
p < 0.05 thin light blue; p < 0.01 middle thickness blue; p < 0.005 thick dark blue line; N = 49
for all).
(b) Cross-decoding performance. Left: relative decoding accuracy of a logistic regression classifier
trained on all trials prospectively and tested on all inter-trial intervals retrospectively. Black
dashed line shows the chance levels obtained training the classifier on shuffled labels for the trials
and testing on inter-trial intervals given the same shuffled labels. Right: relative decoding accuracy
for a classifier trained on all inter-trial intervals retrospectively and tested on all trials prospectively.
(c) Decoding accuracy for features of the preceding trial from inter-trial interval population activity
over the whole maze.
(d) Comparison of the decoding vector weights between trials and inter-trial intervals. For each
session we plot the angle between its trial and inter-trial interval decoding weight vectors, obtained
from the trained classifiers in panel (b). For reference, we also compute the angle between trial and
inter-trial interval decoding vectors obtained by training on shuffled label data (grey). Boxplots
show median (line), inter-quartile range (box), and 95% interval (tails). P-values are from Wilcoxon
ranksum tests for the difference from π/2.
(e) As for (d), but comparing the decoding weight vectors between features, within trials.
(f) As for (e), for within inter-trial intervals.
(g) Decoding of features is not contiguous between the inter-trial intervals and following trials. We
plot here the decoding accuracy in the inter-trial interval of the animal’s choice in the following
trial (left), and the decoding accuracy in the following trial of the animal’s choice in the previous
trial (right) – i.e. the choice that was encoded during the preceding inter-trial interval.

by session types). Median angles for direction and light position were significantly less173

than π/2 (ranksum test), but the difference was small: 0.067π for direction and 0.045π for174

light position. Thus, the population encoding in the inter-trial interval was not a memory175

trace: to a good approximation, the past and present are orthogonally encoded in the176

same mPfC population.177

We considered a range of alternative explanations for these results. One is that the or-178

thogonality arises from the curse of dimensionality: the distance between two i.i.d random179

vectors with a mean of zero tends to grow with their increasing dimension. If the decoding180
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weights were random vectors, then the apparent orthogonality could be driven by just the181

largest populations. However, the decoding weights for the whole trial (present) or whole182

inter-trial interval (past) are not random vectors, for if they were then decoding perfor-183

mance would be at chance, whereas we find clear decoding of all features (Supplementary184

Figure 1d and Figure 2c). Another explanation is that the independent encoding axes185

between the trials and inter-trial intervals is somehow driven by differing properties of186

the trials and inter-trial intervals. For example, they differ in duration (mean 6.5 ± 0.01187

seconds for trials, 55.7 ± 0.03 seconds for inter-trial intervals), and hence also in average188

movement speed. If switching between trials and inter-trial intervals could account for189

encoding differences, then these differences should be symmetric: we should see encodings190

change whether the transition was from the trial to inter-trial interval, or from the inter-191

trial interval back to a trial. However, the encodings were asymmetric: we saw strong192

encoding during the transition from trial to inter-trial interval (Figure 2a and Supplemen-193

tary Figure 5a), but no encoding during the transition from inter-trial interval back to194

the trial (Figure 2g and Supplementary Figure 5f; see Maggi et al. (2018) for full details195

of the absence of prospective encoding in the inter-trial intervals). In the absence of any196

encoding, there cannot be an orthogonal shift in encoding.197

We also examined the relationship between the features’ encoding vectors during the198

trial and during the inter-trial interval. The encoding axes within an epoch were less199

independent than between epochs: angles between the encoding vectors for light and200

direction and for light and outcome were significantly different from π/2 (Figure 2e,f).201

But the distributions of angles between the encoding vectors were preserved between202

the trials and the inter-trial intervals, with outcome-direction around π/2, light-direction203

centered below π/2, and light-outcome centred above π/2. Thus, while each encoding axis204

rotated to an orthogonal direction between the trial and inter-trial interval, the internal205

relationships between the feature encodings was preserved.206

Population activity rotates between trials and inter-trial intervals207

That all three feature encodings were independent between the trials and inter-trial in-208

tervals of a session predicts that the population activity itself should be independent. If209

true, then trial and inter-trial interval population activity vectors should be easily sep-210

arable. To test this prediction, we projected all population activity vectors of a session211

(Fig 3a) into a low dimensional space (Fig 3b), and then quantified how easily we could212

separate them into trials and inter-trial intervals. Using just one dimension was sufficient213

for near-perfect separation in many sessions; using two was sufficient for above-chance214

performance in all sessions (Fig 3c; and see Supplementary Figure 6 for a breakdown of215

each session’s dependence on the number dimensions). Population activity was thus about216

as independent between the trials and inter-trial intervals as it possibly could be.217

The independence in the population activity might arise from the continuous evolu-218

tion of mPfC population activity across the contiguous trial and inter-trial interval period,219

such as the sequential activation of PfC neurons observed in previous studies (e.g. Fujisawa220

et al., 2008). If sequential activation was ongoing, then we should also observe consistently221

independent population activity between consecutive sections of the maze during trials and222

during inter-trial intervals (Fig 3d-g). Instead, we found population activity was not in-223

dependent between contiguous maze sections within trials or within inter-trial intervals.224

For example, Figure 3d-f shows that population vectors of maze sections 4 and 5 in the225

inter-trial interval were not easily separable in four or fewer dimensions. Across the whole226

maze, adjacent sections within trials and inter-trial intervals had classification errors con-227

sistently greater than any found between trials and inter-trial intervals (Figure 3g), even228
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Figure 3: Population activity is independent between trials and inter-trial intervals
(a) Population activity vectors for the trials (•) and following inter-trial intervals of one session.
The heat-map shows the normalized firing rate for each neuron.
(b) Projection of that session’s population activity vectors on to two dimensions shows a complete
separation of trial and inter-trial interval activity. The black line is the linear separation found by
the classifier. PC: principal component.
(c) Summary of classification error over all sessions, as a function of the number of dimensions.
Each grey dot is the error for one session at that number of projecting dimensions. Dashed line
gives chance performance. Boxplots show medians (red line), interquartile ranges (blue box), and
outliers (red pluses).
(d-f) Same as panels (a-c), but comparing population activity vectors for maze sections 4 and 5
in the inter-trial interval.
(g) Heat maps for the average classification error in the separation of population activity vec-
tors between each pair of maze sections within trials (left panel), between trials and inter-trial
intervals (middle panel), and within inter-trial intervals (right panel). White square in the middle
panel indicates the arm-end position, where the transition from trial to inter-trial interval occurs.
Classification error is for projections of the population activity vectors in a two dimensional space.

when the animal was in the same maze position (white square, middle panel). These229

results confirm that the marked changes in decoding accuracy across the maze (Figure230

2a) corresponded to evolving population activity within trials and inter-trial intervals; but231

they also show that this evolving activity happened along independent directions in the232

trials and inter-trial intervals.233

Population representations of trial features re-activate in sleep234

Encoding the past and present of the same features in the same population on independent235

axes means that, in principle, the representations of past and present can be addressed236

or recalled without interference. We thus sought further evidence of this independent237
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encoding by asking if either representation could be recalled independently of the other.238

Prior reports showed that patterns of mPfC population activity during training are239

preferentially repeated in post-training slow-wave sleep (Euston et al., 2007; Peyrache240

et al., 2009; Singh et al., 2019), consistent with a role in memory consolidation. However,241

it is unknown what features these repeated patterns encode, and whether they encode242

the past or the present or both. Thus, we asked which, if any, of the trial and inter-trial243

interval codes are reactivated in sleep, and thus whether they were recalled independently244

of each other.245

We first tested whether population activity representations in trials reactivated more246

in post-training than pre-training sleep. For each feature of the task happening in the247

present (e.g choosing the left arm), we followed the decoding results by creating a popu-248

lation vector of the activity specific to that feature during a session’s trials. To seek their249

appearance in slow-wave sleep, we computed population firing rate vectors in pre- and250

post-training slow-wave sleep in time bins of 1 second duration, and correlated each sleep251

vector with the feature-specific trial vector (Figure 4a). We thus obtained a distribution252

of correlations between the trial-vector and all pre-training sleep vectors, and a similar253

distribution between the trial-vector and all post-training sleep vectors. Greater correla-254

tion with post-training sleep activity would then be evidence of preferential reactivation255

of feature-specific activity in post-training sleep.256

We examined reactivation separately between learning and Other sessions, seeking257

consistency with previous reports that reactivation of waking population activity in mPfC258

most clearly occurs immediately after rule acquisition (Peyrache et al., 2009; Singh et al.,259

2019). Figure 4b (upper panels) shows a clear example of a learning session with prefer-260

ential reactivation. For all trial features, the distribution of correlations between the trial261

and post-training sleep population activity is right-shifted from the distribution for pre-262

training sleep. For example, the population activity vector for choosing the right arm is263

more correlated with activity vectors in post-training (Post-R) than pre-training (Pre-R)264

sleep.265

Such post-training reactivation was not inevitable. In Figure 4b (lower panels), we266

plot another example in which the trial-activity vector equally correlates with population267

activity in pre- and post-training sleep. Even though specific pairs of features (such as the268

left and right light positions) differed in their overall correlation between sleep and trial269

activity, no feature shows preferential reactivation in post-training sleep.270

These examples were recapitulated across the data (Figure 4c). In learning sessions,271

feature-specific activity vectors were consistently more correlated with activity in post-272

than pre-training sleep. By contrast, the other sessions showed no consistent preferential273

reactivation of any feature vector in post-training sleep. As a control for statistical arte-274

facts in our reactivation analysis, we looked for differences in reactivation between paired275

features (e.g. left versus right arm choice) within the same sleep epoch and found these276

all centre on zero (Figure 4d). Thus, population representations of task features in the277

present were reactivated in sleep, and this consistently occurred after a learning session.278

To check whether reactivation was unique to step-like learning, we turned to the Other279

sessions: there we found a wide distribution of preferential reactivation, from many about280

zero to a few reactivated nearly as strongly as in the learning sessions (Figure 4c, blue281

symbols). Indeed, when pooled with the learning sessions, we found reactivation of a282

feature vector in post-training sleep was correlated with the increase in accumulated reward283

during the session’s trials (Fig 4e). Consequently, reactivation of population encoding284

during sleep may be directly linked to the preceding improvement in performance.285

Prior reports suggest that the reactivation of activity patterns in sleep can be faster286
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Figure 4: Reactivation of trial population coding in post-training sleep.
(a) Example population activity vectors. Upper panel: from one learning session, we plot the
average firing rate vector for correct trials (Trial1). For comparison, we also plot examples of firing
rate vectors from pre- and post-training slow-wave sleep (1s bins). Neurons are ranked in order of
their firing rates in the trial vector. Lower panel: as for the upper panel, for an example session
not classified as learning.
(b) Example distributions of Spearman’s rank correlations between trial and sleep population
activity. Upper panels: for the same learning session as panel (a), we plot the distributions of cor-
relations between each vector of feature-specific trial activity and the population activity vectors
in pre- and post-training slow-wave sleep. Lower panels: as for the upper panels, for the example
non-learning session in panel (a). R: right arm; 1: rewarded trial.
(c) Summary of reactivations across all sessions. For each feature, we plot the difference between
the medians of the pre- and post-training correlation distributions. A difference greater than
zero indicates greater correlation between trials and post-training sleep. Each symbol is a ses-
sion. Empty symbols are sessions with significantly different correlation distributions at p < 0.05
(Kolmogorov-Smirnov test). Grey filled symbols are not significantly different. One black circle
for learning and one for non-learning sessions identify the two example sessions in panels (a) and
(b).
(d) As for panel c, but plotting the median differences between distributions for paired features
within the same sleep epoch. For example, in the left-most column, we plot the difference between
the correlations with pre-session sleep activity for right-choice and left-choice specific trial vectors
(PreR - PreL).
(e) Reactivation as a function of the change in reward rate in a session. One symbol per session:
learning (red); Other (blue). ρ: Spearman’s correlation coefficient. Black ρ is for all 49 sessions;
blue ρ, using only sessions with any incremental improvement in performance (N = 33 in total, 10
learning and 23 Other sessions; see Methods). We plot here reactivation of vectors corresponding
to left (direction and light) or correct; correlations for other vectors are similar in magnitude: 0.37
(choose right), 0.35 (cue on right), 0.2 (error trials) for all 49 sessions; 0.37 (choose left), 0.33 (cue
on right) and 0.26 (error trials) for sessions with incremental improvement in performance.

or slower during sleep than they were during waking activity. We tested the time-scale287

dependence of feature-vector reactivation by varying the size of the bins used to create288

population vectors in sleep, with larger bins corresponding to slower reactivation. We289

found that preferential reactivation in post-training sleep in learning and (some) other290

sessions was robust over orders of magnitude of vector widths (Figure 5a). Notably, in291

the learning sessions only the vectors for rewarded outcome were significantly reactivated.292
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Figure 5: Robust reactivation of trial population coding across time-scales of sleep
activity.
(a) At each time bin used to construct population activity vectors in sleep, we plot the distribution
over sessions of the median differences between pre- and post-training correlation distributions, for
learning (top), and other (bottom) sessions. Distributions are plotted as the mean (thick lines) ±
2 SEM (thin lines); at the 1s bin, these summarise the distributions shown in full in Figure 4c.
Each panel plots two distributions, one per pair of features: lighter colours indicate left or error
trials (L or 0); while darker colours indicate right or correct trials (R or 1). Time bins range from
100 ms to 10 s, tested every 150 ms. Dotted lines at the top of each panel indicate bins with
reactivation significantly above zero (Wilcoxon sign rank test, p < 0.05 thin dot; p < 0.01 middle
size dot; p < 0.005 thicker dots; N = 10 learning, N = 39 Other sessions).
(b) Here we divide the Other sessions from panel (a) into those showing any increment in perfor-
mance from the animal (N = 23, “Minor-learning”, see Methods) and those that did not (N = 16).

Moreover, among Other sessions, the reactivation in post-training sleep was significant293

only for those sessions in which the animal’s performance improved (however slightly)294

within the session (Figure 5b). This consistency across broad time-scales suggests that295

it is the changes during trials to the relative excitability of neurons within the mPfC296

population that are carried forward into sleep (Singh et al., 2019).297

No re-activation in sleep of inter-trial interval feature representations298

To ask if this reactivation was unique to encoding of the present, we repeated the same299

reactivation analysis for population vectors from the inter-trial interval. Again, following300

our decoding results, each population feature vector was created from the average activity301

during inter-trial intervals after that feature (e.g. choose left) had occurred. We then302

checked for reactivation of this feature vector in pre- and post-training slow-wave sleep.303

We found absent or weak preferential reactivation of population encoding in post-304

training sleep, for any feature in any type of session (Figure 6a). Consistent with this, we305

found no correlation between the change in performance during a session and the reacti-306

vation of feature vectors after a session (Figure 6b). The orthogonal population encoding307

during sessions (Figure 2) thus appears functional: population encoding of features in the308

present was reactivated in sleep, but encoding of the same features until the start of the309

next trial was not.310
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Figure 6: No preferential reactivation of population encoding of the past.
(a) Similar to Figure 5, for reactivation of population feature-vectors constructed from inter-trial
interval activity. We plot the distribution over sessions of the median differences between pre- and
post-training correlation distributions, for learning (top), and other (bottom) sessions. Note that
the range of sleep vector time-bins is an order of magnitude larger than for trials, as the inter-trial
intervals themselves are an order of magnitude longer than trials (Maggi et al., 2018). Dotted lines
at the top indicate significant reactivation (Wilcoxon sign rank test, p < 0.05 thin dot; p < 0.01
middle size dot; p < 0.005 thicker dots). Lighter colours indicate left or error trials (L or 0); while
darker colours indicate right or correct trials (R or 1)
(b) Similar to Figure 4e, reactivation of the inter-trial interval population vector as a function of the
change in reward rate in a session. Reactivation is computed for 22 s bins. One symbol per session:
learning (red); Other (blue). ρ: Spearman’s correlation coefficient; black, all sessions; blue, only
sessions with any incremental improvement in performance. We plot here reactivation of vectors
corresponding to left (direction and light) or correct trials; correlations for other vectors are similar
in magnitude: -0.004 (choose right), 0.02 (cue on right), -0.08 (error trials) for all sessions; -0.005
(choose right), 0.01 (cue on right) and -0.1 (error trials) for sessions with incremental improvement
in performance.

Population synchrony is also independent between past and present311

Our analyses thus far had shown evidence of independent coding of the past and the312

present in the same mPfC population. We then asked whether this independence of313

activity also extended to the independence of synchrony across the population. To do314

so, we characterised population synchrony as the matrix of pairwise similarities between315

neurons on each trial (Appendix - Figure A.1). By comparing between trials within a316

session, we found that the population’s synchrony was consistently more similar between317

trials with upcoming rewards than errors during learning sessions (Appendix - Figure A.2).318

We previously showed that a population’s synchrony was also consistently more similar319

between inter-trial intervals after a reward (Maggi et al., 2018). A natural question was320

then whether this repeated pattern of synchrony was carried forward from the trials to the321

inter-trial intervals during learning. However, we found that the patterns of population322
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synchrony in a trial and its following inter-trial interval were as different from each other as323

shuffled data (Appendix - Figure A.4a). Moreover, we found that the pattern of population324

synchrony in the trials was recapitulated more in post than pre-session sleep, but the325

population synchrony in the inter-trial intervals was not (Appendix - Figure A.4c-f). The326

synchrony between neurons in the population thus seems as independent between the task327

periods as the population encoding of past and present.328

Discussion329

We have shown that medial PfC population activity independently represents the past330

and present of the same task features. Three lines of evidence support this conclusion.331

First, the same task feature, such as the choice of arm, is independently encoded in the332

trials and the inter-trial intervals. Second, these independent encodings are also func-333

tionally independent: population activity representations of features during the trials are334

re-activated in post-training sleep, but inter-trial interval representations are not. Third,335

the reward-evoked pattern of population synchrony is also independent between trials and336

inter-trial intervals, and only the trials’ synchrony pattern is recapitulated in post-training337

sleep.338

Mixed population coding in mPfC339

Consistent with prior reports of mixed or multiplexed coding by single mPfC neurons340

(Jung et al., 1998; Horst and Laubach, 2012; Rigotti et al., 2013; Fusi et al., 2016), we341

found that small mPfC populations can sustain mixed encoding of two or more of the342

current direction choice, light position, and anticipated outcome. These encodings were343

also position-dependent. Encoding of direction choice reliably occured from the maze’s344

choice point onwards, but it is unclear whether this represents a causal role in the choice345

itself, or an ongoing representation of a choice being made.346

We also report that these mixed encodings of the present within each population347

reactivate in post-training sleep. This finding goes beyond prior reports that specific348

patterns of trial activity reactivate in sleep (Euston et al., 2007; Peyrache et al., 2009;349

Singh et al., 2019) to show what those patterns were encoding – multiple features of the350

present, but not the past. It seems mixed encoding is a feature of sleep too.351

As we showed in (Maggi et al., 2018) and extended here, population activity during the352

inter-trial interval also has mixed encoding of features of the past. This encoding decays353

in strength as the rat gets closer to the start of the maze: we showed here this mixed354

encoding is still evident even if we disregard maze positions. Collectively, our results show355

that population activity in mPfC can switch from mixed encoding of the present in a trial356

to mixed encoding of the past in the following inter-trial interval.357

Independent population codes solve interference of past and present358

There are multiple hypotheses for how this transition from coding the present to the past359

could happen. One hypothesis is that there are groups of neurons separately dedicated360

to encoding the past and present. We ruled out this idea by only decoding from neurons361

active in every trial and inter-trial interval, so showing that the transition from present362

to past happened within the same group. Moreover, by showing that we could decode363

each task feature from population activity even in the absence of any single neuron tuned364

to that feature, we ruled out that there were distinct groups dedicated to each feature.365

Thus, this mixed encoding and its transition from present to past were sustained across366
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small mPfC populations, at most 22 neurons, rather than by distinct groups within each367

population.368

Another hypothesis, as we noted in the Results, is that the switching from a population369

encoding of the present to encoding of the past is explained by population activity in the370

trials being carried forward into the inter-trial interval, whether by persistent activity371

acting as a memory trace, or by the recall of patterns of trial activity during the inter-trial372

interval. But our demonstration of independent encoding in the population between trials373

and the following intervals rules out this hypothesis.374

Our results support dynamic coding in mPfC: population encoding evolved within375

both the trials and the inter-trial intervals, consistent with the underlying changes we376

observed in the population activity. The evolution of population dynamics over the inter-377

trial interval is consistent with reports of dynamic changes of PfC activity during the378

delay period of working memory tasks (Murray et al., 2017; Spaak et al., 2017; Cavanagh379

et al., 2018; Wasmuht et al., 2018). They thus support the hypothesis that working380

memory is sustained by population activity rather than the persistent activity of single381

neurons (Constantinidis et al., 2018; Lundqvist et al., 2018). Crucially, the evolution of382

activity within trials and inter-trial intervals was continuous, with adjacent maze sections383

containing more similar population activity, yet the transition from the trial to the inter-384

trial interval was discontinuous, with both encoding and population activity becoming385

orthogonal. Our results thus show that evolution of encoding of the present and past were386

along two independent axes.387

Any neural population encoding both the past and the present in its activity faces388

problems of interference: of how to prevent the addition of new information in the present389

from overwriting the encoded information of the short-term past (Libby and Buschman,390

2019); of how inputs to the population can selectively recall only the past or the present,391

but not both; and of how downstream populations can access or distinguish the encodings392

of the past and the present. Representing the present and past on independent axes solves393

these problems. It means that the encoding of the present can be updated without altering394

the encoding of the past, that inputs to the population can activate either the past or the395

present representations independently, and that downstream populations can distinguish396

the two by being tuned to read-out from one axis or the other. Indeed, we showed that397

in post-session sleep the encoding of the present can be accessed independently of the398

encoding of the past.399

An open question is how much the clean independence between the encoding of the400

past and present depends on the behavioural task. In the Y-maze task design, there is a401

qualitative distinction between trials (with a forced choice) and inter-trial intervals (with402

a self-paced return to the start arm), which we used to clearly distinguish encoding of the403

present and the past. Such independent coding may be harder to uncover in tasks without404

a distinct separation of decision and non-decision phases. For example, tasks where the405

future choice of arm depends on recent history, such as double-ended T-mazes (Jones and406

Wilson, 2005), multi-arm sequence mazes (Poucet et al., 1991), or delayed non-match to407

place (Spellman et al., 2015), blur the separation of the present and the past. Comparing408

population-level decoding of the past and present in such tasks would give useful insights409

into when the two are, and are not, independently coded.410

Mechanisms for rapid switching of population codes411

The independent encoding and independent population activity between the trial and412

immediately following inter-trial interval implies a rapid rotation of population activity.413

How might such a rapid switch of network-wide activity be achieved?414
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Such rapid switching in the state of a network suggests a switch in the driver inputs415

to the network. In this model, drive from one source input creates the network states for416

population encoding A; a change of drive – from another source, or a qualitative change417

from the same source -— creates the network states for population encoding B (either set418

of states may of course arise solely from internal dynamics). One option for a switching419

drive is the hippocampal-prefrontal pathway.420

In several spatial tasks (Jones and Wilson, 2005; Jadhav et al., 2012; Peyrache et al.,421

2009; Benchenane et al., 2010) cortico-hippocapal regions show coherent theta oscilla-422

tion. This coherence increases during learning at the choice point of the Y maze task423

(Benchenane et al., 2010; Peyrache et al., 2009) described here, and recurs during slow-424

wave ripples in post-training sleep. These data and our analyses here are consistent with425

the population encoding of the trials being (partly) driven by hippocampal input, and426

with the re-activation of only the trial representations in sleep being the recruitment of427

those states by hippocampal input during slow-wave sleep. The increased coherence be-428

tween hippocampus and mPfC activity may act as a window for synaptic plasticity of429

that pathway (Benchenane et al., 2010, 2011). Consistent with this, we saw a correlation430

between performance improvement in trials and reactivation in sleep (see also Maingret431

et al., 2016).432

All of which suggests the encoding of the past during the inter-trial interval is not433

driven by the hippocampal input to mPfC, as its representation is not re-activated in sleep.434

(Spellman et al. 2015 report hippocampal input to mPfC is necessary for the maintenance435

of a cue location; though unlike in our task, actively maintaining the location of this cue436

was necessary for a later direction decision). Rather, the population coding during the437

inter-trial interval could reflect the internal dynamics of the mPfC circuit. Indeed, network438

models of working memory in the prefrontal cortex focus on attractor states created by439

its local network (Durstewitz et al., 2000; Miller et al., 2005; A. Compte, 2000; Wimmer440

et al., 2014). If somewhere close to the truth, this account of rapid switching suggests441

that the hippocampal input to mPfC drives population activity in the trial, and a change442

or reduction in that input allows the mPfC local circuits to create a different internal443

state during the inter-trial interval. A prediction of this account is that perturbation of444

the hippocampal input to the mPfC could disrupt its encoding of the past and present in445

different ways.446

Reconciling mPfC roles in memory and choice447

We propose that our combined results here and previously (Maggi et al., 2018) support448

a dual-function model of mPfC population coding, where the independent coding of the449

past and present respectively support on-line learning and consolidation. This model is450

somewhat counter-intuitive: our data suggest the representation of the present in mPfC451

is used for offline learning, whereas the representation of the past is used online to guide452

behaviour.453

Under this model, the role of memory encoding in the inter-trial interval is to guide454

learning online: reward tags past features whose conjunction led to successful outcomes455

(for example, the conjunction of turning left when the light is on in the left arm). While456

population activity in the inter-trial interval reliably encodes features of the past through-457

out training, we previously showed that synchrony of the population only consistently458

occurs immediately before learning (Maggi et al., 2018). This suggests that the synchroni-459

sation of mPfC representations of features predicting success is correlated with successful460

rule-learning. Consistent with such past-encoding contributing to online learning, we show461

here that neither the encoding nor synchrony pattern in the inter-trial interval are carried462
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forward long-term into sleep.463

By contrast, we report here representations of the present in the trial are carried464

forward and reactivated in sleep. Reactivation of waking activity during slow-wave sleep465

has been repeatedly linked to the consolidation of memories (Stickgold, 2005; Tononi and466

Cirelli, 2014; Sawangjit et al., 2018). Indeed, interrupting the re-activation of putative467

waking activity in hippocampus impairs task learning (Girardeau et al., 2009). Thus,468

under the dual-function model, we propose the reactivation in mPfC of mixed encodings469

of the present may be consolidating the conjunction of present features and choice that is470

going to be successful when re-used in future.471

Further insight into these and other ideas here would come from stable recordings472

of the same population across multiple sessions, to track how encoding of the past and473

present evolves and is or is not reused. In particular, it would be insightful to establish if474

re-activated trial representations in sleep reappear in subsequent sessions.475

The medial prefrontal cortex plays a key role in both short-term memory (Fujisawa476

et al., 2008; Jun et al., 2010; Maggi et al., 2018) and choice behaviour (Averbeck et al.,477

2006; Rigotti et al., 2013; Erlich et al., 2015; Hanks et al., 2015). Our finding here of478

independent coding of the past and the present suggest these roles can be carried out479

sequentially within the same mPfC neural population.480
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Methods639

Task description and electrophysiological data640

All the data in this study comes from previously published data (Peyrache et al., 2009).641

The full details of training, spike-sorting and histology can be found in (Peyrache et al.,642

2009). The experiments were carried out in accordance with institutional (CNRS Comité643

Opérationnel pour l’Ethique dans les Sciences de la Vie) and international (US National644

Institute of Health guidelines) standards and legal regulations (Certificate no. 7186, French645

Ministère de l’Agriculture et de la Pêche) regarding the use and care of animals.646

Four Long-Evans male rats were implanted with tetrodes in prelimbic cortex and647

trained on a Y-maze task (Figure 1a). During each session, prelimbic activity was recorded648

for 20-30 minutes of sleep or rest epoch before the training phase, in which rats worked649

at the task for 20-40 minutes. After that, another 20-30 minutes of sleep or rest epoch650

recording followed. During the sleep epochs, intervals of slow-wave sleep were identified651

offline from the local field potential (details in (Peyrache et al., 2009; Benchenane et al.,652

2010)).653

The Y-maze had symmetrical arms, 85 cm long, 8 cm wide, and separated by 120654

degrees, connected to a central circular platform (denoted as the choice point throughout).655

Each rat worked at the task phase by self-initiating the trial, leaving the beginning of the656

start arm. Trial finished when the rat reached the end of the chosen goal arm. If the657

chosen arm was correct according to the current rule, the rat was rewarded with drops of658

flavoured milk. As soon as the animal reached the end of the chosen arm an inter-trial659

interval started and lasted until the rat completed its self-paced return to the beginning660

of the start arm.661

Each rat was exposed to the task completely näıve and had to learn the rule by trial-662

and-error. The rules were presented in sequence: go to the right arm; go to the cued arm;663
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go to the left arm; go to the uncued arm. The light cues at the end of the two arms were664

lit in a pseudo-random sequence across trials, regardless the rule in place.665

The recording sessions taken from the study of Peyrache and colleagues (Peyrache666

et al., 2009) were 53 in total. Each of the four rats learnt at least two rules, and they667

contributed with 14, 14, 11, and 14 sessions. The learning, rule change, and other sessions668

for each rat were intermingled. We used 49 sessions for most of the analysis. One session669

was omitted for missing position data, one for consistent choice of the right arm (in a670

dark arm rule) preventing decoder analyses (see below), and one for missing spike data in671

a few trials. An additional session was excluded for having only two neurons firing in all672

trials. Tetrode recordings were spike-sorted within each recording session. In the sessions673

we analysed here, the populations ranged in size from 4-25 units. Spikes were recorded674

with a resolution of 0.1 ms. Simultaneous tracking of the rat’s position was recorded at675

30 Hz.676

Behavioural analysis677

Each session was classified according to its behavioural features. The learning sessions678

were identified according to the original study (Peyrache et al., 2009) as the ones with679

three consecutive correct trials followed by a performance of at least 80% correct. The680

first of the three correct trials was the learning trial. Only ten sessions satisfied this681

criterion. We quantified this learning as a step-like change in performance by fitting a682

robust regression line to the cumulative reward curve before and after the learning trial.683

The slopes of the two lines gave us the rate of reward accumulation before (rbefore) and684

after (rafter) the learning trial.685

Eight sessions were characterised by 10 consecutive correct trials or eleven correct out686

of twelve trials followed by a change in the rule. The first trial with the new rule was687

identified as the rule change trial. The change in performance in these sessions, labelled688

”Rule change” sessions, was quantified with the same method above. A robust regression689

line was fitted to the cumulative reward curve before and after the rule change trial.690

To identify other possible learning session, we fitted this piece-wise linear regression691

model to each trial in turn (allowing a minimum of 5 trials before and after each tested692

trial). We then found the trial at which the increase in slope (rafter − rbefore) was max-693

imised, indicating the point of steepest inflection in the cumulative reward curve. In the694

learning sessions, the learning trial largely agreed with this method. Amongst the re-695

maining sessions, labelled “Other”, we searched for signs of incremental learning using696

this method. We found 22 sessions falling in this category in addition to the 10 learning697

sessions. We called these sessions “minor-learning”.698

Decoder analysis and independence of ensembles encoding699

To predict which task feature was encoded into the ensemble we trained and tested a range700

of linear decoders (Hastie et al., 2009; Maggi et al., 2018). In the main text we report701

the results obtained using a logistic regression classifier, but for robustness we also tested702

three other decoders: linear discriminant analysis; (linear) support vector machines; and703

a nearest neighbours classifier. The full details of the decoding analysis can be found in704

Maggi et al. (2018).705

Briefly, we linearised the maze in five equally-sized sections and we computed the706

firing rate vector of the core population of length N for each position p, rp. For each707

trial t = 1, . . . , T and each section of the maze p = 1, . . . , 5, the set of population firing708

rate vectors {rp(1), . . . , rp(T )} was used to train the decoder. Each relevant trials’ task709
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information was binary labelled: outcome (labels: 0, 1), the chosen arm (labels: left, right)710

and the position of the light cue (labels: left, right). The same classifier was also trained711

to decode previous trials’ task information. We used leave-one-out cross-validation and712

we quantified the accuracy of the decoder as the proportion of correctly predicted labels713

over the T held out trial intervals.714

For each rat and each session, the distribution of outcomes and arm choices depended715

on the rats’ performance, which could differ from 50%. Therefore, we trained and cross-716

validated the same classifier on the same data-sets, but shuffling the labels of the task717

features. In this way we obtained the accuracy of detecting the right labels by chance.718

We repeated the shuffling and fitting 50 times and we averaged the accuracy across the 50719

repetitions. The results displayed in the figures showed the difference between the decoder720

accuracy on the original data with the accuracy of the shuffled label.721

To test if the classifier results were a property of the population or were driven by a722

few tuned neurons, we selected the sessions in which no neurons significantly changed their723

firing rate according to a feature. For each neuron, we computed its firing rate on each trial724

(1 . . . T ) of a session {r(1), . . . , r(T )}. We divided the firing rate vector into two classes725

(right vs left direction choice, right vs left light position and rewarded vs unrewarded) for726

each feature. We then tested whether the firing rate was significantly changing within the727

feature (Kolmogorov-Smirnov test) using p < 0.05 as our criterion for a “tuned” neuron.728

Finally, for every feature, we excluded all the sessions that had at least one neuron that729

significantly changed its firing rate, and we ran the classifier with the remaining sessions.730

To compare the decoding accuracy between trials and inter-trial intervals, we trained731

again the classifier using the population firing rate vectors computed on the entire maze732

{r(1), . . . , r(T )}. We then trained the classifier on all the trials. We saved the population733

vector of weights and we tested the model, optimised to decode trial activity, on every734

inter-trial interval to evaluate the accuracy in decoding retrospective inter-trial interval735

labels. The same procedure was used to train the linear classifier on all the inter-trial736

intervals to test its accuracy in decoding trials activity. The population vector of weight737

was also saved for this model.738

The angle, θ, between the population vector of trials’, wt, and inter-trial intervals’, wI ,739

weights was computed as θ = cos−1
(

wt·wI
‖wt‖‖wI‖

)
.740

We further evaluated the independence of trial and inter-trial interval population vec-741

tors by quantifying their separability in a low dimensional space. We used principal com-742

ponents analysis (PCA) to project the population vectors of a session onto a common set743

of dimensions. To do so, we constructed the data matrix X from the firing rate vectors of744

the core population, by concatenating trials and inter-trial intervals in their temporal or-745

der {rt(1), rI(1), . . . , rt(T ), rI(T )}T; the resulting matrix thus had dimensions of 2T rows746

and N (neurons) columns. Applying PCA to X, we projected the firing rate vectors on to747

the top d principal axes (eigenvectors of XTX) to create the top d principal components.748

For each set of d components, we quantified the separation between the projected trial and749

inter-trial interval population vectors using a linear classifier (Support Vector Machine,750

SVM), and report the proportion of misclassified vectors. We repeated this for between751

d = 1 and d = 4 axes for each session.752

Reactivation of task-feature encoding in sleep753

In order to quantify the reactivation of waking activity in pre- and post-session sleep, we754

used the population firing rate vectors computed for the decoder. We considered here the755

average population vector computed across all the trials in the all maze for each feature.756
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In details, we quantified separately the average population firing rate vector for all the757

right choice trials and all the left choice trials. Similarly we did for right and left cue758

location and for correct and error trials. We then compare the ranked average population759

firing rate vector for each feature with the firing rate vector of each 1 second time bin760

of slow-wave sleep pre- and post-session. We used Spearman’s correlation coefficient to761

compare them and to quantify the difference between the distributions of each feature and762

the slow-wave sleep pre- and post-session. Spearman’s coefficient was chosen specifically to763

remove any effects of global rate variations across the vectors within or between epochs. In764

order to have a reactivation of activity in post-session sleep, we expected the distribution765

of Spearman CC between a feature and pre-session slow-wave sleep to be leftward shifted766

compare to the distribution of Spearman CC between the same feature and post-session767

slow-wave sleep. We quantified this shift by measuring the difference in the medians768

distribution between the two Spearman distributions. If the delta medians was positive769

then we had a higher correlation of the population firing vector with the post-session770

slow-wave sleep compared to the pre-session slow-wave sleep. If the delta median (called771

Reactivation (Mpost − Mpre) in the text) was negative, then the population firing rate772

vector was more similar to the pre-session slow-wave sleep population vector. To then773

control for different time scales of reactivation in sleep we repeated the same procedure774

changing the time bin in the slow-wave sleep pre- and post-session. We used time bins775

from 100 ms to 10 sec every 150 ms for trials and from 10 sec to 200 sec every 2 sec for776

inter-trial intervals.777

Testing for reinforcement-driven ensembles778

The reinforcement-dependent recall of ensemble activity was identified as per Maggi et al.779

(2018). We firstly selected the spike-trains of the N neurons active in every trials. We780

convolved these spike-trains with a Gaussian (σ = 100 ms) to obtain a spike-density781

function fk for the kth spike-train. All the recall analyses were repeated for different782

Gaussian widths ranging from 20 ms to 240 ms (Figure A.3). Each spike-train was then783

z-scored to obtain a normalised spike-density function f∗ of unit variance: f∗k = (fk −784

〈fk〉)/σk, where 〈fk〉 is the mean of fk, and σk its standard deviation, taken over all the785

trials of a session.786

We then wanted to track the changes in the co-activity pattern of the core population787

along the sessions. We first computed the pairwise similarity matrix between the spike788

density functions of each neuron in trial t, St. This matrix was rectified in order to keep789

track only of those pair with positive co-activity pattern (Figure A.1a). To compare the790

co-activity patterns across trials along the sessions, we then computed the recall matrix791

(Figure A.1b, R, where each entry R(t, u)) is the rectified correlation coefficient between792

the similarity matrices St and Su.793

We grouped the entries of R into two groups according to the outcome of the trials.794

In such way we obtained two block diagonals R1 and R2 (such as Rerror and Rcorrect,795

as illustrated in Figure A.1b-c). We summarised the recall between groups by computing796

the mean of each block.797

As a control and to keep comparison with our prior study of inter-trial intervals (Maggi798

et al., 2018), we defined a null model to dissect the contribution of differences between799

the error and correct trials. For each session we created a predicted recall matrix R̂, by800

averaging 1000 random recall matrices, each computed from shuffled spike trains. Each801

spike-train was shuffled by randomly re-ordering its inter-spike intervals. This shuffling was802

meant to destroy any specific temporal pattern of the spike train, allowing to quantify the803

pairwise similarity contribution due exclusively to the duration of trial. Our final residual804
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recall matrix R̃ = R − R̂ was obtained as the difference between the Recall matrix and805

the average shuffled recall matrix (Figure A.1c). We report all results for this residual806

matrix R̃, though differences between using R and R̃ were minimal (Figure A.1d).807

Data Availability808

The spike-train and behavioural data that support the findings of this study are available in809

CRCNS.org (DOI: 10.6080/K0KH0KH5) (ref. (Peyrache et al., 2009)). Code to reproduce810

the main results of the paper is available at:811
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A Appendix - independence of population synchrony812

Population synchrony is recalled in correct trials around learning813

To further support the evidence of independent coding of the past and the present in the814

same mPfC population we investigated whether this independence also extended to the815

independence of synchrony across the population. We previously showed that these mPfC816

populations repeated similar patterns of population synchrony across inter-trial intervals,817

most reliably around the point of learning (Maggi et al., 2018). As this synchrony was818

triggered by reward, we suggested that reward acts as a trigger to synchronise the features819

of the past trial encoded within the population; in principle, this would be a powerful tool820

for learning, as the joint presence of those features is predictive of reward. We thus asked821

if these populations have such a synchrony code in the trials too. We show here that trials822

also have evidence of outcome-dependent synchrony in the population; in the next section823

we ask if these synchrony patterns are also reactivated in sleep.824

We characterised population synchrony as the matrix of pairwise similarities between825

neurons on each trial (Figure A.1a). We then compared these similarity matrices across826

trials to ask if the same pattern of population synchrony is recalled on different trials. We827

first asked if the same pattern of synchrony was recalled on correct trials or on error trials828

(Figure A.1b). Other factors differing between error and correct trials could contribute to829

differences in correlations between neurons (though time spent along the maze was not one830

of them – Figure A.1e). To control for spurious correlations, we constructed a predicted831

Recall matrix from label-shuffled data, and subtracted this to leave the residual Recall832

matrix (Figure A.1c). This correction did not markedly change the differences between833

correct and error trials in the recall of a pattern of population synchrony (Figure A.1d).834

In learning sessions, the population’s synchrony pattern was consistently more similar835

between trials with upcoming rewards than errors (Figure A.2a), suggesting a recalled836

pattern of synchrony across the population precedes correct choice on a trial.837

This consistent recall of a synchrony pattern across trials was specific to the combina-838

tion of learning sessions and future outcomes. We found no consistent outcome-dependent839

recall of a synchrony pattern in Other sessions (Figure A.2a), or in trials that were imme-840

diately after a correct trial (Figure A.2b), ruling out a history-dependent effect of reward.841

We further observed no consistently recall of a synchrony pattern across trials conditioned842

on other task-related features, whether they were upcoming (Figure A.2c,d) or in previous843

trials (Figure A.2e,f). Finally, to ensure that the recall of a synchrony pattern was not844

affected by the temporal precision of the spike-train correlation used, we repeated all these845

comparisons for different resolutions of the Gaussian width used to convolve spike-trains846

before computing their pair-wise similarity. Across an order of magnitude for the tem-847

poral resolution, we still observed recall effects only for learning sessions and only when848

preceding the outcome (Figure A.3).849

Population synchrony is also independent between trials and inter-trial850

intervals851

Both trials (present paper) and inter-trial intervals (Maggi et al., 2018) showed outcome-852

dependent recall of population synchrony in mPfC. As we had established that the popu-853

lation codes in trials and inter-trial intervals were independent in both waking and sleep,854

we asked if the synchrony patterns recalled during learning were also independent between855

trials and inter-trial intervals.856

We found that, within a learning session, the patterns of population synchrony in a857
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Figure A.1: Comparing population synchrony between trials.
(a) Example raster plots of spike trains during two error and two correct trials from the same
session (left panels). Right panels: corresponding pairwise similarity matrices.
(b) Top, matrix of similarities between the example similarity matrices in panel (a). This “Recall”
matrix shows higher values within correct trials compared to error trials, indicating that population
synchrony was more similar between correct trials. Bottom: we summarise this by comparing the
average recall values between error (blue) and correct (red) trials.
(c) To control for spurious correlations, we computed an expected Recall matrix from shuffled
data, and subtracted it from the Recall matrix, to give a residual Recall matrix. Example Recall
(left panel) and residual Recall (right panel) matrices for one learning session, reordered according
to the trial outcome. Bottom panels show the average recall value among error and correct trials.
(d) The difference between average correct and error recall is compared between Recall (original)
and residual Recall for all sessions. Each line is a session. Red lines are the learning sessions.
(e) Time spent along the maze for error and correct trials did not differ (median ± SEM).

trial and its following inter-trial interval were as different from each other as shuffled data858

(Figure A.4a, redrawn from Maggi et al. (2018)). The synchrony between neurons in the859

population thus seems as independent between the task periods as the population encoding860

of past and present.861

To address the reactivation of synchrony patterns in sleep, we first computed two862

session-wide synchrony patterns for each session, one from concatenating all correct trials;863

the other from concatenating all error trials (Figure A.4b). We found the synchrony pat-864

tern in correct trials was a closer match to the synchrony pattern in post- than pre-training865

slow-wave sleep (Figure A.4c). Error trials showed no preferential match of synchrony pat-866
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Figure A.2: The ensemble reactivation pattern is specific for prospective and not
retrospective encoding.
(a) The difference in average recall between correct and error trials, across session types. Empty
circles are single session values, while bold symbols are means ± 2SEM. P-values are from Wilcoxon
sign rank test, N = 10 learning and N = 39 Other sessions.
(b) As for (a), with the difference in recall computed with respect to the outcome of the preceding
trial.
(c) As for (a), with the difference in recall computed with respect to the upcoming direction choice
on each trial.
(d) As for (a), with the difference in recall computed with respect to the cue location on each trial.
(e) As for (a), computed with respect to the direction chosen in the preceding trial.
(f) As for (a), computed with respect to the cue position in the preceding trial.
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Figure A.3: The outcome-dependent ensemble activity pattern is specific for learning
across multiple time scales.
Outcome-dependent delta Recall for different convolution width (from 20 ms to 240 ms every 20 ms
step) for learning and other sessions shows a recall effect only for learning session in a prospective
(a) approach and not retrospective (b). For each Gaussian width we show the mean ± 2SEM. Red
squares on top of the panels indicate bins with difference in recall significantly better than chance
(Wilcoxson sign rank test, p < 0.05 small squares; p < 0.01 medium size squares; p < 0.005 big
squares.

tern to either sleep epoch (Figure A.4d). Repeating the same analysis for the inter-trial867

intervals, we found no preferential match of synchrony pattern for either sleep epoch, nei-868

ther for intervals following correct outcomes (Figure A.4e), or those following error (Figure869

A.4f). Outcome dependent population synchrony in trials was thus recapitulated in sleep870

independently of the population synchrony in inter-trial intervals.871
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Figure A.4: Population synchrony is also orthogonal between trials and inter-trial
intervals.
(a) Example similarity matrices for the concatenated correct trials (upper panel) and concate-
nated correct inter-trial intervals (lower panel) on the left. On the right, distributions of relative
similarity between inter-trial intervals and preceding trials compared to a shuffle control model.
Distributions around zero indicate that trials and inter-trial intervals are independent (redrawn
from Maggi et al. (2018)).
(b) Similarity matrices of concatenated pre-session slow-wave sleep (SWS) episodes, error trials,
correct trials and post-session slow-wave sleep episodes for an example learning session.
(c) Correlation between concatenated correct trials and pre-session slow-wave sleep episodes com-
pared to the correlation between concatenated correct trials and post-session slow-wave sleep
episodes. Each dot is a learning session. p-value from a paired t-test is shown on top.
(d) Correlation between concatenated error trials and pre-session slow-wave sleep episodes com-
pared to the correlation between concatenated error trials and post-session slow-wave sleep
episodes.
(e) As in panel (c) Correlation between concatenated correct inter-trial intervals and pre-session
slow-wave sleep episodes compared to the correlation between concatenated correct inter-trial in-
tervals and post-session slow-wave sleep episodes.
(f) As in panel (d) Correlation between concatenated error inter-trial intervals and pre-session
slow-wave sleep episodes compared to the correlation between concatenated error inter-trial inter-
vals and post-session slow-wave sleep episodes.
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