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Abstract1

Medial prefrontal cortex (mPfC) plays a role in present behaviour and in short-2

term memory. Unknown is whether the present and the past are represented in the3

same mPfC neural population and, if so, how the two representations do not interfere.4

Analysing mPfC population activity of rats learning rules in a Y-maze, we find pop-5

ulation activity switches from encoding the present to encoding the past of the same6

events after reaching the arm-end. We show the switch is driven by population activity7

rotating to orthogonal axes, and the population code of the present and not the past8

reactivates in subsequent sleep, confirming these axes were independently accessible.9

Our results suggest mPfC solves the interference problem by encoding the past and10

present on independent axes of activity in the same population, and support a model11

of the past and present encoding having independent functional roles, respectively12

contributing to on-line learning and off-line consolidation.13

Keywords: decision making, mPFC, learning, neural ensembles, sleep, replay14

Introduction15

The medial prefrontal cortex (mPfC) plays key roles in adaptive behaviour, including16

reshaping behaviour in response to changes in a dynamic environment (Euston et al., 2012)17

and in response to errors in performance (Narayanan and Laubach, 2008; Laubach et al.,18

2015). Damage to mPfC prevents shifting behavioural strategies when the environment19

changes (Laskowski et al., 2016; Guise and Shapiro, 2017). Single neurons in mPfC shift20

the timing of spikes relative to hippocampal theta rhythms just before acquiring a new21

action-outcome rule (Benchenane et al., 2010). And multiple labs have reported that global22

shifts in mPfC population activity precede switching between behavioural strategies (Rich23

and Shapiro, 2009; Durstewitz et al., 2010; Karlsson et al., 2012; Powell and Redish, 2016)24

and the extinction of learnt associations (Russo et al., 2020).25

Adapting behaviour depends on knowledge of both the past and the present. Deep26

lines of research have established that mPfC activity represents information about both.27

The memory of the immediate past is maintained in mPfC activity, both in tasks requiring28

explicit use of working memory (Baeg et al., 2003; Fujisawa et al., 2008; Spellman et al.,29

2015) and those that do not (Maggi et al., 2018). The use of such memory is seen in both30

the impairment arising from mPfC lesions (Rich and Shapiro, 2007; Young and Shapiro,31

2009; Laskowski et al., 2016), and the role of mPfC in error monitoring (Laubach et al.,32
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2015). Representations of stimuli and events happening in the present have been reported33

in a variety of decision-making tasks throughout PfC (Averbeck et al., 2006; Rigotti et al.,34

2013; Hanks et al., 2015; Siegel et al., 2015), and specifically within rodent mPfC (Sul35

et al., 2010; Ito et al., 2015; Guise and Shapiro, 2017).36

Little is known though about the relationship between representations of the past and37

present in mPfC activity. Prior studies have shown that past and upcoming choices can38

both modulate activity of neurons in the same mPfC population (for example Baeg et al.,39

2003; Ito et al., 2015), but none have compared the encodings of the past and present,40

nor determined how the encoding of the present becomes the encoding of the past. Thus41

important questions remain: how the past and present are encoded in the same mPfC42

population, how the encoding of features in the present transforms into the encoding of43

the past, and how that transforms solves the problem of potential interference between44

the past and the present – that the encoding of the past does not overwrite that of the45

present, or vice-versa, and that the two encodings can be addressed independently.46

To address these questions, we reanalyse here mPfC population activity from rats47

learning new rules on a Y-maze (Peyrache et al., 2009). Crucially, this task had distinct48

trial and inter-trial interval phases, in which we could respectively examine the population49

encoding of the present (in trials) and the past (in the intervals) of the same task features50

or events. We first established that small mPfC populations did indeed encode both the51

present and past of the same features of the task, respectively in the trial and in the inter-52

trial interval. We found that these encodings were orthogonal, so that the present and the53

past were encoded by activity evolving along independent coding axes. Crucially, we show54

here that these encodings of the past and the present could be addressed independently:55

population activity encoding the present was reactivated in post-training sleep, but activity56

encoding the same features in the past was not reactivated. Moreover, the improvement57

in the animal’s performance during a session correlated with how strongly the encoding of58

the present was reactivated. Thus, by encoding the past and present of the same events59

on independent axes, a single mPfC population prevents interference between them, and60

allows their independent recall.61

Results62

To address how the mPfC encodes the past and the present, we analyse here data from63

rats learning rules in a Y maze, who had tetrodes implanted in mPfC before the first64

session of training. Across sessions, animals were asked to learn one of 4 rules, which were65

given in sequence (go to the right arm, go to the lit arm, go to the left arm, go to the66

dark arm). Rules were switched after 10 correct choices (or 11 out of 12). There were67

8 rule-switch sessions in total, and each animal experienced at least 2 rules. The animal68

self-initiated each trial by running along the central stem of the Y maze and choosing69

one of the arms (Figure 1a). The trial finished at the arm’s end, and reward delivered if70

the chosen arm matched the current rule being acquired. During the following inter-trial71

interval the rat made a self-paced return to the start of the central arm to initiate the72

next trial. Throughout, population activity was recorded in the prelimbic and infralimbic73

cortex (Figure 1b), which we shall term medial prefrontal cortex (mPfC) here (Laubach74

et al., 2018, propose that these regions are equivalent to the anterior cingulate cortex75

in primates). This task thus allowed us to study the representation of choice and its76

environmental context in both the present (the trial) and the immediate past (the inter-77

trial interval).78
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Figure 1: Task and mPfC population activity
(a) Schematic of the Y-maze task, showing a rat at the start position. A trial is the period from
the start position to the end of the chosen arm; the inter-trial interval is the return from the arm
end to the start position. On each trial one arm-end was lit, chosen in a pseudo-random order,
irrespective of whether it was relevant to the current enforced rule. Across sessions, animals were
asked to learn one of 4 rules in the sequence: go to the right arm, go to the lit arm, go to the left
arm, go to the dark arm. Rules switched after 10 correct choices (or 11 out of 12). There were 8
rule-switch sessions in total, and each animal experienced at least 2 rules.
(b) Raster plots of spiking activity in the medial prefrontal cortex during a single trial and the
following inter-trial interval (ITI).

Population activity encodes the present and the past of the same task79

features80

In order to compare representations of the same choice and features in the past and81

present, we first had to establish that these were indeed represented in mPfC population82

activity. Using a linear decoder on the vector of population activity during each trial or83

inter-trial interval (Figure 2a), we decoded key features of the task: the animal’s choice84

of arm direction in the trial, the outcome of the trial, and which arm-end was lit during85

the trial. Population vectors for a given session used neurons active in every trial of that86

session, so ranged from 4-22 neurons across 49 sessions, of between 7-51 trials each (Figure87

2 – SI Figure 1). We trained the same decoders using the same population vectors but88

with features shuffled across trials (see Methods), to define appropriate chance levels for89

each decoder given the unbalanced distribution of some task features, such as outcome.90
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Figure 2: PfC population encoding of the past and present of the same task features
(a) Schematic of a linear decoder of population activity during a session’s trials. Trials were
repeatedly divided into a training set and one held-out test trial. The population vector of neuron
firing rates for each trial in the training set (shade of blue squares) is input to a linear decoder that
fits the weight (shade of yellow squares) for each neuron across the trials. A linear combination of
the learnt weight vector and the firing rate vector of the trials is compared to a threshold (red dashed
line) to predict the category to which that trial belongs. Decoding accuracy is the proportion of
correctly predicted held-out trials when using the weight vector from their corresponding training
set trials.
(b) Decoding accuracy for population activity during the trials of each session. In black we plot
the accuracy of decoding the choice of arm direction (Dir), light position (Lig), and outcome (Out)
for the current trial (left panel), and the previous trial (right panel). In grey we plot the decoding
accuracy of shuffled labels across trials. Significant data decoding was tested using paired Wilcoxon
signed rank test: * p < 0.05; ** p < 0.01; *** p < 0.001. Symbols plot means ± SEM across 49
sessions.
(c) as for panel (b), but for population activity during the inter-trial intervals (ITI) of each session.
(d)–(e) as for panels (b)-(c), but using each session’s relative decoding accuracy: the difference
between the decoding accuracy of the data and of the mean of the shuffled data in that session.
Here and all further panels, P-values are given for a Wilcoxon signed rank test against zero median.
(f) Breakdown of the trial decoding results in panel (d) by the rule type of each session (15 direction
rule sessions; 34 cue rule sessions).
(g) As for panel (f), breakdown of the inter-trial interval decoding results by the rule-type of each
session.
(h) Breakdown of the trial decoding results in panel (d) by whether a rule was learnt in a session
or not (10 identified learning sessions; 39 other sessions).
(i) As for panel (h), breakdown of the inter-trial interval decoding results by learning and other
sessions.

92

We could decode all of direction choice, outcome, and light position in the current93

trial above chance (Figure 2b,d, left). In Figure 2b we plot the absolute accuracy of94

decoding, to show that the decoding could be near-perfect; in Figure 2d we also plot the95

decoding accuracy relative to the shuffled data for each session, which, as it accounts for96

the different distributions of features (e.g. outcome) in each session, better shows the97

effect size of the decoding. To test for effects of task history on population activity, we98

also decoded the direction choice, outcome, and light position of the preceding trial, and99

found that decoding was at or close to chance (Figure 2b,d, right).100

By contrast, from population activity during the inter-trial interval we could decode101

the direction choice, outcome, and light position of the immediately preceding trial well102

above chance (Figure 2c,e, right). Decoding the same feature of the immediately following103

trial was at chance (Figure 2c,e, left). Thus, the present and the past of key features of a104

trial could both be decoded from mPfC population activity: the present direction choice,105

outcome, and light position during the trial, and the past direction choice, outcome, and106

light position during the inter-trial interval.107

We explored the extent to which this decoding of the present in trials and of the past in108

the inter-trial intervals depended on what occurred during each session. We first split the109

sessions by whether the target rule was direction-based (15 sessions), and thus egocentric,110

or cue-based (34 sessions) and thus allocentric. For trials, the present direction choice and111

outcome could still be significantly decoded for both types of rule, despite the considerable112

drop in power from 49 to 15 and 34 sessions (Figure 2f). For inter-trial intervals, the113

preceding direction choice, outcome, and light position could still be decoded well above114

chance for both types of rule (Figure 2g).115

In order to determine if learning itself affected any mPfC representations of the present,116
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we then separated the sessions into two behavioural groups: putative learning sessions117

(n = 10), identified by a step-change in task performance (Figure 2 – Supplementary118

Figure 2), and the remaining sessions, called here “Other” (n = 39). We found decoding119

of task features was similar when comparing learning sessions and all Other sessions for120

both trials (Figure 2h) and inter-trial intervals (Figure 2i). The sole exception, of decoding121

the current light position during trials of Other sessions but not learning sessions, could122

be due either to a real effect, or to the low power for decoding from 10 learning sessions.123

It is likely that the mPfC encoding of task features is partly dependent on maze position124

(Ito et al., 2015; Spellman et al., 2015). To further examine the evolution of encoding over125

the trial and inter-trial interval, we divided the maze into five equally sized sections, and126

constructed population firing rate vectors for each position (Figure 2 – Supplementary127

Figure 3). Even though the trials averaged only 4 seconds in duration, and so each128

position was occupied for one second or less, we still obtained clear evidence for decoding129

the current trial’s direction choice, outcome, and light position across multiple contiguous130

locations. The contrast between the strong encoding of the current trial’s features and131

the weak encoding of the previous trial’s features was even clearer across maze positions.132

Figure 2–Supplementary Figure 4 confirms that these results are robust to breaking down133

the position decoding by the type of rule or by learning behaviour. Crucially, no matter134

how we examined the decoding by position, it showed that the population encoding is135

contiguous from the trial to the following inter-trial interval for all three features (see esp.136

Figure 2 – Supplementary Figure 3b): the encoding of the present in the trial at the arm137

end is immediately transformed into the encoding of the past in the inter-trial interval.138

Independent encoding of the past and the present139

Having established evidence that a single mPfC population encodes both the present and140

the past of the same features of a rule-learning task, we could now address the key question141

of the relationship between these representations. In particular, we sought to address how142

encoding of features in the present transforms into the encoding of the past, and if this143

is done in a way to minimise interference between them, such that the representations of144

the past and present can be independently accessed and activated.145

One hypothesis is that there is no transformation: that sustained activity in mPfC146

continues from the trial into the inter-trial interval, creating a memory trace of the encod-147

ing during the trial. Another plausible hypothesis is that the population activity in the148

trial reactivates during the inter-trial interval, in some form of replay of waking activity.149

Both hypotheses predict that the population encoding of a feature in the trial and in the150

following inter-trial interval should be the same. We show here it is not.151

One simple way to rule out the memory trace and reactivation hypotheses would be152

if the active neurons during the trial and inter-trial interval were different. However, the153

active neurons during the trials were also active during the inter-trial interval (Figure 2 -154

Supplemental Figure 1c), so this shared common population could, in principle, carry on155

encoding the same task features.156

We used this common population to test whether mPfC populations were encoding157

the past and the present in the same way: if the encoding was broadly the same, then158

the activity in the trial and following inter-trial interval should be interchangeable when159

predicting the same feature, such as the chosen direction. In this cross-decoding test (Fig-160

ure 3a), we first trained a linear decoder for features of the present using the common161

population’s activity during the trials, and then tested the accuracy of the linear decoder162

when using the common population’s activity during the inter-trial interval. If the popu-163

lation encoding in the trials was re-used in the inter-trial interval, then this cross-decoding164
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Figure 3: Independent population encoding of past and present task events.
(a) Schematic of cross-decoding the same task feature. We train the decoder of a feature using the
activity in the trials of a session, then test the accuracy of decoding the same feature (now in the
past) from the activity in the inter-trial intervals. (Or vice-versa: training the decoder on the inter-
trial intervals (ITIs), and testing the decoding accuracy on the trials). We did this in two ways.
First, as per Figure 2, we used leave-one-out cross validation, by leaving out the ith trial-ITI pair,
training on N − 1 trials, and predicting the ith ITI. Second we used full cross-decoding, training
the decoder on all N trials to get one weight vector for the decoder, and testing the decoding
accuracy on all ITIs using that vector (and vice-versa).
(b) Cross-decoding performance for each task feature of the current trial, using leave-one-out cross-
validation. Left: performance when the decoder was trained on activity during trials and tested on
activity in the inter-trial intervals. Black dashed line shows the chance levels obtained training the
classifier on shuffled labels for the trials and testing on inter-trial intervals given the same shuffled
labels. Right: performance when the decoder was trained on activity from the inter-trial intervals,
and tested on activity in the trials.
(c) As per (b), cross-decoding performance of the same task feature, using full cross-decoding.
(d) Comparison of the decoding vector weights between trials and inter-trial intervals. For each
session we plot the angle between its trial and inter-trial interval decoding weight vectors, obtained
from the trained decoders in panel (c). For reference, we also compute the angle between trial and
inter-trial interval decoding vectors obtained by training on shuffled label data (grey). Boxplots
show median (line), inter-quartile range (box), and 95% interval (tails). P-values are from Wilcoxon
ranksum tests for the difference from π/2.
(e) As for (d), but comparing the decoding weight vectors between features, within trials.
(f) As for (e), for within inter-trial intervals.

should be accurate.165

We found that cross-decoding of features was consistently poor, whether we trained on166

trial activity and tested on inter-trial intervals, or vice-versa (Figure 3b). Decoding of all167
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features was at or close to chance, strikingly at odds with the within-trial (Figure 2b,d) or168

within-interval (Figure 2c,e) decoding. This poor cross-decoding was robust to whether169

we used leave-one-out cross-validation (Figure 3b), or trained the decoder on every trial170

or every inter-trial interval (Figure 3c). We also found consistently poor cross-decoding of171

all features when we tested at different positions along the maze (Figure 3 – Supplemental172

Figure 1). These results suggest that population encoding of prior events in the inter-trial173

interval is not simply a memory trace or reactivation of similar activity in the trial. Instead,174

they show that the same mPfC population is separately and independently encoding the175

present and past of the same features.176

To quantify this independence, we turned to the vector of decoding weights for the177

trials and the equivalent vector for the inter-trial intervals of the same session. These178

weights, obtained from the decoder trained once on all trials and then once on all inter-trial179

intervals, give the relative contribution of each neuron to the encoding of task features. We180

found that the trial and inter-trial interval weight vectors were approximately orthogonal181

for all three features: the angles cluster at or close to π/2 (or, equivalently, their dot-182

product clusters at or around zero) (Fig 3d). Median angles for direction choice and light183

position were significantly less than π/2 (ranksum test), but the difference was small:184

0.067π for direction and 0.045π for light position. Thus, the population encoding in the185

inter-trial interval was not a memory trace: to a good approximation, the past and present186

are orthogonally encoded in the same mPfC population.187

We considered a range of alternative explanations for these results. One is that the or-188

thogonality arises from the curse of dimensionality: the distance between two i.i.d random189

vectors with a mean of zero tends to grow with their increasing dimension. If the decoding190

weights were random vectors, then the apparent orthogonality could be driven by just the191

largest mPfC populations. However, the decoding weights for the whole trial (present)192

or whole inter-trial interval (past) are not random vectors, for if they were then decoding193

performance would be at chance, whereas we find clear decoding of all features (Figure194

2b-e). Another explanation is that the independent encoding axes between the trials and195

inter-trial intervals is somehow driven by differing properties of the trials and inter-trial196

intervals. For example, they differ in duration (mean 6.5 ± 0.01 seconds for trials, 55.7197

± 0.03 seconds for inter-trial intervals), and hence also in average movement speed. If198

switching between trials and inter-trial intervals could account for encoding differences,199

then these differences should be symmetric: we should see encodings change whether the200

transition was from the trial to inter-trial interval, or from the inter-trial interval back201

to a trial. However, the encodings were asymmetric: we saw strong encoding during the202

transition from trial to inter-trial interval (Figure 2b-c and Figure 2 – Supplementary203

Figure 3), but no encoding during the transition from inter-trial interval back to the trial204

(Figure 2b-c and Figure 2 – Supplementary Figure 3; and see Maggi et al. (2018)). In the205

absence of any encoding, there cannot be an orthogonal shift in encoding.206

To understand how the independent encoding between past and present related to how207

the features were jointly encoded in the population activity, we examined the relationship208

between the features’ encoding vectors during the trial and during the inter-trial interval.209

The encoding axes within an epoch were less independent than between epochs: angles210

between the encoding vectors for light and direction and for light and outcome were211

significantly different from π/2 (Figure 3e,f). But the distributions of angles between212

the encoding vectors were preserved between the trials and the inter-trial intervals, with213

outcome-direction around π/2, light-direction centered below π/2, and light-outcome cen-214

tred above π/2. Thus, while each encoding axis rotated to an orthogonal direction between215

the trial and inter-trial interval, the internal relationships between the feature encodings216
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was preserved.217

Population activity rotates between trials and inter-trial intervals218

That all three feature encodings were independent between the trials and inter-trial inter-219

vals of a session predicts that the population activity itself should be independent between220

the two. If true, then trial and inter-trial interval population activity vectors should be221

easily separable. To test this prediction, we projected all population activity vectors of222

a session (Fig 4a) into a low dimensional space (Fig 4b), and then quantified how easily223

we could separate them into trials and inter-trial intervals. Using just one dimension was224

sufficient for near-perfect separation in many sessions; using two was sufficient for above-225

chance performance in all sessions (Fig 4c; and see Figure 4 – Supplementary Figure 1 for226

a breakdown of each session’s dependence on the number dimensions). Population activity227

was thus about as independent between the trials and inter-trial intervals as it possibly228

could be.229
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Figure 4: Population activity is independent between trials and inter-trial intervals
(a) Population activity vectors for the trials (•) and following inter-trial intervals of one session.
The heat-map shows the normalized firing rate for each neuron.
(b) Projection of that session’s population activity vectors on to two dimensions shows a complete
separation of trial and inter-trial interval activity. The black line is the linear separation found by
the classifier. PC: principal component.
(c) Summary of classification error over all sessions, as a function of the number of dimensions.
Each grey dot is the error for one session at that number of projecting dimensions. Dashed line
gives chance performance. Boxplots show medians (red line), interquartile ranges (blue box), and
outliers (red pluses).

The independence in the population activity might arise from the continuous evolution230

of mPfC population activity across the contiguous trial and inter-trial interval period, such231

as the sequential activation of PfC neurons observed in previous studies (e.g. Fujisawa232

et al., 2008). If sequential activation was ongoing, then we should also observe consistently233

independent population activity between consecutive sections of the maze during trials and234

during inter-trial intervals. Instead, we found population activity was not independent235

between contiguous maze sections within trials or within inter-trial intervals (Figure 4 –236

Supplementary Figure 2a-c). Across the whole maze, population vectors from adjacent237

sections within trials and inter-trial intervals had classification errors consistently greater238

than any found between trials and inter-trial intervals (Figure 4 – Supplementary Figure239

2), even when the animal was in the same maze position. Thus, while population activity240

evolved during the trial and during the inter-trial interval, corresponding to the evolution241

of feature encoding across the maze (Figure 2 – Supplementary Figure 3), this evolution242
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happened along independent directions in the trials and in the inter-trial intervals.243

Population representations of trial features re-activate in sleep244

Encoding the past and present of the same features in the same population faces the245

problem of interference: of how a downstream read-out of the population’s activity knows246

whether it is reading out the past or the present. Our finding that the encoding is on247

independent axes means that, in principle, the representations of past and present can be248

addressed or recalled independently, without interfering with each other. We thus sought249

further evidence of this independent encoding by asking if either representation could be250

recalled independently of the other.251

Prior reports showed that patterns of mPfC population activity during training are252

preferentially repeated in post-training slow-wave sleep (Euston et al., 2007; Peyrache253

et al., 2009; Singh et al., 2019), consistent with a role in memory consolidation. However,254

it is unknown what features these repeated patterns encode, and whether they encode255

the past or the present or both. Thus, we took advantage of the fact that our mPfC256

populations were also recorded during both pre- and post-training sleep to ask which, if257

any, of the trial and inter-trial interval codes are reactivated in sleep, and thus whether258

they were recalled independently of each other.259

We first tested whether population activity representations in trials reactivated more260

in post-training than pre-training sleep. For each feature of the task happening in the261

present (e.g choosing the left arm), we followed the decoding results by creating a popu-262

lation vector of the activity specific to that feature during a session’s trials. To seek their263

appearance in slow-wave sleep, we computed population firing rate vectors in pre- and264

post-training slow-wave sleep in time bins of 1 second duration, and correlated each sleep265

vector with the feature-specific trial vector (Figure 5a). We thus obtained a distribution266

of correlations between the trial-vector and all pre-training sleep vectors, and a similar267

distribution between the trial-vector and all post-training sleep vectors. Greater correla-268

tion with post-training sleep activity would then be evidence of preferential reactivation269

of feature-specific activity in post-training sleep.270

We examined reactivation separately between learning and Other sessions, seeking271

consistency with previous reports that reactivation of waking population activity in mPfC272

most clearly occurs immediately after rule acquisition (Peyrache et al., 2009; Singh et al.,273

2019). Figure 5b (upper panels) shows a clear example of a learning session with prefer-274

ential reactivation. For all trial features, the distribution of correlations between the trial275

and post-training sleep population activity is right-shifted from the distribution for pre-276

training sleep. For example, the population activity vector for choosing the right arm is277

more correlated with activity vectors in post-training (Post-R) than pre-training (Pre-R)278

sleep.279

Such post-training reactivation was not inevitable. In Figure 5b (lower panels), we280

plot another example in which the trial-activity vector equally correlates with population281

activity in pre- and post-training sleep. Even though specific pairs of features (such as the282

left and right light positions) differed in their overall correlation between sleep and trial283

activity, no feature shows preferential reactivation in post-training sleep.284

These examples were recapitulated across the data (Figure 5c). In learning sessions,285

feature-specific activity vectors were consistently more correlated with activity in post-286

than pre-training sleep. By contrast, the Other sessions showed no consistent preferential287

reactivation of any feature vector in post-training sleep. As a control for statistical arte-288

facts in our reactivation analysis, we looked for differences in reactivation between paired289

features (e.g. left versus right arm choice) within the same sleep epoch and found these290
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Figure 5: Reactivation of trial population coding in post-training sleep.
(a) Example population activity vectors. Upper panel: from one learning session, we plot the
average firing rate vector for correct trials (Trial1). For comparison, we also plot examples of firing
rate vectors from pre- and post-training slow-wave sleep (1s bins). Neurons are ranked in order of
their firing rates in the trial vector. Lower panel: as for the upper panel, for an example session
not classified as learning.
(b) Example distributions of Spearman’s rank correlations between trial and sleep population
activity. Upper panels: for the same learning session as panel (a), we plot the distributions of cor-
relations between each vector of feature-specific trial activity and the population activity vectors
in pre- and post-training slow-wave sleep. Lower panels: as for the upper panels, for the example
non-learning session in panel (a). R: right arm; 1: rewarded trial.
(c) Summary of reactivations across all sessions. For each feature, we plot the difference between
the medians of the pre- and post-training correlation distributions. A difference greater than
zero indicates greater correlation between trials and post-training sleep. Each symbol is a ses-
sion. Empty symbols are sessions with significantly different correlation distributions at p < 0.05
(Kolmogorov-Smirnov test). Grey filled symbols are not significantly different. One black circle
for learning and one for non-learning sessions identify the two example sessions in panels (a) and
(b).
(d) As for panel c, but plotting the median differences between distributions for paired features
within the same sleep epoch. For example, in the left-most column, we plot the difference between
the correlations with pre-session sleep activity for right-choice and left-choice specific trial vectors
(PreR - PreL).
(e) Reactivation as a function of the change in reward rate in a session. One symbol per session:
learning (red); Other (blue). ρ: Spearman’s correlation coefficient. Black ρ is for all 49 sessions;
blue ρ, using only sessions with any incremental improvement in performance (N = 33 in total, 10
learning and 23 Other sessions; see Methods). We plot here reactivation of vectors corresponding
to left (direction and light) or correct; correlations for other vectors are similar in magnitude: 0.37
(choose right), 0.35 (cue on right), 0.2 (error trials) for all 49 sessions; 0.37 (choose left), 0.33 (cue
on right) and 0.26 (error trials) for sessions with incremental improvement in performance.

all centre on zero (Figure 5d). Thus, population representations of task features in the291

present were reactivated in sleep, and this consistently occurred after a learning session.292

To check whether reactivation was unique to step-like learning, we turned to the Other293

sessions: there we found a wide distribution of preferential reactivation, from many about294

zero to a few reactivated nearly as strongly as in the learning sessions (Figure 5c, blue295
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symbols). Indeed, when pooled with the learning sessions, we found reactivation of a296

feature vector in post-training sleep was correlated with the increase in accumulated reward297

during the session’s trials (Fig 5e). Consequently, reactivation of population encoding298

during sleep may be directly linked to the preceding improvement in performance.299

Prior reports suggest that the reactivation of activity patterns in sleep can be faster300

or slower during sleep than they were during waking activity. We tested the time-scale301

dependence of feature-vector reactivation by varying the size of the bins used to create302

population vectors in sleep, with larger bins corresponding to slower reactivation. We303

found that preferential reactivation in post-training sleep in learning and (some) Other304

sessions was robust over orders of magnitude of vector widths (Figure 6a). Notably, in305

the learning sessions only the vectors for rewarded outcome were significantly reactivated.306

Moreover, among Other sessions, the reactivation in post-training sleep was significant307

only for those sessions in which the animal’s performance improved (however slightly)308

within the session (Figure 6b). This consistency across broad time-scales suggests that309

it is the changes during trials to the relative excitability of neurons within the mPfC310

population that are carried forward into sleep (Singh et al., 2019). Thus, this consistency311

across broad time-scales implies that whenever the encoding neurons are active, they are312

active together with approximately the same ordering of firing rates.313
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Figure 6: Robust reactivation of trial population coding across time-scales of sleep
activity.
(a) At each time bin used to construct population activity vectors in sleep, we plot the distribution
over sessions of the median differences between pre- and post-training correlation distributions, for
learning (top), and other (bottom) sessions. Distributions are plotted as the mean (thick lines) ±
2 SEM (thin lines); at the 1s bin, these summarise the distributions shown in full in Figure 5c.
Each panel plots two distributions, one per pair of features: lighter colours indicate left or error
trials (L or 0); while darker colours indicate right or correct trials (R or 1). Time bins range from
100 ms to 10 s, tested every 150 ms. Dotted lines at the top of each panel indicate bins with
reactivation significantly above zero (Wilcoxon sign rank test, p < 0.05 thin dot; p < 0.01 middle
size dot; p < 0.005 thicker dots; N = 10 learning, N = 39 Other sessions).
(b) Here we divide the Other sessions from panel (a) into those showing any increment in perfor-
mance from the animal (N = 23, “Minor-learning”, see Methods) and those that did not (N = 16).

No re-activation in sleep of inter-trial interval feature representations314

To ask if this reactivation was unique to encoding of the present, we repeated the same315

reactivation analysis for population vectors from the inter-trial interval. Again, following316
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our decoding results, each population feature vector was created from the average activity317

during inter-trial intervals after that feature (e.g. choose left) had occurred. We then318

checked for reactivation of this feature vector in pre- and post-training slow-wave sleep.319

We found absent or weak preferential reactivation of population encoding in post-320

training sleep, for any feature in any type of session (Figure 7a). Consistent with this, we321

found no correlation between the change in performance during a session and the reacti-322

vation of feature vectors after a session (Figure 7b). The orthogonal population encoding323

during sessions (Figure 3) thus appears functional: population encoding of features in the324

present was reactivated in sleep, but encoding of the same features in the past was not.325

Discussion326

We have shown that medial PfC population activity independently represents the past327

and present of the same task features. First, we showed that the same task feature, such328

as the choice of arm, is encoded by the same population in both the trials and the inter-329

trial intervals, as respectively the present and past of that feature. Second, vectors of330

population activity were about as independent between the trials and following inter-trial331

intervals as they could possibly be. Consequently, within mPfC populations, the past and332

the present of each feature were encoded on independent axes. Finally, we showed that333

these independent axes indeed allow the past and present encodings to be independently334

addressed: population activity representations of features during the trials are re-activated335

in post-training sleep, but inter-trial interval representations are not.336

Mixed population coding in mPfC337

Consistent with prior reports of mixed or multiplexed coding by single neurons in the pre-338

frontal cortex (Jung et al., 1998; Horst and Laubach, 2012; Rigotti et al., 2013; Fusi et al.,339

2016; Aoi et al., 2020), we found that small mPfC populations can sustain mixed encoding340

of two or more of the current trial’s direction choice, light position, and outcome. These341

encodings were also position-dependent. Encoding of direction choice reliably occurred342

from the maze’s choice point onwards, but it is unclear whether this represents a causal343

role in the choice itself, or an ongoing representation of a choice being made.344

Previous studies have reported encoding of past choices in mPfC population activity345

during trials (Baeg et al., 2003; Sul et al., 2010). In contrast to the robust encoding346

of the present, we found weak evidence that mPfC activity during a trial encoded the347

light position of the previous trial, and weak evidence that it encoded the previous trial’s348

direction choice only during direction-based rules (and note that knowledge of the previous349

trial’s choice was not required for the direction rules). Moreover, we showed these could350

only be decoded at one or two locations on the maze. Thus, during trials population351

activity in the prefrontal cortex had robust, sustained encoding of multiple events of the352

present, but at best weakly and transiently encoded one event of the past.353

We also report that these mixed encodings of the present within each population354

reactivate in post-training sleep. This finding goes beyond prior reports that specific355

patterns of trial activity reactivate in sleep (Euston et al., 2007; Peyrache et al., 2009;356

Singh et al., 2019) to show what those patterns were encoding – multiple features of the357

present, but not the past. It seems mixed encoding is a feature of sleep too.358

As we showed in (Maggi et al., 2018) and extended here, population activity during the359

inter-trial interval also has mixed encoding of features of the past. Collectively, our results360

show that population activity in mPfC can switch from mixed encoding of the present in361
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Figure 7: No consistent reactivation of population encoding of the past.
(a) Similar to Figure 6, for reactivation of population feature-vectors constructed from inter-trial
interval activity. We plot the distribution over sessions of the median differences between pre- and
post-training correlation distributions, for learning (top), and Other (bottom) sessions. Note that
the range of sleep vector time-bins is an order of magnitude larger than for trials, as the inter-trial
intervals themselves are an order of magnitude longer than trials. Dotted lines at the top indicate
significant reactivation (Wilcoxon sign rank test, p < 0.05 thin dot; p < 0.01 middle size dot;
p < 0.005 thicker dots). Lighter colours indicate left or error trials (L or 0); while darker colours
indicate right or correct trials (R or 1)
(b) Similar to Figure 5e, reactivation of the inter-trial interval population vector as a function of the
change in reward rate in a session. Reactivation is computed for 22 s bins. One symbol per session:
learning (red); Other (blue). ρ: Spearman’s correlation coefficient; black, all sessions; blue, only
sessions with any incremental improvement in performance. We plot here reactivation of vectors
corresponding to left (direction and light) or correct trials; correlations for other vectors are similar
in magnitude: -0.004 (choose right), 0.02 (cue on right), -0.08 (error trials) for all sessions; -0.005
(choose right), 0.01 (cue on right) and -0.1 (error trials) for sessions with incremental improvement
in performance.

a trial to mixed encoding of the past in the following inter-trial interval.362

Independent population codes solve interference of past and present363

There are multiple hypotheses for how this transition from coding the present to the past364

could happen. One hypothesis is that there are groups of neurons separately dedicated365

to encoding the past and present. We ruled out this idea by only decoding from neurons366

active in every trial and inter-trial interval, so showing that the transition from present to367
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past happened within the same group.368

Another hypothesis, as we noted in the Results, is that the switching from a population369

encoding of the present to encoding of the past is explained by population activity in the370

trials being carried forward into the inter-trial interval, whether by persistent activity371

acting as a memory trace, or by the recall of patterns of trial activity during the inter-trial372

interval. But our demonstration of independent encoding in the population between trials373

and the following inter-trial intervals rules out this hypothesis.374

Our results support dynamic coding in mPfC: population encoding evolved within375

both the trials and the inter-trial intervals, consistent with the underlying changes we376

observed in the population activity. The evolution of population dynamics over the inter-377

trial interval is consistent with reports of dynamic changes of PfC activity during the378

delay period of working memory tasks in primates (Murray et al., 2017; Spaak et al.,379

2017; Wasmuht et al., 2018), including in primate anterior cingulate cortex (Cavanagh380

et al., 2018), a potential homologue of the medial prefrontal cortex in rodents (Laubach381

et al., 2018). The evolving coding we observed thus supports the hypothesis that working382

memory is sustained by population activity rather than the persistent activity of single383

neurons (Constantinidis et al., 2018; Lundqvist et al., 2018). Crucially, the evolution of384

activity within trials and inter-trial intervals was continuous, with adjacent maze sections385

containing more similar population activity, yet the transition from the trial to the inter-386

trial interval was discontinuous, with population activity moving to an independent axis.387

Our results thus show that the evolution of encoding of the present and of the past was388

each along two independent axes.389

Any neural population encoding both the past and the present in its activity faces390

problems of interference: of how to prevent the addition of new information in the present391

from overwriting the encoded information of the short-term past (Libby and Buschman,392

2019); of how inputs to the population can selectively recall only the past or the present,393

but not both; and of how downstream populations can access or distinguish the encodings394

of the past and the present. Representing the present and past on independent axes solves395

these problems. It means that the encoding of the present can be updated without altering396

the encoding of the past, that inputs to the population can activate either the past or the397

present representations independently, and that downstream populations can distinguish398

the two by being tuned to read-out from one axis or the other. Indeed, we showed that399

in post-session sleep the encoding of the present can be accessed independently of the400

encoding of the past.401

An open question is how much the clean independence between the encoding of the402

past and present depends on the behavioural task. In the Y-maze task design, there is a403

qualitative distinction between trials (with a forced choice) and inter-trial intervals (with404

a self-paced return to the start arm), which we used to clearly distinguish encoding of the405

present and the past. Such independent coding may be harder to uncover in tasks without406

a distinct separation of decision and non-decision phases. For example, tasks where the407

future choice of arm depends on recent history, such as double-ended T-mazes (Jones and408

Wilson, 2005), multi-arm sequence mazes (Poucet et al., 1991), or delayed non-match to409

place (Spellman et al., 2015), blur the separation of the present and the past. Comparing410

population-level decoding of the past and present in such tasks would give useful insights411

into when the two are, and are not, independently coded.412

Mechanisms for rapid switching of population codes413

The independent encoding and independent population activity between the trial and414

immediately following inter-trial interval implies a rapid rotation of population activity.415
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How might such a rapid switch of network-wide activity be achieved?416

Such rapid switching in the state of a network suggests a switch in the driver inputs417

to the network. In this model, drive from one source input creates the network states for418

population encoding A; a change of drive – from another source, or a qualitative change419

from the same source -— creates the network states for population encoding B (either set420

of states may of course arise solely from internal dynamics). One option for a switching421

drive is the hippocampal-prefrontal pathway.422

Learning correlates with increased cortico-hippocampal coherence at the choice point423

of this Y maze (Benchenane et al., 2010; Peyrache et al., 2009). This coherence recurred424

during slow-wave ripples in post-training sleep. These data and our analyses here are425

consistent with the population encoding of the trials being (partly) driven by hippocam-426

pal input, and with the re-activation of only the trial representations in sleep being the427

recruitment of those states by hippocampal input during slow-wave sleep. The increased428

coherence between hippocampus and mPfC activity may act as a window for synaptic429

plasticity of that pathway (Benchenane et al., 2010, 2011). Consistent with this, we saw a430

correlation between performance improvement in trials and reactivation in sleep (see also431

Maingret et al., 2016).432

All of which suggests the encoding of the past during the inter-trial interval is not433

driven by the hippocampal input to mPfC, as its representation is not re-activated in sleep.434

(Spellman et al. 2015 report hippocampal input to mPfC is necessary for the maintenance435

of a cue location; though, unlike in our task, actively maintaining the location of this cue436

was necessary for a later direction decision). Rather, the population coding during the437

inter-trial interval could reflect the internal dynamics of the mPfC circuit. Indeed, network438

models of working memory in the prefrontal cortex focus on attractor states created by its439

local network (Compte et al., 2000; Durstewitz et al., 2000; Miller et al., 2005; Wimmer440

et al., 2014). If somewhere close to the truth, this account of rapid switching suggests441

that the hippocampal input to mPfC drives population activity in the trial, and a change442

or reduction in that input allows the mPfC local circuits to create a different internal443

state during the inter-trial interval. A prediction of this account is that perturbation of444

the hippocampal input to the mPfC could disrupt its encoding of the past and present in445

different ways.446

Reconciling mPfC roles in memory and choice447

We propose that our combined results here and previously (Maggi et al., 2018) support448

a dual-function model of mPfC population coding, where the independent coding of the449

past and present respectively support on-line learning and consolidation. This model is450

somewhat counter-intuitive: our data suggest the representation of the present in mPfC451

is used for offline learning, whereas the representation of the past is used online to guide452

behaviour.453

Under this model, the role of memory encoding in the inter-trial interval is to guide454

learning online: reward tags past features whose conjunction led to successful outcomes455

(for example, the conjunction of turning left when the light is on in the left arm). While456

population activity in the inter-trial interval reliably encodes features of the past through-457

out training, we previously showed that synchrony of the population only consistently458

occurs immediately before learning (Maggi et al., 2018). This suggests that the synchroni-459

sation of mPfC representations of features predicting success is correlated with successful460

rule-learning. Consistent with such past-encoding contributing to online learning, we show461

here that the encoding in the inter-trial interval are not carried forward long-term into462

sleep.463

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 13, 2021. ; https://doi.org/10.1101/668962doi: bioRxiv preprint 

https://doi.org/10.1101/668962
http://creativecommons.org/licenses/by-nc/4.0/


17

By contrast, we report here representations of the present in the trial are carried464

forward and reactivated in sleep. Reactivation of waking activity during slow-wave sleep465

has been repeatedly linked to the consolidation of memories (Stickgold, 2005; Tononi and466

Cirelli, 2014; Sawangjit et al., 2018). Indeed, interrupting the re-activation of putative467

waking activity in hippocampus impairs task learning (Girardeau et al., 2009). Thus,468

under the dual-function model, we propose the reactivation in mPfC of mixed encodings469

of the present may be consolidating the conjunction of present features and choice that is470

going to be successful when re-used in future.471

Further insight into these and other ideas here would come from stable recordings472

of the same population across multiple sessions, to track how encoding of the past and473

present evolves and is or is not reused. In particular, it would be insightful to establish if474

re-activated trial representations in sleep reappear in subsequent sessions.475
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Methods619

Task description and electrophysiological data620

All the data in this study comes from previously published data (Peyrache et al., 2009).621

The full details of training, spike-sorting and histology can be found in (Peyrache et al.,622

2009). The experiments were carried out in accordance with institutional (CNRS Comité623

Opérationnel pour l’Ethique dans les Sciences de la Vie) and international (US National624

Institute of Health guidelines) standards and legal regulations (Certificate no. 7186, French625

Ministère de l’Agriculture et de la Pêche) regarding the use and care of animals.626

Four Long-Evans male rats were implanted with tetrodes in the medial wall of pre-627

frontal cortex, covering the prelimbic and infralimbic regions, and trained on a Y-maze628

task (Figure 1a). During each session, neural activity was recorded for 20-30 minutes of629

sleep or rest epoch before the training phase, in which rats worked at the task for 20-40630

minutes. After that, another 20-30 minutes of sleep or rest epoch recording followed. Dur-631

ing the sleep epochs, intervals of slow-wave sleep were identified offline from the local field632

potential (details in Peyrache et al., 2009; Benchenane et al., 2010).633

The Y-maze had symmetrical arms, 85 cm long, 8 cm wide, and separated by 120634

degrees, connected to a central circular platform (denoted as the choice point throughout).635

Each rat worked at the task phase by self-initiating the trial, leaving the beginning of the636

start arm. A trial finished when the rat reached the end of the chosen goal arm. If the637

chosen arm was correct according to the current rule, the rat was rewarded with drops of638

flavoured milk. As soon as the animal reached the end of the chosen arm an inter-trial639

interval started and lasted until the rat completed its self-paced return to the beginning640

of the start arm.641

Each rat was exposed to the task completely näıve and had to learn the rule by trial-642

and-error. The rules were presented in sequence: go to the right arm; go to the cued arm;643

go to the left arm; go to the uncued arm. The light cues at the end of the two arms were644

lit in a pseudo-random sequence across trials, regardless of the rule in place.645

The recording sessions taken from the study of Peyrache and colleagues (Peyrache646

et al., 2009) were 53 in total. Each of the four rats learnt at least two rules, and they647

respectively contributed 14, 14, 11, and 14 sessions. The learning, rule change, and other648

sessions for each rat were intermingled. We used 49 sessions for most of the analysis. One649

session was omitted for missing position data, one for consistent choice of the right arm (in650

a dark arm rule) preventing decoder analyses (see below), and one for missing spike data651

in a few trials. An additional session was excluded for having only two neurons firing in all652

trials. Tetrode recordings were spike-sorted within each recording session. In the sessions653

we analysed here, the populations ranged in size from 4-25 units. Spikes were recorded654

with a resolution of 0.1 ms. Simultaneous tracking of the rat’s position was recorded at655

30 Hz.656

Behavioural analysis657

Each session was classified according to its behavioural features. The learning sessions658

were identified according to the original study (Peyrache et al., 2009) as the ones with659

three consecutive correct trials followed by a performance of at least 80% correct. The660

first of the three correct trials was the learning trial. Only ten sessions satisfied this661

criterion. We quantified this learning as a step-like change in performance by fitting a662

robust regression line to the cumulative reward curve before and after the learning trial.663

The slopes of the two lines gave us the rate of reward accumulation before (rbefore) and664
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after (rafter) the learning trial.665

Eight rule change sessions were characterised by 10 consecutive correct trials or eleven666

correct out of twelve trials followed by a change in the rule. The first trial with the new667

rule was identified as the rule change trial. The change in performance in these sessions668

was quantified with the same method above, with a robust regression line was fitted to669

the cumulative reward curve before and after the rule change trial.670

For all remaining sessions that were not rule change or putative learning sessions, we671

assessed any performance change by fitting the piece-wise linear regression model to each672

trial in turn (allowing a minimum of 5 trials before and after each tested trial). We then673

found the trial at which the increase in slope (rafter−rbefore) was maximised, indicating the674

point of steepest inflection in the cumulative reward curve. We found 22 further sessions,675

labelled “minor-learning”, in which we could find a positive inflection in the cumulative676

reward curve.677

Linear decoding of task features678

To predict which task feature was encoded in mPfC population activity we trained and679

tested a range of linear decoders (Hastie et al., 2009; Maggi et al., 2018). In the main680

text we report the results obtained using a logistic regression classifier, but for robustness681

we also tested three other decoders – linear discriminant analysis, (linear) support vector682

machines, and a nearest neighbours classifier – and found similar results. The full details683

of the decoding analysis can be found in Maggi et al. (2018).684

Briefly, for each session, using the N active neurons in that session we constructed a685

N -length vector of their firing rates in each trial r, resulting in the set of population firing686

rate vectors {r(1), . . . , r(T )} across the T trials. Each trial’s task information was binary687

labelled for three features: outcome (labels: 0, 1), the chosen arm (labels: left, right) and688

the position of the light cue (labels: left, right). We used leave-one-out cross-validation689

to decode each feature, holding out the ith trial’s vector r(i), training the classifier on the690

N − 1 remaining trial vectors, and then using the resulting weight vector to predict the691

feature’s label for the held-out trial. We quantified the accuracy of the decoder as the692

proportion of correctly predicted labels over all T held out trials. The same approach was693

used for the inter-trial intervals, by constructing r for the firing rates in each inter-trial694

interval.695

For decoding at different positions in the maze, we first linearised the maze in five696

equally-sized sections then computed the firing rate vector of the core population of length697

N for each position p, rp. For each trial t = 1, . . . , T and each section of the maze698

p = 1, . . . , 5, the set of population firing rate vectors {rp(1), . . . , rp(T )} was used to train699

the decoder.700

For each rat and each session, the distribution of outcomes and arm choices depended701

on the rats’ performance, which could differ from 50%. Therefore, we trained and cross-702

validated the same classifier on the same data-sets, but shuffling the labels of the task703

features. In this way we obtained the accuracy of detecting the right labels by chance.704

We repeated the shuffling and fitting 50 times and we averaged the accuracy across the705

50 repetitions.706

Testing for independent encoding707

To compare the decoding accuracy between trials and inter-trial intervals, we trained708

again the classifier using the population firing rate vectors computed on the entire maze709

{r(1), . . . , r(T )}. We then trained the classifier on all the trials. We saved the population710
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vector of weights and we tested the model, optimised to decode trial activity, on every711

inter-trial interval to evaluate the accuracy in decoding retrospective inter-trial interval712

labels. The same procedure was used to train the linear classifier on all the inter-trial713

intervals to test its accuracy in decoding trials activity. The population vector of weight714

was also saved for this model.715

The angle, θ, between the population vector of trials’, wt, and inter-trial intervals’, wI ,716

weights was computed as θ = cos−1
(

wt·wI
‖wt‖‖wI‖

)
.717

We further evaluated the independence of trial and inter-trial interval population vec-718

tors by quantifying their separability in a low dimensional space. We used principal com-719

ponents analysis (PCA) to project the population vectors of a session onto a common set720

of dimensions. To do so, we constructed the data matrix X from the firing rate vectors of721

the core population, by concatenating trials and inter-trial intervals in their temporal or-722

der {rt(1), rI(1), . . . , rt(T ), rI(T )}T; the resulting matrix thus had dimensions of 2T rows723

and N (neurons) columns. Applying PCA to X, we projected the firing rate vectors on to724

the top d principal axes (eigenvectors of XTX) to create the top d principal components.725

For each set of d components, we quantified the separation between the projected trial and726

inter-trial interval population vectors using a linear classifier (Support Vector Machine,727

SVM), and report the proportion of misclassified vectors. We repeated this for between728

d = 1 and d = 4 axes for each session.729

Reactivation of task-feature encoding in sleep730

In order to quantify the reactivation of waking activity in pre- and post-session sleep, we731

used the population firing rate vectors computed for the decoder {r(1), . . . , r(T )}. We732

considered here the average population vector for each session, computed across all the733

trials for each feature. For example, we quantified the average population firing rate734

vector for all the right choice trials, and separately for all the left choice trials. We then735

compare the ranked average population firing rate vector for each feature with the firing736

rate vector of each 1 second time bin of slow-wave sleep pre- and post-session. We used737

Spearman’s correlation coefficient to compare them and to quantify the difference between738

the distributions of each feature and the slow-wave sleep pre- and post-session. Spearman’s739

coefficient was chosen specifically to remove any effects of global rate variations across the740

vectors within or between epochs.741

In order to have a reactivation of activity in post-session sleep, we expected the dis-742

tribution of Spearman correlation coefficient between a feature and pre-session slow-wave743

sleep to be leftward shifted compare to the distribution of Spearman correlation coefficient744

between the same feature and post-session slow-wave sleep. We quantified this shift by745

measuring the difference in the medians (Mpost − Mpre) between the two distributions746

of correlation coefficients. If the difference was positive then we had a higher correla-747

tion of the population firing vector with the post-session slow-wave sleep compared to the748

pre-session slow-wave sleep. If negative, then the population firing rate vector was more749

similar to the pre-session slow-wave sleep population vector. To then control for different750

time scales of reactivation in sleep we repeated the same procedure changing the time bin751

in the slow-wave sleep pre- and post-session. We used time bins from 100 ms to 10 sec752

every 150 ms for trials and from 10 sec to 200 sec every 2 sec for inter-trial intervals.753

Data Availability754

The spike-train and behavioural data that support the findings of this study are available755

in CRCNS.org (DOI: 10.6080/K0KH0KH5), originating from (Peyrache et al., 2009).756
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Code to reproduce the main results of the paper is available at: [URL to come]757
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