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Abstract

-

Medial prefrontal cortex (mPfC) plays a role in present behaviour and short-term
memory. Unknown is whether the present and the past are represented in the same
mPfC neural population and, if so, how the two representations do not interfere.
Analysing mPfC population activity of rats learning rules in a Y-maze, we find pop-
ulation activity switches from encoding the present to encoding the past of the same
events after reaching the arm-end. We show the switch is driven by population activity
rotating to orthogonal axes, and the population code of the present and not the past
reactivates in subsequent sleep, confirming these axes were independently accessible.
Our results suggest mPfC solves the interference problem by encoding the past and
present on independent axes of activity in the same population, and support a model
of the past and present encoding having independent functional roles, respectively
contributing to on-line learning and off-line consolidation.
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s Introduction

16 The medial prefrontal cortex (mPfC) plays key roles in adaptive behaviour. It is involved in
17 reshaping behaviour in response to changes in a dynamic environment (Euston et al., 2012)
18 and in response to errors in performance (Narayanan and Laubach, 2008; Laubach et al.,
19 2015). Damage to mPfC prevents shifting behavioural strategies when the environment
20 changes (Laskowski et al., 2016; Guise and Shapiro, 2017). Single neurons in mPfC shift
a1 the timing of spikes relative to hippocampal theta rhythms just before acquiring a new
22 action-outcome rule (Benchenane et al., 2010). And multiple labs have reported that global
23 shifts in mPfC population activity precede switching between behavioural strategies (Rich
24 and Shapiro, 2009; Durstewitz et al., 2010; Karlsson et al., 2012; Schuck et al., 2015; Powell
s and Redish, 2016) and the extinction of learnt associations (Russo et al., 2020).

2 Adapting behaviour depends on knowledge of both the past and the present. Deep
o7 lines of research have established that mPfC activity represents information about both.
23 The memory of the immediate past is maintained in mPfC activity, both in tasks requiring
20 explicit use of working memory (Miller and Cohen, 2001; Baeg et al., 2003; Averbeck and
30 Lee, 2007; Miller et al., 2005; Fujisawa et al., 2008; Machens et al., 2010; Spellman et al.,
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s 2015) and those that do not (Jun et al., 2010; Maggi et al., 2018). The use of such memory
22 is seen in both the impairment arising from mPfC lesions (Rich and Shapiro, 2007; Young
33 and Shapiro, 2009; Laskowski et al., 2016), and the role of mPfC in error monitoring
s (Laubach et al., 2015). Representations of stimuli and events happening in the present
35 have been reported in a variety of decision-making tasks (Averbeck et al., 2006; Rigotti
6 et al., 2013; Erlich et al., 2015; Hanks et al., 2015; Ito et al., 2015; Siegel et al., 2015; Guise
sz and Shapiro, 2017).

38 Little is known though about the relationship between representations of the past and
39 present in mPfC activity. Prior studies have shown that past and upcoming choices can
s both modulate activity of neurons in the same mPfC population (for example Baeg et al.,
s 2003; Barraclough et al., 2004; Ito et al., 2015), but none have compared the encodings
22 of the past and present, nor determined how the encoding of the present becomes the
43 encoding of the past. Thus important questions remain: how the past and present are
s encoded in a mPfC population so they do not interfere with each other, and how the
s encoding of features in the present transforms into the encoding of the past.

46 To address these questions, we reanalyse here mPfC population activity from rats
47 learning new rules on a Y-maze (Peyrache et al., 2009). Crucially, this task had distinct
48 trial and inter-trial interval phases, in which we could respectively examine the population
s encoding of the present (in trials) and the past (in the intervals) of the same task features
so or events. We first established that small mPfC populations did indeed encode both the
51 present and past of the same features of the task, respectively in the trial and in the inter-
52 trial interval. We found that these encodings were orthogonal, so that the present and the
53 past were encoded by activity evolving along independent coding axes. This independent
s« encoding was functional: population activity encoding the present was reactivated in post-
55 training sleep, but activity encoding the same features in the past was not reactivated.
s6 Finally, we show that the pattern of synchrony across the population is also independent
57 between trials and inter-trial intervals. By encoding the past and present of the same
s events on orthogonal axes, a single mPfC population prevents interference between them,
so and allows their independent recall.

o Results

61 To address how the mPfC encodes the past and the present, we analyse here data from rats
62 learning rules in a Y maze, which had tetrodes implanted in mPfC before the first session
63 of training (Figure la). The animal self-initiated each trial by running along the central
64 stem of the Y maze and choosing one of the arms. The trial finished at the arm’s end, and
65 a reward delivered if the chosen arm matched the current rule being acquired. During the
66 following inter-trial interval, the rat made a self-paced return to the start of the central
67 arm to initiate the next trial. This task thus allowed us to study the representation of
e choice and its environmental context in both the present (the trial) and the immediate
6o past (the inter-trial interval).

7 Population activity encodes multiple features of the present

71 In order to compare representations of the same choice and features in the past and present,
72 we first had to establish that these were indeed represented in mPfC population activity.
73 Previously we had shown that these mPfC populations encode the past choice of arm,
72 the past outcome, and the past light position during the inter-trial interval (Maggi et al.,
75 2018) — below we develop these findings further. We thus report here our decoding of the
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Figure 1: Population encoding of task features and events during trials.

(a) The Y maze task. Left: task, schematic with rat at the start position. A trial runs from the
start position to the end of the chosen arm; the inter-trial interval is the return from the arm end
to the start position. Across sessions, animals were asked to learn one of 4 rules in sequence (go
to the right arm, go to the lit arm, go to the left arm, go to the dark arm). Rules were switched
after 10 correct choices (or 11 out of 12). Right: division of the maze into 5 positions for analysis
of position-dependent encoding.

(b) Graphical representation of a classifier. The population vector firing rate for each trial (shade
of blue squares) is used as input for a linear classifier that fits the weight (shade of yellow squares)
for each neuron across trials. A linear combination of weight and population firing rate for each
trial is compared to a threshold (red dashed line) to predict the category to which the trial belongs.
Classifier accuracy is the proportion of correctly predicted held-out trials.

(c) Decoding the animal’s choice (of direction), the cue position, and the outcome of each trial
as a function of maze position. We plot the relative decoder accuracy, the difference between
the absolute decoder accuracy and the shuffled control for each feature (we plot example absolute
accuracy results in Supplementary Figure 1b). Decoding accuracy above chance appear from the
choice point (position 3) to the end of the maze. Here and in all panels: symbols are mean + SEM
over all 49 sessions; blue bars indicate positions with decoding performance significantly better
than shuffled controls (Wilcoxon sign rank test, p < 0.05 thin light blue; p < 0.01 middle thickness
blue; p < 0.005 thick dark blue line).

(d) Decoding of the previous trial’s choice, cue position, and outcome as a function of maze position
on the present trial (N = 49).

(e) Breakdown of the prospective decoding results in panel (¢) by rule type (16 direction rule
sessions; 34 cue rule sessions).

(f) Breakdown of the retrospective decoding results in panel (d) by rule type.
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76 present choice, light position, and imminent outcome from the trials’ mPfC population
77 activity.

78 To examine the evolution of encoding over the trial, we divided the maze into five
79 equally sized sections, and constructed population firing rate vectors for each position in
so each trial (Figure la,b). The set of population vectors across all trials of a session were
g1 used to train and test a cross-validated classifier that predicted features — direction or
g2 outcome or light position. Only neurons active in every trial could thus contribute to the
83 population vectors; these active populations ranged from 4-22 neurons across 49 sessions,
s of between 7-51 trials each (Supplementary Figure 1la). We trained the same classifiers
&5 using the same population vectors but with features shuffled across trials (see Methods
s and Supplementary Figure 1b), to define appropriate chance levels for each classifier given
&7 the unbalanced distribution of some task features (such as outcome).

88 We found that the current trial’s direction choice, light position, and outcome were
s significantly encoded in mPfC population activity, and typically from when the animal
o was at the choice point of the maze until it reached the chosen arm’s end (Figure 1c).
o1 Moreover, this decoding was a property of the population, not of a small number of highly
92 tuned neurons within the population: when we restricted the analysis to sessions with no
o3 significantly tuned neurons (n = 27 for direction choice, n = 39 for the light position and
wu n = 25 for outcome) we could still decode all these task features from the choice point
os onwards (Supplementary Figure 1c).

9 These multiple feature encodings were present whether the rule being learnt was a
o7 direction (go-left, go-right) or cued (go-to-the-lit-arm) association (Figure le). While the
98 choice of arm and the outcome are confounded for direction rules, Figure 1e shows that for
99 cued rules we could still decode the trial’s outcome above chance around the choice point.
10 These decodings of the present direction choice, light position, and anticipated outcome
101 were strongly robust, being recapitulated by decoders applied to the whole maze rather
102 than separate sections (Supplementary Figure 1d), and by a range of different classifiers
103 (Supplementary Figure 2).

104 In order to determine if learning itself affected any mPfC representations of the present,
105 we separated the sessions into two behavioural groups: putative learning sessions (n = 10),
106 identified by a step-change in task performance (Supplementary Figure 3a-c), and the re-
107 maining sessions, called here “Other” (n = 39). We found population coding of task
108 features was similar when comparing learning sessions and all Other sessions (Supplemen-
100 tary Figure 3d-g). However, there were differences in representations between the learning
1o of direction and cue rules. Direction choice could be decoded from the very first session of
m  each animal, suggesting that this representation is not learnt (Supplementary Figure 4).
112 By contrast, the encoding of light position was not present during the initial sessions that
13 enforced a direction rule (Supplementary Figure 4), but most clearly emerged during cue
14 rules when the light was relevant to solve the task, suggesting the representation of light
us position was learnt (Supplementary Figure 4).

116 In contrast to the robust encoding of the present, we found scant evidence that mPfC
u7  activity during a trial encoded the events of the previous trial (Figure 1d,f; whole maze
us encoding is in Supplementary Figure le; breakdown by session type in Supplementary
o Figure 3e-g). Previous studies have reported encoding of past choices in mPfC population
120 activity during trials (Baeg et al., 2003; Sul et al., 2010). We found some evidence of the
121 population coding of past arm choice (Figure 1d - ‘Direction’) but the encoding was weak,
12 and differed between rule types (Figure 1f - ‘Direction’). Notably, there was no evidence
123 of any encoding of the previous trial’s outcome. Thus, during trials population activity
124 in the prefrontal cortex had robust, sustained encoding of multiple events of the present,
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125 but at best weakly and transiently encoded events of the past.

126 Orthogonal encoding of the past and the present

127 Having established that population activity in a trial encodes multiple features of the
s present, we then asked if this encoding is carried forward into the following inter-trial
120 interval. Previously we reported that during the inter-trial interval these populations ro-
130 bustly encode the features - choice, light, and outcome - of the preceding trial (Maggi
1 et al., 2018). Indeed, as we show in Figure 2a, we could increasingly decode the rats’
132 present direction choice as they ran to the arm end to complete the trial, and then con-
133 tinue to decode this direction choice, now in the past, as the rats returned to the start
134 position. Supplementary Figure 5a shows the encoding of light and outcome were similarly
135 contiguous.

136 One hypothesis is that sustained activity in mPfC continues from the trial into the
137 inter-trial interval, creating a memory trace of the encoding during the trial. Another
138 plausible hypothesis is that the population activity in the trial reactivates during the inter-
130 trial interval, in some form of replay of waking activity. Both hypotheses predict that the
140 population encoding of a feature in the trial and in the following inter-trial interval should
11 be the same. We show here it is not.

142 One simple way to rule out the memory trace hypothesis is if the active neurons during
13 the trial and inter-trial interval were different. However, the active neurons during the
us  trials were also active during the inter-trial interval (Supplementary Figure 5b), and we
us could decode features well from activity during the whole trial (Supplementary Figure
us 1d,e) and whole inter-trial interval (Figure 2c), so this shared common population could,
147 in principle, carry on encoding the same task features.

148 We used this common population to test the memory trace hypothesis: if the encoding
140 is broadly the same, then the activity in the trial and following inter-trial interval should
150 be interchangeable when predicting the same feature, such as the chosen direction. In this
151 cross-decoding test, we first trained a classifier for features of the present using the common
152 population’s activity during the trials, and then tested the accuracy of the classifier when
153 using the common population’s activity during the inter-trial interval. If the encoding in
154 the trials really is carried forward into the inter-trial interval, then this cross-decoding
155 should be accurate.

156 We found that cross-decoding of features was consistently poor in both directions,
157 whether we trained on trial activity and tested on inter-trial intervals, or vice-versa (Figure
158 2b). Decoding of all features was at or close to chance, strikingly at odds with the within-
19 trial (Supplementary Figure 1d and 3f) or within-interval (Figure 2a,c) decoding. As an
10 additional control, we used leave-one-out cross-decoding instead (Methods) and this still
161 resulted in decoding at or about chance levels (Supplementary Figure 5¢,d). These results
162 suggest that population encoding of prior events in the inter-trial interval is not simply a
163 memory trace or reactivation of similar activity in the trial. Instead, they show that the
164 same mPfC population is separately and independently encoding the present and past of
165 the same features.

166 To quantify this independence, we turned to the vector of decoding weights for the
167 trials and the equivalent vector for the inter-trial intervals of the same session. These
168 weights, obtained from the decoder trained once on all trials and once on all inter-trial
160 intervals, give the relative contribution of each neuron to the encoding of task features. We
170 found that the trial and inter-trial interval weight vectors were approximately orthogonal
i for all three features: the angles cluster at or close to m/2 (or, equivalently, their dot-
12 product clusters at or around zero) (Fig 2d; see Supplementary Figure 5e for a breakdown
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Figure 2: Orthogonal population encoding of past and present task events.

(a) Decoding of features is contiguous between the trials and following inter-trial intervals. We
plot here the decoding accuracy in the trials for the animal’s current choice of direction (left), and
the decoding accuracy in the inter-trial intervals for the animal’s past choice of direction (right).
The left panel is redrawn from Figure lc. In panels (a-c) and (g): symbols show means + SEM;
blue bars indicate decoding performance significantly better than chance (Wilcoxon sign rank test,
p < 0.05 thin light blue; p < 0.01 middle thickness blue; p < 0.005 thick dark blue line; N = 49
for all).

(b) Cross-decoding performance. Left: relative decoding accuracy of a logistic regression classifier
trained on all trials prospectively and tested on all inter-trial intervals retrospectively. Black
dashed line shows the chance levels obtained training the classifier on shuffled labels for the trials
and testing on inter-trial intervals given the same shuffled labels. Right: relative decoding accuracy
for a classifier trained on all inter-trial intervals retrospectively and tested on all trials prospectively.
(c) Decoding accuracy for features of the preceding trial from inter-trial interval population activity
over the whole maze.

(d) Comparison of the decoding vector weights between trials and inter-trial intervals. For each
session we plot the angle between its trial and inter-trial interval decoding weight vectors, obtained
from the trained classifiers in panel (b). For reference, we also compute the angle between trial and
inter-trial interval decoding vectors obtained by training on shuffled label data (grey). Boxplots
show median (line), inter-quartile range (box), and 95% interval (tails). P-values are from Wilcoxon
ranksum tests for the difference from 7 /2.

(e) As for (d), but comparing the decoding weight vectors between features, within trials.

(f) As for (e), for within inter-trial intervals.

(g) Decoding of features is not contiguous between the inter-trial intervals and following trials. We
plot here the decoding accuracy in the inter-trial interval of the animal’s choice in the following
trial (left), and the decoding accuracy in the following trial of the animal’s choice in the previous
trial (right) — i.e. the choice that was encoded during the preceding inter-trial interval.

173 by session types). Median angles for direction and light position were significantly less
174 than /2 (ranksum test), but the difference was small: 0.0677 for direction and 0.0457 for
175 light position. Thus, the population encoding in the inter-trial interval was not a memory
176 trace: to a good approximation, the past and present are orthogonally encoded in the
177 same mPfC population.

178 We considered a range of alternative explanations for these results. One is that the or-
179 thogonality arises from the curse of dimensionality: the distance between two i.i.d random
180 vectors with a mean of zero tends to grow with their increasing dimension. If the decoding
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181 weights were random vectors, then the apparent orthogonality could be driven by just the
12 largest populations. However, the decoding weights for the whole trial (present) or whole
183 inter-trial interval (past) are not random vectors, for if they were then decoding perfor-
18« mance would be at chance, whereas we find clear decoding of all features (Supplementary
155 Figure 1d and Figure 2c¢). Another explanation is that the independent encoding axes
186 between the trials and inter-trial intervals is somehow driven by differing properties of
17 the trials and inter-trial intervals. For example, they differ in duration (mean 6.5 + 0.01
188 seconds for trials, 55.7 £+ 0.03 seconds for inter-trial intervals), and hence also in average
180 movement speed. If switching between trials and inter-trial intervals could account for
10 encoding differences, then these differences should be symmetric: we should see encodings
101 change whether the transition was from the trial to inter-trial interval, or from the inter-
192 trial interval back to a trial. However, the encodings were asymmetric: we saw strong
193 encoding during the transition from trial to inter-trial interval (Figure 2a and Supplemen-
14 tary Figure 5a), but no encoding during the transition from inter-trial interval back to
105 the trial (Figure 2g and Supplementary Figure 5f; see Maggi et al. (2018) for full details
106 of the absence of prospective encoding in the inter-trial intervals). In the absence of any
197 encoding, there cannot be an orthogonal shift in encoding.

108 We also examined the relationship between the features’ encoding vectors during the
190 trial and during the inter-trial interval. The encoding axes within an epoch were less
200 independent than between epochs: angles between the encoding vectors for light and
201 direction and for light and outcome were significantly different from 7/2 (Figure 2e,f).
202 But the distributions of angles between the encoding vectors were preserved between
203 the trials and the inter-trial intervals, with outcome-direction around 7 /2, light-direction
20a  centered below /2, and light-outcome centred above /2. Thus, while each encoding axis
205 rotated to an orthogonal direction between the trial and inter-trial interval, the internal
206 relationships between the feature encodings was preserved.

27 Population activity rotates between trials and inter-trial intervals

208 That all three feature encodings were independent between the trials and inter-trial in-
200 tervals of a session predicts that the population activity itself should be independent. If
210 true, then trial and inter-trial interval population activity vectors should be easily sep-
a1 arable. To test this prediction, we projected all population activity vectors of a session
212 (Fig 3a) into a low dimensional space (Fig 3b), and then quantified how easily we could
213 separate them into trials and inter-trial intervals. Using just one dimension was sufficient
214 for near-perfect separation in many sessions; using two was sufficient for above-chance
215 performance in all sessions (Fig 3c; and see Supplementary Figure 6 for a breakdown of
216 each session’s dependence on the number dimensions). Population activity was thus about
217 as independent between the trials and inter-trial intervals as it possibly could be.

218 The independence in the population activity might arise from the continuous evolu-
210 tion of mPfC population activity across the contiguous trial and inter-trial interval period,
220 such as the sequential activation of PfC neurons observed in previous studies (e.g. Fujisawa
221 et al., 2008). If sequential activation was ongoing, then we should also observe consistently
22 independent population activity between consecutive sections of the maze during trials and
223 during inter-trial intervals (Fig 3d-g). Instead, we found population activity was not in-
24 dependent between contiguous maze sections within trials or within inter-trial intervals.
25 For example, Figure 3d-f shows that population vectors of maze sections 4 and 5 in the
»6 inter-trial interval were not easily separable in four or fewer dimensions. Across the whole
27 maze, adjacent sections within trials and inter-trial intervals had classification errors con-
28 sistently greater than any found between trials and inter-trial intervals (Figure 3g), even
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Figure 3: Population activity is independent between trials and inter-trial intervals
(a) Population activity vectors for the trials (o) and following inter-trial intervals of one session.
The heat-map shows the normalized firing rate for each neuron.

(b) Projection of that session’s population activity vectors on to two dimensions shows a complete
separation of trial and inter-trial interval activity. The black line is the linear separation found by
the classifier. PC: principal component.

(c) Summary of classification error over all sessions, as a function of the number of dimensions.
Each grey dot is the error for one session at that number of projecting dimensions. Dashed line
gives chance performance. Boxplots show medians (red line), interquartile ranges (blue box), and
outliers (red pluses).

(d-f) Same as panels (a-c), but comparing population activity vectors for maze sections 4 and 5
in the inter-trial interval.

(g) Heat maps for the average classification error in the separation of population activity vec-
tors between each pair of maze sections within trials (left panel), between trials and inter-trial
intervals (middle panel), and within inter-trial intervals (right panel). White square in the middle
panel indicates the arm-end position, where the transition from trial to inter-trial interval occurs.
Classification error is for projections of the population activity vectors in a two dimensional space.

220 when the animal was in the same maze position (white square, middle panel). These
230 results confirm that the marked changes in decoding accuracy across the maze (Figure
231 2a) corresponded to evolving population activity within trials and inter-trial intervals; but
232 they also show that this evolving activity happened along independent directions in the
233 trials and inter-trial intervals.

2 Population representations of trial features re-activate in sleep

235 Encoding the past and present of the same features in the same population on independent
236 axes means that, in principle, the representations of past and present can be addressed
237 or recalled without interference. We thus sought further evidence of this independent
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238 encoding by asking if either representation could be recalled independently of the other.
239 Prior reports showed that patterns of mPfC population activity during training are
20 preferentially repeated in post-training slow-wave sleep (Euston et al., 2007; Peyrache
21 et al., 2009; Singh et al., 2019), consistent with a role in memory consolidation. However,
22 it is unknown what features these repeated patterns encode, and whether they encode
243 the past or the present or both. Thus, we asked which, if any, of the trial and inter-trial
24 interval codes are reactivated in sleep, and thus whether they were recalled independently
25 of each other.

246 We first tested whether population activity representations in trials reactivated more
247 in post-training than pre-training sleep. For each feature of the task happening in the
2s  present (e.g choosing the left arm), we followed the decoding results by creating a popu-
29 lation vector of the activity specific to that feature during a session’s trials. To seek their
0 appearance in slow-wave sleep, we computed population firing rate vectors in pre- and
21 post-training slow-wave sleep in time bins of 1 second duration, and correlated each sleep
2 vector with the feature-specific trial vector (Figure 4a). We thus obtained a distribution
253 of correlations between the trial-vector and all pre-training sleep vectors, and a similar
24 distribution between the trial-vector and all post-training sleep vectors. Greater correla-
255 tion with post-training sleep activity would then be evidence of preferential reactivation
26 of feature-specific activity in post-training sleep.

257 We examined reactivation separately between learning and Other sessions, seeking
28 consistency with previous reports that reactivation of waking population activity in mPfC
250 most clearly occurs immediately after rule acquisition (Peyrache et al., 2009; Singh et al.,
20 2019). Figure 4b (upper panels) shows a clear example of a learning session with prefer-
261 ential reactivation. For all trial features, the distribution of correlations between the trial
%2 and post-training sleep population activity is right-shifted from the distribution for pre-
%63 training sleep. For example, the population activity vector for choosing the right arm is
24 more correlated with activity vectors in post-training (Post-R) than pre-training (Pre-R)
265 Sleep.

266 Such post-training reactivation was not inevitable. In Figure 4b (lower panels), we
267 plot another example in which the trial-activity vector equally correlates with population
268 activity in pre- and post-training sleep. Even though specific pairs of features (such as the
20 left and right light positions) differed in their overall correlation between sleep and trial
270 activity, no feature shows preferential reactivation in post-training sleep.

271 These examples were recapitulated across the data (Figure 4c). In learning sessions,
a2 feature-specific activity vectors were consistently more correlated with activity in post-
273 than pre-training sleep. By contrast, the other sessions showed no consistent preferential
a7a reactivation of any feature vector in post-training sleep. As a control for statistical arte-
275 facts in our reactivation analysis, we looked for differences in reactivation between paired
276 features (e.g. left versus right arm choice) within the same sleep epoch and found these
277 all centre on zero (Figure 4d). Thus, population representations of task features in the
a7s present were reactivated in sleep, and this consistently occurred after a learning session.
279 To check whether reactivation was unique to step-like learning, we turned to the Other
280 sessions: there we found a wide distribution of preferential reactivation, from many about
281 zero to a few reactivated nearly as strongly as in the learning sessions (Figure 4c, blue
2.2 symbols). Indeed, when pooled with the learning sessions, we found reactivation of a
283 feature vector in post-training sleep was correlated with the increase in accumulated reward
2ss  during the session’s trials (Fig 4e). Consequently, reactivation of population encoding
285 during sleep may be directly linked to the preceding improvement in performance.

286 Prior reports suggest that the reactivation of activity patterns in sleep can be faster
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Figure 4: Reactivation of trial population coding in post-training sleep.

(a) Example population activity vectors. Upper panel: from one learning session, we plot the
average firing rate vector for correct trials (Triall). For comparison, we also plot examples of firing
rate vectors from pre- and post-training slow-wave sleep (1s bins). Neurons are ranked in order of
their firing rates in the trial vector. Lower panel: as for the upper panel, for an example session
not classified as learning.

(b) Example distributions of Spearman’s rank correlations between trial and sleep population
activity. Upper panels: for the same learning session as panel (a), we plot the distributions of cor-
relations between each vector of feature-specific trial activity and the population activity vectors
in pre- and post-training slow-wave sleep. Lower panels: as for the upper panels, for the example
non-learning session in panel (a). R: right arm; 1: rewarded trial.

(c) Summary of reactivations across all sessions. For each feature, we plot the difference between
the medians of the pre- and post-training correlation distributions. A difference greater than
zero indicates greater correlation between trials and post-training sleep. Each symbol is a ses-
sion. Empty symbols are sessions with significantly different correlation distributions at p < 0.05
(Kolmogorov-Smirnov test). Grey filled symbols are not significantly different. One black circle
for learning and one for non-learning sessions identify the two example sessions in panels (a) and
(b).

(d) As for panel ¢, but plotting the median differences between distributions for paired features
within the same sleep epoch. For example, in the left-most column, we plot the difference between
the correlations with pre-session sleep activity for right-choice and left-choice specific trial vectors
(PreR - PrelL).

(e) Reactivation as a function of the change in reward rate in a session. One symbol per session:
learning (red); Other (blue). p: Spearman’s correlation coefficient. Black p is for all 49 sessions;
blue p, using only sessions with any incremental improvement in performance (N = 33 in total, 10
learning and 23 Other sessions; see Methods). We plot here reactivation of vectors corresponding
to left (direction and light) or correct; correlations for other vectors are similar in magnitude: 0.37
(choose right), 0.35 (cue on right), 0.2 (error trials) for all 49 sessions; 0.37 (choose left), 0.33 (cue
on right) and 0.26 (error trials) for sessions with incremental improvement in performance.

287 or slower during sleep than they were during waking activity. We tested the time-scale
288 dependence of feature-vector reactivation by varying the size of the bins used to create
280 population vectors in sleep, with larger bins corresponding to slower reactivation. We
200 found that preferential reactivation in post-training sleep in learning and (some) other
201 sessions was robust over orders of magnitude of vector widths (Figure 5a). Notably, in
202 the learning sessions only the vectors for rewarded outcome were significantly reactivated.
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Figure 5: Robust reactivation of trial population coding across time-scales of sleep
activity.

(a) At each time bin used to construct population activity vectors in sleep, we plot the distribution
over sessions of the median differences between pre- and post-training correlation distributions, for
learning (top), and other (bottom) sessions. Distributions are plotted as the mean (thick lines) +
2 SEM (thin lines); at the 1s bin, these summarise the distributions shown in full in Figure 4c.
Each panel plots two distributions, one per pair of features: lighter colours indicate left or error
trials (L or 0); while darker colours indicate right or correct trials (R or 1). Time bins range from
100 ms to 10 s, tested every 150 ms. Dotted lines at the top of each panel indicate bins with
reactivation significantly above zero (Wilcoxon sign rank test, p < 0.05 thin dot; p < 0.01 middle
size dot; p < 0.005 thicker dots; N = 10 learning, N = 39 Other sessions).

(b) Here we divide the Other sessions from panel (a) into those showing any increment in perfor-
mance from the animal (N = 23, “Minor-learning”, see Methods) and those that did not (N = 16).

203 Moreover, among Other sessions, the reactivation in post-training sleep was significant
20a only for those sessions in which the animal’s performance improved (however slightly)
205 within the session (Figure 5b). This consistency across broad time-scales suggests that
206 it is the changes during trials to the relative excitability of neurons within the mPfC
207 population that are carried forward into sleep (Singh et al., 2019).

s INo re-activation in sleep of inter-trial interval feature representations

200 'To ask if this reactivation was unique to encoding of the present, we repeated the same
s0 reactivation analysis for population vectors from the inter-trial interval. Again, following
3o our decoding results, each population feature vector was created from the average activity
s2  during inter-trial intervals after that feature (e.g. choose left) had occurred. We then
303 checked for reactivation of this feature vector in pre- and post-training slow-wave sleep.
304 We found absent or weak preferential reactivation of population encoding in post-
305 training sleep, for any feature in any type of session (Figure 6a). Consistent with this, we
306 found no correlation between the change in performance during a session and the reacti-
s07  vation of feature vectors after a session (Figure 6b). The orthogonal population encoding
s0s  during sessions (Figure 2) thus appears functional: population encoding of features in the
300 present was reactivated in sleep, but encoding of the same features until the start of the
310 next trial was not.
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Figure 6: No preferential reactivation of population encoding of the past.

(a) Similar to Figure 5, for reactivation of population feature-vectors constructed from inter-trial
interval activity. We plot the distribution over sessions of the median differences between pre- and
post-training correlation distributions, for learning (top), and other (bottom) sessions. Note that
the range of sleep vector time-bins is an order of magnitude larger than for trials, as the inter-trial
intervals themselves are an order of magnitude longer than trials (Maggi et al., 2018). Dotted lines
at the top indicate significant reactivation (Wilcoxon sign rank test, p < 0.05 thin dot; p < 0.01
middle size dot; p < 0.005 thicker dots). Lighter colours indicate left or error trials (L or 0); while
darker colours indicate right or correct trials (R or 1)

(b) Similar to Figure 4e, reactivation of the inter-trial interval population vector as a function of the
change in reward rate in a session. Reactivation is computed for 22 s bins. One symbol per session:
learning (red); Other (blue). p: Spearman’s correlation coefficient; black, all sessions; blue, only
sessions with any incremental improvement in performance. We plot here reactivation of vectors
corresponding to left (direction and light) or correct trials; correlations for other vectors are similar
in magnitude: -0.004 (choose right), 0.02 (cue on right), -0.08 (error trials) for all sessions; -0.005
(choose right), 0.01 (cue on right) and -0.1 (error trials) for sessions with incremental improvement
in performance.

su Population synchrony is also independent between past and present

32 Our analyses thus far had shown evidence of independent coding of the past and the
s13 present in the same mPfC population. We then asked whether this independence of
314 activity also extended to the independence of synchrony across the population. To do
315 80, we characterised population synchrony as the matrix of pairwise similarities between
sis neurons on each trial (Appendix - Figure A.1). By comparing between trials within a
317 session, we found that the population’s synchrony was consistently more similar between
318 trials with upcoming rewards than errors during learning sessions (Appendix - Figure A.2).
319 We previously showed that a population’s synchrony was also consistently more similar
320 between inter-trial intervals after a reward (Maggi et al., 2018). A natural question was
sz then whether this repeated pattern of synchrony was carried forward from the trials to the
32 inter-trial intervals during learning. However, we found that the patterns of population
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33 synchrony in a trial and its following inter-trial interval were as different from each other as
s« shuffled data (Appendix - Figure A.4a). Moreover, we found that the pattern of population
325 synchrony in the trials was recapitulated more in post than pre-session sleep, but the
326 population synchrony in the inter-trial intervals was not (Appendix - Figure A.4c-f). The
327 synchrony between neurons in the population thus seems as independent between the task
328 periods as the population encoding of past and present.

» Discussion

330 We have shown that medial PfC population activity independently represents the past
s and present of the same task features. Three lines of evidence support this conclusion.
32 First, the same task feature, such as the choice of arm, is independently encoded in the
333 trials and the inter-trial intervals. Second, these independent encodings are also func-
334 tionally independent: population activity representations of features during the trials are
335 re-activated in post-training sleep, but inter-trial interval representations are not. Third,
336 the reward-evoked pattern of population synchrony is also independent between trials and
337 inter-trial intervals, and only the trials’ synchrony pattern is recapitulated in post-training
338 Sleep.

s Mixed population coding in mPfC

a0 Consistent with prior reports of mixed or multiplexed coding by single mPfC neurons
s (Jung et al., 1998; Horst and Laubach, 2012; Rigotti et al., 2013; Fusi et al., 2016), we
sz found that small mPfC populations can sustain mixed encoding of two or more of the
a3 current direction choice, light position, and anticipated outcome. These encodings were
344 also position-dependent. Encoding of direction choice reliably occured from the maze’s
345 choice point onwards, but it is unclear whether this represents a causal role in the choice
s itself, or an ongoing representation of a choice being made.

347 We also report that these mixed encodings of the present within each population
g reactivate in post-training sleep. This finding goes beyond prior reports that specific
a0 patterns of trial activity reactivate in sleep (Euston et al., 2007; Peyrache et al., 2009;
30 Singh et al., 2019) to show what those patterns were encoding — multiple features of the
51 present, but not the past. It seems mixed encoding is a feature of sleep too.

352 As we showed in (Maggi et al., 2018) and extended here, population activity during the
353 inter-trial interval also has mixed encoding of features of the past. This encoding decays
354 in strength as the rat gets closer to the start of the maze: we showed here this mixed
355 encoding is still evident even if we disregard maze positions. Collectively, our results show
356 that population activity in mPfC can switch from mixed encoding of the present in a trial
357 to mixed encoding of the past in the following inter-trial interval.

;s Independent population codes solve interference of past and present

359 There are multiple hypotheses for how this transition from coding the present to the past
360 could happen. One hypothesis is that there are groups of neurons separately dedicated
1 to encoding the past and present. We ruled out this idea by only decoding from neurons
362 active in every trial and inter-trial interval, so showing that the transition from present
363 to past happened within the same group. Moreover, by showing that we could decode
se¢  each task feature from population activity even in the absence of any single neuron tuned
35 to that feature, we ruled out that there were distinct groups dedicated to each feature.
366 ' L'hus, this mixed encoding and its transition from present to past were sustained across
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37 small mPfC populations, at most 22 neurons, rather than by distinct groups within each
368 population.

360 Another hypothesis, as we noted in the Results, is that the switching from a population
370 encoding of the present to encoding of the past is explained by population activity in the
sn trials being carried forward into the inter-trial interval, whether by persistent activity
32 acting as a memory trace, or by the recall of patterns of trial activity during the inter-trial
373 interval. But our demonstration of independent encoding in the population between trials
sz« and the following intervals rules out this hypothesis.

375 Our results support dynamic coding in mPfC: population encoding evolved within
376 both the trials and the inter-trial intervals, consistent with the underlying changes we
377 observed in the population activity. The evolution of population dynamics over the inter-
ars  trial interval is consistent with reports of dynamic changes of PfC activity during the
sr0  delay period of working memory tasks (Murray et al., 2017; Spaak et al., 2017; Cavanagh
s0 et al.,, 2018; Wasmuht et al., 2018). They thus support the hypothesis that working
31 memory is sustained by population activity rather than the persistent activity of single
sz neurons (Constantinidis et al., 2018; Lundqvist et al., 2018). Crucially, the evolution of
383 activity within trials and inter-trial intervals was continuous, with adjacent maze sections
384 containing more similar population activity, yet the transition from the trial to the inter-
385 trial interval was discontinuous, with both encoding and population activity becoming
36 orthogonal. Our results thus show that evolution of encoding of the present and past were
37 along two independent axes.

388 Any neural population encoding both the past and the present in its activity faces
39 problems of interference: of how to prevent the addition of new information in the present
s0 from overwriting the encoded information of the short-term past (Libby and Buschman,
s01 2019); of how inputs to the population can selectively recall only the past or the present,
32 but not both; and of how downstream populations can access or distinguish the encodings
303 of the past and the present. Representing the present and past on independent axes solves
304 these problems. It means that the encoding of the present can be updated without altering
305 the encoding of the past, that inputs to the population can activate either the past or the
396 present representations independently, and that downstream populations can distinguish
37 the two by being tuned to read-out from one axis or the other. Indeed, we showed that
398 in post-session sleep the encoding of the present can be accessed independently of the
300 encoding of the past.

400 An open question is how much the clean independence between the encoding of the
a1 past and present depends on the behavioural task. In the Y-maze task design, there is a
w2 qualitative distinction between trials (with a forced choice) and inter-trial intervals (with
a3 a self-paced return to the start arm), which we used to clearly distinguish encoding of the
a4 present and the past. Such independent coding may be harder to uncover in tasks without
a5 a distinct separation of decision and non-decision phases. For example, tasks where the
a6 future choice of arm depends on recent history, such as double-ended T-mazes (Jones and
a7 Wilson, 2005), multi-arm sequence mazes (Poucet et al., 1991), or delayed non-match to
ws  place (Spellman et al., 2015), blur the separation of the present and the past. Comparing
a0 population-level decoding of the past and present in such tasks would give useful insights
a0 into when the two are, and are not, independently coded.

m  Mechanisms for rapid switching of population codes

a2 The independent encoding and independent population activity between the trial and
a3 immediately following inter-trial interval implies a rapid rotation of population activity.
a1« How might such a rapid switch of network-wide activity be achieved?
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415 Such rapid switching in the state of a network suggests a switch in the driver inputs
a6 to the network. In this model, drive from one source input creates the network states for
a7 population encoding A; a change of drive — from another source, or a qualitative change
ss  from the same source -— creates the network states for population encoding B (either set
a0 of states may of course arise solely from internal dynamics). One option for a switching
a0 drive is the hippocampal-prefrontal pathway.

21 In several spatial tasks (Jones and Wilson, 2005; Jadhav et al., 2012; Peyrache et al.,
22 2009; Benchenane et al., 2010) cortico-hippocapal regions show coherent theta oscilla-
223 tion. This coherence increases during learning at the choice point of the Y maze task
24 (Benchenane et al., 2010; Peyrache et al., 2009) described here, and recurs during slow-
a5 wave ripples in post-training sleep. These data and our analyses here are consistent with
26 the population encoding of the trials being (partly) driven by hippocampal input, and
a7 with the re-activation of only the trial representations in sleep being the recruitment of
a8 those states by hippocampal input during slow-wave sleep. The increased coherence be-
a9 tween hippocampus and mPfC activity may act as a window for synaptic plasticity of
10 that pathway (Benchenane et al., 2010, 2011). Consistent with this, we saw a correlation
11 between performance improvement in trials and reactivation in sleep (see also Maingret
2 et al., 2016).

433 All of which suggests the encoding of the past during the inter-trial interval is not
43¢ driven by the hippocampal input to mPfC, as its representation is not re-activated in sleep.
135 (Spellman et al. 2015 report hippocampal input to mPf{C is necessary for the maintenance
a3 of a cue location; though unlike in our task, actively maintaining the location of this cue
17 was necessary for a later direction decision). Rather, the population coding during the
a8 inter-trial interval could reflect the internal dynamics of the mPfC circuit. Indeed, network
130 models of working memory in the prefrontal cortex focus on attractor states created by
a0 its local network (Durstewitz et al., 2000; Miller et al., 2005; A. Compte, 2000; Wimmer
s et al., 2014). If somewhere close to the truth, this account of rapid switching suggests
a2 that the hippocampal input to mPfC drives population activity in the trial, and a change
a3 or reduction in that input allows the mPfC local circuits to create a different internal
a4 state during the inter-trial interval. A prediction of this account is that perturbation of
a5 the hippocampal input to the mPfC could disrupt its encoding of the past and present in
as  different ways.

u7  Reconciling mPfC roles in memory and choice

us  We propose that our combined results here and previously (Maggi et al., 2018) support
a9 a dual-function model of mPfC population coding, where the independent coding of the
a0 past and present respectively support on-line learning and consolidation. This model is
w51 somewhat counter-intuitive: our data suggest the representation of the present in mPfC
s52 is used for offline learning, whereas the representation of the past is used online to guide
453 behaviour.

454 Under this model, the role of memory encoding in the inter-trial interval is to guide
ss5  learning online: reward tags past features whose conjunction led to successful outcomes
6 (for example, the conjunction of turning left when the light is on in the left arm). While
ss7 population activity in the inter-trial interval reliably encodes features of the past through-
a8 out training, we previously showed that synchrony of the population only consistently
59 occurs immediately before learning (Maggi et al., 2018). This suggests that the synchroni-
a0 sation of mPfC representations of features predicting success is correlated with successful
a1 rule-learning. Consistent with such past-encoding contributing to online learning, we show
a2 here that neither the encoding nor synchrony pattern in the inter-trial interval are carried
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a3 forward long-term into sleep.

464 By contrast, we report here representations of the present in the trial are carried
a5 forward and reactivated in sleep. Reactivation of waking activity during slow-wave sleep
w6 has been repeatedly linked to the consolidation of memories (Stickgold, 2005; Tononi and
a7 Cirelli, 2014; Sawangjit et al., 2018). Indeed, interrupting the re-activation of putative
w8 waking activity in hippocampus impairs task learning (Girardeau et al., 2009). Thus,
a0 under the dual-function model, we propose the reactivation in mPfC of mixed encodings
a0 of the present may be consolidating the conjunction of present features and choice that is
a1 going to be successful when re-used in future.

a2 Further insight into these and other ideas here would come from stable recordings
a3 of the same population across multiple sessions, to track how encoding of the past and
a4 present evolves and is or is not reused. In particular, it would be insightful to establish if
a5 re-activated trial representations in sleep reappear in subsequent sessions.

476 The medial prefrontal cortex plays a key role in both short-term memory (Fujisawa
a7 et al., 2008; Jun et al., 2010; Maggi et al., 2018) and choice behaviour (Averbeck et al.,
ars - 2006; Rigotti et al., 2013; Erlich et al., 2015; Hanks et al., 2015). Our finding here of
a9 independent coding of the past and the present suggest these roles can be carried out
a0 sequentially within the same mPfC neural population.
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&0 Methods

s0 Task description and electrophysiological data

sa1  All the data in this study comes from previously published data (Peyrache et al., 2009).
622 The full details of training, spike-sorting and histology can be found in (Peyrache et al.,
3 2009). The experiments were carried out in accordance with institutional (CNRS Comité
s Opérationnel pour 'Ethique dans les Sciences de la Vie) and international (US National
ess Institute of Health guidelines) standards and legal regulations (Certificate no. 7186, French
s Ministere de I’Agriculture et de la Péche) regarding the use and care of animals.

647 Four Long-Evans male rats were implanted with tetrodes in prelimbic cortex and
ss trained on a Y-maze task (Figure la). During each session, prelimbic activity was recorded
ea0 for 20-30 minutes of sleep or rest epoch before the training phase, in which rats worked
es0  at the task for 20-40 minutes. After that, another 20-30 minutes of sleep or rest epoch
es1  recording followed. During the sleep epochs, intervals of slow-wave sleep were identified
2 offline from the local field potential (details in (Peyrache et al., 2009; Benchenane et al.,
3 2010)).

654 The Y-maze had symmetrical arms, 85 cm long, 8 cm wide, and separated by 120
ess  degrees, connected to a central circular platform (denoted as the choice point throughout).
66 Hach rat worked at the task phase by self-initiating the trial, leaving the beginning of the
657 start arm. Trial finished when the rat reached the end of the chosen goal arm. If the
ess chosen arm was correct according to the current rule, the rat was rewarded with drops of
eso  flavoured milk. As soon as the animal reached the end of the chosen arm an inter-trial
660 interval started and lasted until the rat completed its self-paced return to the beginning
661 of the start arm.

662 Each rat was exposed to the task completely naive and had to learn the rule by trial-
663 and-error. The rules were presented in sequence: go to the right arm; go to the cued arm;
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664 g0 to the left arm; go to the uncued arm. The light cues at the end of the two arms were
665 lit in a pseudo-random sequence across trials, regardless the rule in place.

666 The recording sessions taken from the study of Peyrache and colleagues (Peyrache
e7 et al., 2009) were 53 in total. Each of the four rats learnt at least two rules, and they
e6s contributed with 14, 14, 11, and 14 sessions. The learning, rule change, and other sessions
eso for each rat were intermingled. We used 49 sessions for most of the analysis. One session
s0  was omitted for missing position data, one for consistent choice of the right arm (in a
o1 dark arm rule) preventing decoder analyses (see below), and one for missing spike data in
o2 a few trials. An additional session was excluded for having only two neurons firing in all
673 trials. Tetrode recordings were spike-sorted within each recording session. In the sessions
674 we analysed here, the populations ranged in size from 4-25 units. Spikes were recorded
e7s  with a resolution of 0.1 ms. Simultaneous tracking of the rat’s position was recorded at
676 30 Hz.

s7  Behavioural analysis

678 Hach session was classified according to its behavioural features. The learning sessions
670 were identified according to the original study (Peyrache et al., 2009) as the ones with
60 three consecutive correct trials followed by a performance of at least 80% correct. The
es1 first of the three correct trials was the learning trial. Only ten sessions satisfied this
632 criterion. We quantified this learning as a step-like change in performance by fitting a
683 robust regression line to the cumulative reward curve before and after the learning trial.
ess The slopes of the two lines gave us the rate of reward accumulation before (rpefore) and
e85 after (rqfeer) the learning trial.

686 Eight sessions were characterised by 10 consecutive correct trials or eleven correct out
67 of twelve trials followed by a change in the rule. The first trial with the new rule was
ess 1dentified as the rule change trial. The change in performance in these sessions, labelled
630 “Rule change” sessions, was quantified with the same method above. A robust regression
eo0 line was fitted to the cumulative reward curve before and after the rule change trial.

691 To identify other possible learning session, we fitted this piece-wise linear regression
2 model to each trial in turn (allowing a minimum of 5 trials before and after each tested
e03 trial). We then found the trial at which the increase in slope (7yfter — Tbefore) Was max-
604 imised, indicating the point of steepest inflection in the cumulative reward curve. In the
605 learning sessions, the learning trial largely agreed with this method. Amongst the re-
eo6 Mmaining sessions, labelled “Other”, we searched for signs of incremental learning using
607 this method. We found 22 sessions falling in this category in addition to the 10 learning
e0s sessions. We called these sessions “minor-learning”.

s0 Decoder analysis and independence of ensembles encoding

70 To predict which task feature was encoded into the ensemble we trained and tested a range
701 of linear decoders (Hastie et al., 2009; Maggi et al., 2018). In the main text we report
702 the results obtained using a logistic regression classifier, but for robustness we also tested
703 three other decoders: linear discriminant analysis; (linear) support vector machines; and
704 a nearest neighbours classifier. The full details of the decoding analysis can be found in
705  Maggi et al. (2018).

706 Briefly, we linearised the maze in five equally-sized sections and we computed the
707 firing rate vector of the core population of length N for each position p, rP. For each
708 trial ¢t = 1,...,7T and each section of the maze p = 1,...,5, the set of population firing
700 rate vectors {rP(1),...,rP(7T)} was used to train the decoder. Each relevant trials’ task


https://doi.org/10.1101/668962
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/668962; this version posted August 12, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

22

710 information was binary labelled: outcome (labels: 0, 1), the chosen arm (labels: left, right)
71 and the position of the light cue (labels: left, right). The same classifier was also trained
712 to decode previous trials’ task information. We used leave-one-out cross-validation and
713 we quantified the accuracy of the decoder as the proportion of correctly predicted labels
714 over the T held out trial intervals.

715 For each rat and each session, the distribution of outcomes and arm choices depended
716 on the rats’ performance, which could differ from 50%. Therefore, we trained and cross-
77 validated the same classifier on the same data-sets, but shuffling the labels of the task
78 features. In this way we obtained the accuracy of detecting the right labels by chance.
79 We repeated the shuffling and fitting 50 times and we averaged the accuracy across the 50
720 repetitions. The results displayed in the figures showed the difference between the decoder
721 accuracy on the original data with the accuracy of the shuffled label.

722 To test if the classifier results were a property of the population or were driven by a
723 few tuned neurons, we selected the sessions in which no neurons significantly changed their
724 firing rate according to a feature. For each neuron, we computed its firing rate on each trial
725 (1...T) of a session {r(1),...,r(T)}. We divided the firing rate vector into two classes
726 (right vs left direction choice, right vs left light position and rewarded vs unrewarded) for
727 each feature. We then tested whether the firing rate was significantly changing within the
728 feature (Kolmogorov-Smirnov test) using p < 0.05 as our criterion for a “tuned” neuron.
70 Finally, for every feature, we excluded all the sessions that had at least one neuron that
730 significantly changed its firing rate, and we ran the classifier with the remaining sessions.
731 To compare the decoding accuracy between trials and inter-trial intervals, we trained
732 again the classifier using the population firing rate vectors computed on the entire maze
733 {r(1),...,r(T)}. We then trained the classifier on all the trials. We saved the population
734 vector of weights and we tested the model, optimised to decode trial activity, on every
735 inter-trial interval to evaluate the accuracy in decoding retrospective inter-trial interval
736 labels. The same procedure was used to train the linear classifier on all the inter-trial
737 intervals to test its accuracy in decoding trials activity. The population vector of weight
738 was also saved for this model.

739 The angle, 8, between the population vector of trials’, w;, and inter-trial intervals’, wr,

o weights was computed as 6 = cos™! (%)

741 We further evaluated the independence of trial and inter-trial interval population vec-
72 tors by quantifying their separability in a low dimensional space. We used principal com-
73 ponents analysis (PCA) to project the population vectors of a session onto a common set
744 of dimensions. To do so, we constructed the data matrix X from the firing rate vectors of
75 the core population, by concatenating trials and inter-trial intervals in their temporal or-
16 der {ry(1),r7(1),...,v(T),r;(T)}"; the resulting matrix thus had dimensions of 27" rows
727 and N (neurons) columns. Applying PCA to X, we projected the firing rate vectors on to
78 the top d principal axes (eigenvectors of XTX) to create the top d principal components.
79 For each set of d components, we quantified the separation between the projected trial and
750 inter-trial interval population vectors using a linear classifier (Support Vector Machine,
751 SVM), and report the proportion of misclassified vectors. We repeated this for between
72 d =1 and d = 4 axes for each session.

3 Reactivation of task-feature encoding in sleep

754 In order to quantify the reactivation of waking activity in pre- and post-session sleep, we
755 used the population firing rate vectors computed for the decoder. We considered here the
756 average population vector computed across all the trials in the all maze for each feature.
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757 In details, we quantified separately the average population firing rate vector for all the
758 right choice trials and all the left choice trials. Similarly we did for right and left cue
750 location and for correct and error trials. We then compare the ranked average population
0 firing rate vector for each feature with the firing rate vector of each 1 second time bin
761 of slow-wave sleep pre- and post-session. We used Spearman’s correlation coefficient to
762 compare them and to quantify the difference between the distributions of each feature and
763 the slow-wave sleep pre- and post-session. Spearman’s coefficient was chosen specifically to
764 remove any effects of global rate variations across the vectors within or between epochs. In
765 order to have a reactivation of activity in post-session sleep, we expected the distribution
766 of Spearman CC between a feature and pre-session slow-wave sleep to be leftward shifted
767 compare to the distribution of Spearman CC between the same feature and post-session
768 slow-wave sleep. We quantified this shift by measuring the difference in the medians
760 distribution between the two Spearman distributions. If the delta medians was positive
770 then we had a higher correlation of the population firing vector with the post-session
m  slow-wave sleep compared to the pre-session slow-wave sleep. If the delta median (called
72 Reactivation (Mpost — Mpre) in the text) was negative, then the population firing rate
773 vector was more similar to the pre-session slow-wave sleep population vector. To then
77a  control for different time scales of reactivation in sleep we repeated the same procedure
775 changing the time bin in the slow-wave sleep pre- and post-session. We used time bins
776 from 100 ms to 10 sec every 150 ms for trials and from 10 sec to 200 sec every 2 sec for
777 inter-trial intervals.

s Testing for reinforcement-driven ensembles

779 The reinforcement-dependent recall of ensemble activity was identified as per Maggi et al.
70 (2018). We firstly selected the spike-trains of the N neurons active in every trials. We
71 convolved these spike-trains with a Gaussian (0 = 100 ms) to obtain a spike-density
72 function fi for the kth spike-train. All the recall analyses were repeated for different
783 Gaussian widths ranging from 20 ms to 240 ms (Figure A.3). Each spike-train was then
784 z-scored to obtain a normalised spike-density function f* of unit variance: f; = (fi —
s (fx))/ok, where (fi) is the mean of fi, and oy its standard deviation, taken over all the
786 trials of a session.

787 We then wanted to track the changes in the co-activity pattern of the core population
788 along the sessions. We first computed the pairwise similarity matrix between the spike
789 density functions of each neuron in trial ¢, S¢. This matrix was rectified in order to keep
700 track only of those pair with positive co-activity pattern (Figure A.la). To compare the
791 co-activity patterns across trials along the sessions, we then computed the recall matrix
72 (Figure A.1b, R, where each entry R(t,u)) is the rectified correlation coefficient between
793 the similarity matrices Sy and Sy.

704 We grouped the entries of R into two groups according to the outcome of the trials.
705 In such way we obtained two block diagonals Rq and Ra (such as Rerror and Reorrect,
796 as illustrated in Figure A.1b-c). We summarised the recall between groups by computing
797 the mean of each block.

708 As a control and to keep comparison with our prior study of inter-trial intervals (Maggi
7900 et al., 2018), we defined a null model to dissect the contribution of differences between
soo the error and correct trials. For each session we created a predicted recall matrix f{, by
son averaging 1000 random recall matrices, each computed from shuffled spike trains. Each
so2 spike-train was shuffled by randomly re-ordering its inter-spike intervals. This shuflling was
g3 meant to destroy any specific temporal pattern of the spike train, allowing to quantify the
g4 pairwise similarity contribution due exclusively to the duration of trial. Our final residual
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sos recall matrix R = R — R was obtained as the difference between the Recall matrix and
sos the average shuffled recall matrix (Figure A.lc). We report all results for this residual
sor  matrix R, though differences between using R and R were minimal (Figure A.1d).

ss  Data Availability

soo The spike-train and behavioural data that support the findings of this study are available in
sio. CRCNS.org (DOI: 10.6080/KOKHOKHS5) (ref. (Peyrache et al., 2009)). Code to reproduce
s11  the main results of the paper is available at:
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A Appendix - independence of population synchrony

s1z Population synchrony is recalled in correct trials around learning

sie  To further support the evidence of independent coding of the past and the present in the
s1is same mPfC population we investigated whether this independence also extended to the
s16 independence of synchrony across the population. We previously showed that these mPfC
s17  populations repeated similar patterns of population synchrony across inter-trial intervals,
sis most reliably around the point of learning (Maggi et al., 2018). As this synchrony was
s10  triggered by reward, we suggested that reward acts as a trigger to synchronise the features
820 of the past trial encoded within the population; in principle, this would be a powerful tool
g1 for learning, as the joint presence of those features is predictive of reward. We thus asked
82 if these populations have such a synchrony code in the trials too. We show here that trials
823 also have evidence of outcome-dependent synchrony in the population; in the next section
824 we ask if these synchrony patterns are also reactivated in sleep.

825 We characterised population synchrony as the matrix of pairwise similarities between
s26 neurons on each trial (Figure A.la). We then compared these similarity matrices across
827 trials to ask if the same pattern of population synchrony is recalled on different trials. We
a8 first asked if the same pattern of synchrony was recalled on correct trials or on error trials
s20  (Figure A.1b). Other factors differing between error and correct trials could contribute to
ss0  differences in correlations between neurons (though time spent along the maze was not one
a1 of them — Figure A.le). To control for spurious correlations, we constructed a predicted
82 Recall matrix from label-shuffled data, and subtracted this to leave the residual Recall
33 matrix (Figure A.1c). This correction did not markedly change the differences between
s« correct and error trials in the recall of a pattern of population synchrony (Figure A.1d).
835 In learning sessions, the population’s synchrony pattern was consistently more similar
836 between trials with upcoming rewards than errors (Figure A.2a), suggesting a recalled
837 pattern of synchrony across the population precedes correct choice on a trial.

838 This consistent recall of a synchrony pattern across trials was specific to the combina-
80 tion of learning sessions and future outcomes. We found no consistent outcome-dependent
sao  recall of a synchrony pattern in Other sessions (Figure A.2a), or in trials that were imme-
sa1  diately after a correct trial (Figure A.2b), ruling out a history-dependent effect of reward.
a2 We further observed no consistently recall of a synchrony pattern across trials conditioned
a3 on other task-related features, whether they were upcoming (Figure A.2c,d) or in previous
saa  trials (Figure A.2e,f). Finally, to ensure that the recall of a synchrony pattern was not
sas  affected by the temporal precision of the spike-train correlation used, we repeated all these
a6 comparisons for different resolutions of the Gaussian width used to convolve spike-trains
87 before computing their pair-wise similarity. Across an order of magnitude for the tem-
sas  poral resolution, we still observed recall effects only for learning sessions and only when
sao  preceding the outcome (Figure A.3).

o Population synchrony is also independent between trials and inter-trial
g1 intervals

ss2  Both trials (present paper) and inter-trial intervals (Maggi et al., 2018) showed outcome-
853 dependent recall of population synchrony in mPfC. As we had established that the popu-
854 lation codes in trials and inter-trial intervals were independent in both waking and sleep,
sss  we asked if the synchrony patterns recalled during learning were also independent between
ss6  trials and inter-trial intervals.

857 We found that, within a learning session, the patterns of population synchrony in a
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Figure A.1: Comparing population synchrony between trials.

(a) Example raster plots of spike trains during two error and two correct trials from the same
session (left panels). Right panels: corresponding pairwise similarity matrices.

(b) Top, matrix of similarities between the example similarity matrices in panel (a). This “Recall”
matrix shows higher values within correct trials compared to error trials, indicating that population
synchrony was more similar between correct trials. Bottom: we summarise this by comparing the
average recall values between error (blue) and correct (red) trials.

(c) To control for spurious correlations, we computed an expected Recall matrix from shuffled
data, and subtracted it from the Recall matrix, to give a residual Recall matrix. Example Recall
(left panel) and residual Recall (right panel) matrices for one learning session, reordered according
to the trial outcome. Bottom panels show the average recall value among error and correct trials.
(d) The difference between average correct and error recall is compared between Recall (original)
and residual Recall for all sessions. Each line is a session. Red lines are the learning sessions.

(e) Time spent along the maze for error and correct trials did not differ (median £ SEM).

sss  trial and its following inter-trial interval were as different from each other as shuffled data
g0 (Figure A.4a, redrawn from Maggi et al. (2018)). The synchrony between neurons in the
g0 population thus seems as independent between the task periods as the population encoding
g1 of past and present.

862 To address the reactivation of synchrony patterns in sleep, we first computed two
863 session-wide synchrony patterns for each session, one from concatenating all correct trials;
s+ the other from concatenating all error trials (Figure A.4b). We found the synchrony pat-
g5 tern in correct trials was a closer match to the synchrony pattern in post- than pre-training
sss  slow-wave sleep (Figure A.4c). Error trials showed no preferential match of synchrony pat-
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Figure A.2: The ensemble reactivation pattern is specific for prospective and not
retrospective encoding.

(a) The difference in average recall between correct and error trials, across session types. Empty
circles are single session values, while bold symbols are means + 2SEM. P-values are from Wilcoxon
sign rank test, N = 10 learning and N = 39 Other sessions.

(b) As for (a), with the difference in recall computed with respect to the outcome of the preceding
trial.

(c) As for (a), with the difference in recall computed with respect to the upcoming direction choice
on each trial.

(d) As for (a), with the difference in recall computed with respect to the cue location on each trial.
(e) As for (a), computed with respect to the direction chosen in the preceding trial.

(f) As for (a), computed with respect to the cue position in the preceding trial.
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Figure A.3: The outcome-dependent ensemble activity pattern is specific for learning
across multiple time scales.

Outcome-dependent delta Recall for different convolution width (from 20 ms to 240 ms every 20 ms
step) for learning and other sessions shows a recall effect only for learning session in a prospective
(a) approach and not retrospective (b). For each Gaussian width we show the mean + 2SEM. Red
squares on top of the panels indicate bins with difference in recall significantly better than chance
(Wilcoxson sign rank test, p < 0.05 small squares; p < 0.01 medium size squares; p < 0.005 big
squares.

tern to either sleep epoch (Figure A.4d). Repeating the same analysis for the inter-trial
intervals, we found no preferential match of synchrony pattern for either sleep epoch, nei-
ther for intervals following correct outcomes (Figure A.4e), or those following error (Figure
A.4f). Outcome dependent population synchrony in trials was thus recapitulated in sleep
independently of the population synchrony in inter-trial intervals.


https://doi.org/10.1101/668962
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/668962; this version posted August 12, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

28

Q
o
(@]
(a8

Pre-SWS Error ) p<0.005

—~ p=0.2
Q)
Trial correct 2061 o g 0.6
max 2 2 »n n
2 | 2y %)
< § 4 4 T 04 7 04
36 0 02 3 6 ‘ 6 3 5
2.0 z 902 g 02
o 8 8 5 5
10 > \ 10 ! < o3
246810 901 T L. 10 go 8 o
Neuron 5 9 2 4 6 8 10 2 4 6 8 10 —
< o 9| Pre Post Pre Post
s _ .
171 correct 3 Correct Post-SWS e 08 p=0.1 f p=0.4
pEE o 2 2 2 0.8
2 &-0.1 o N | = )
5 4 u == loo 6 ¢ 4 o 206 5
3 6 u 3 6 6 | e 206
z e 0.2 ‘ 2 o 3 =
u 1o 81 b 8 £ 5
10 3 0.4 g 04
2 46 810 ogb 10 10 5% 153
Neuron : Error  Correct 2 4 6 810 2 .46 810 © 0.2 ° 0.2
Neuron Neuron ’ Pre Post ’ Pre Post

Figure A.4: Population synchrony is also orthogonal between trials and inter-trial
intervals.

(a) Example similarity matrices for the concatenated correct trials (upper panel) and concate-
nated correct inter-trial intervals (lower panel) on the left. On the right, distributions of relative
similarity between inter-trial intervals and preceding trials compared to a shuffle control model.
Distributions around zero indicate that trials and inter-trial intervals are independent (redrawn
from Maggi et al. (2018)).

(b) Similarity matrices of concatenated pre-session slow-wave sleep (SWS) episodes, error trials,
correct trials and post-session slow-wave sleep episodes for an example learning session.

(c) Correlation between concatenated correct trials and pre-session slow-wave sleep episodes com-
pared to the correlation between concatenated correct trials and post-session slow-wave sleep
episodes. Each dot is a learning session. p-value from a paired t-test is shown on top.

(d) Correlation between concatenated error trials and pre-session slow-wave sleep episodes com-
pared to the correlation between concatenated error trials and post-session slow-wave sleep
episodes.

(e) As in panel (c) Correlation between concatenated correct inter-trial intervals and pre-session
slow-wave sleep episodes compared to the correlation between concatenated correct inter-trial in-
tervals and post-session slow-wave sleep episodes.

(f) As in panel (d) Correlation between concatenated error inter-trial intervals and pre-session
slow-wave sleep episodes compared to the correlation between concatenated error inter-trial inter-
vals and post-session slow-wave sleep episodes.
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