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Abstract

Animals exhibit remarkable behavioral flexibility, robustly performing demanding tasks —such as searching for food
or avoiding predators— in a variety of different contextual and environmental conditions. However, the demands
that detecting and adjusting to changes in the environment place on a sensory system often differ from the de-
mands associated with performing a specific behavioral task, even when both objectives rely on the same sensory
modality. This necessitates neural encoding strategies that can dynamically balance these conflicting needs. Here,
we develop a theoretical framework that explains how this balance can be achieved, and we use this framework to
study tradeoffs in speed, performance, and information transmission that arise as a consequence of efficient coding
in dynamic environments. This work generalizes current theories of efficient neural coding to dynamic environ-
ments, and thereby provides a unifying perspective on adaptive neural dynamics across different sensory systems,
environments, and tasks.

INTRODUCTION

Animals must keep up with changes in their sensory environment in order to thrive in diverse surroundings. The
barn owl, for example, is able to localize its prey despite changing acoustic properties of the environment [1, 2];
the dragonfly can predict the location of moving insects against different visual backdrops [3]; dogs can track odor
plumes over large distances that span multiple odor environments [4]. In order to accurately perform such behavioral
tasks, animals must dynamically adapt to changes in their environment. But detecting and adapting to environmental
changes often relies on different stimulus features than searching for food or avoiding predators. Given limited
resources for supporting such tasks, the brain must not only prioritize some stimulus features over others, it must
also dynamically change this prioritization as the environment and the behavioral demands change.

These changing priorities are thought to be reflected in the changing response properties of neurons across the
brain. In early sensory areas, for example, neurons are known to adapt their dynamic range to changes in low-order
features of the environment, such as the mean [5] or contrast [6–8] of incoming stimuli. In deeper brain areas like
the hippocampus and entorhinal cortex, cells modify their firing fields based on changes in high-order features,
such as the locations of rewards in the environment [9, 10]. Numerous other studies have similarly characterized
changes in the response properties of individual neurons [6, 11] and neural populations [7, 12, 13] to changes in
simple [5–8] and complex [12, 14] features of the environment, and across visual [15], auditory [7, 16, 17], olfactory
[18–20], somatosensory [21], and electrosensory [22] domains.

A dominant hypothesis is that this diversity of adaptive phenomena reflects a common underlying principle, as
posited within the framework of efficient coding [23]: First, sensory systems have limited metabolic resources, and
should therefore make efficient use of these resources by prioritizing those stimulus features that are relevant for the
task at hand [24–26]. Second, when the environment changes, sensory systems should adapt in order to prioritize
those features that are relevant under the new environmental conditions [5, 6, 11, 27]. These two statements,
however, cannot be consistently resolved within the same framework; by prioritizing features that are relevant for a
given task, sensory systems can be blind to features that signal changes in the environment and that would prompt
the system to flexibly adapt to these changes. Indeed, while efficient coding can account for differences in coding
properties before and after a change in stimulus statistics [5, 6, 11, 27], it cannot explain how they come about.

In order to flexibly adapt to environmental changes, sensory systems should dynamically balance task perfor-
mance with the ability to detect changes in the environment. As we will show, failure to balance these two objectives
can lead to prolonged periods of poor performance that could manifest in neural dynamics, and ultimately behav-
ior. We develop a new theoretical framework for understanding how this balance could be achieved, and we use
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this framework to study tradeoffs in speed and performance across a range of different tasks and sensory environ-
ments. To our knowledge, this work is the first to provide a normative account of neural coding dynamics underlying
adaptive phenomena in the brain.

RESULTS

A theoretical framework for adaptation.
Animals must remain flexible to changes in the environment in order to meet their behavioral demands. As a simple
example, consider a system whose goal is to accurately detect the presence of a predator. Different environments
might be occupied by different predators, which might in turn be signaled by different distributions of stimulus fea-
tures (Fig. 1A). A successful system should have a neural code that can discriminate stimuli within these different
distributions. A simple neural code could be constructed by transforming incoming stimuli through a saturating non-
linearity in a manner that approximates the stochastic response function of a sensory neuron (Fig. 1B). Intuitively,
this neuron should use its limited dynamic range to discriminate those stimuli that are most likely to occur in its
current environment; this can be achieved by aligning the steep part of its nonlinear response function with the
bulk of the incoming stimulus distribution (Fig. 1B, left). This alignment guarantees that the neuron’s limited coding
capacity is efficiently allocated for the task of accurate stimulus reconstruction, provided that the incoming stimulus
distribution does not change in time [26, 28, 29].

In principle, if the environment were to change, the neuron should shift its response function to align with the
new distribution in order to maintain accurate performance. In practice, however, the neuron might be insensitive
to the stimuli that signal the change, and might then fail to adapt and consequently be unable to distinguish stimuli
that signal a predator in the new environment (Fig. 1B, right). Whether and how the neuron adapts to this change,
and the impact that this adaptation has on the speed and accuracy of its performance, depends on how the system
prioritizes task performance (in this case, reconstructing stimuli to detect a predator) relative to detecting changes
in the distribution of stimuli that underlie this task. The balance between these objectives can lead to different types
of failures, including catastrophic errors and prolonged periods of error (Fig. 1C).

To explore the dynamic interplay between these objectives, we consider a system with an adaptable neural
encoding (the nonlinear response function in Fig. 1B is one such example encoding) whose output is used to
perform different computational tasks on incoming sensory stimuli (Fig. 1D). The encoding is constrained by the
precision with which incoming stimuli are represented in neural responses. It must therefore devote its limited
coding capacity to accurately representing task-relevant stimuli while simultaneously enabling the system to detect
changes in the underlying distribution of these stimuli. These two objectives are used to dynamically adapt the
encoding based on an internal estimate of the stimulus distribution. The balance between these two objectives will
be manifested in the dynamics of both the neural encoding and task errors (Fig. 1E).

To understand the relationship between these dynamics, we adopt the framework of rate-distortion (RD) theory
[25, 30, 31]. This framework relies on two fundamental quantities: the mutual information (or ‘rate’) between the
stimulus and the neural response, and the error (or ‘distortion’) in task performance induced by inaccuracies of
the sensory encoding. The mutual information quantifies how many features of the stimulus (measured in bits)
are encoded in the neural response. The error in task performance reflects the fact that only certain task-relevant
features of the stimulus are encoded. RD theory rigorously specifies an optimal relationship between these two
quantities in the form of an RD curve (Fig. 1F, solid black line). Every point on the RD curve determines the
minimum task error that can be achieved by a system whose capacity limits the maximum number of stimulus
features that it can encode. When the environment is in a steady-state, a sensory system that uses its full capacity
to encode only task-relevant stimulus features is said to be optimally adapted to the distribution of incoming stimuli,
and as such is described by a single point on the RD curve (Fig. 1F, black marker).

If the environment changes abruptly, a code that was previously adapted will no longer convey relevant features
of the new stimulus distribution. This results in an abrupt increase in task error and is marked by a movement away
from the RD curve (Fig. 1F, dashed arrows). In this work, we characterize adaptation as the process of returning to
the point on the RD curve that represents an optimal solution in the new environment (Fig. 1F, solid arrows). During
this process, when the system does not lie on the RD curve, the system is not adapted and is therefore making
suboptimal use of its limited capacity. There are two possible sources of this suboptimality (Fig. 1F, bottom right).
First, the system can be under-using its capacity by encoding fewer stimulus features than its capacity would allow.
Second, the system can be misusing its capacity by encoding features of the stimulus that are not relevant for the
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task at hand. Both scenarios lead to suboptimal task performance due to a reduction in task-relevant information.
Crucially, during adaptation, task error could exceed levels critical for survival (as in the example of detecting a
predator), and prolonged periods of adaptation could expose the system to this risk for an extended period of time.
We argue that the speed of adaptation and the maximum task error are fundamental quantities for characterizing
the dynamics of adaptation from an information-processing perspective (Fig. 1F, top right).

In what follows, we examine the dynamics of adaptation for different encoding schemes (Fig. 1D-II) that must
support different task-relevant computations (Fig. 1D-III) in environments with different stimulus statistics (Fig. 1D-
I). In all cases, the system must maintain and update an internal estimate of the stimulus distribution (Fig. 1D-IV) in
order to dynamically adapt the encoding. We compare adaptation strategies in which the encoding is optimized for
either task performance (i.e., minimizing task error) or adaptability (i.e., maximizing the detection of changes in the
stimulus distribution), and we construct interpolated codes that can leverage the advantages of each strategy.

The dynamic interplay between performance and adaptability.
Adaptation is commonly described by changes in the tuning properties of sensory neurons in response to changes
in low-order stimulus statistics (e.g. [8, 32–34]). We use this scenario to build intuition about the general principles
that govern adaptive neural dynamics. To this end, we model a neuron that is designed to reconstruct stimuli drawn
from a Gaussian stimulus distribution whose mean (Fig. 2-I) or standard deviation (Fig. 3-I) can change abruptly
over time between two values. The stochastic spiking response of this neuron is determined by a parameterized
nonlinearity (Figs. 2A-II, 3A-II) and is used to linearly decode the stimulus (Figs. 2A-III, 3A-III). A downstream
observer then uses this stimulus estimate to update an internal estimate of the mean or standard deviation of
the stimulus distribution (Figs. 2A-IV, 3A-IV), which is then fed back upstream and used to adapt the encoding
nonlinearity.

The parameters of the encoding nonlinearity determine how accurately the system can reconstruct incoming
stimuli, and how quickly it can detect changes in the distribution from which these stimuli are drawn. When the mean
of the stimulus distribution is changing in time (Fig. 2), a nonlinearity optimized for reconstruction maintains a fixed
slope, and its offset aligns with the internal estimate of the stimulus mean (purple curves in Fig. 2B,D; Methods).
Just before a change, this internal estimate is accurate, and the offset of the nonlinearity is closely aligned with
true mean of the stimulus distribution (Fig. 2B). Just after a change, the bulk of incoming stimuli fall within the
saturating regime of the nonlinearity. This results in a saturated firing rate (purple curve in Fig. 2H) that prevents
the system from accurately reconstructing those stimuli that signal the change (purple curve in Fig. 2G). This, in
turn, significantly slows adaptation (purple curve in Fig. 2F). Note that the firing rate dynamics are asymmetric to
increases versus decreases in the stimulus mean; a simple parameter-free recoding procedure, known as entropy
coding [35], generates dynamics that require fewer spikes to maintain the same levels of accuracy and that more
closely resemble those observed experimentally (insets of Fig. 3H; Methods).

A nonlinearity that is instead optimized for adaptability should enable rapid detection of changes in the mean
of the stimulus distribution. Such a nonlinearity maintains a broad slope, and its offset is shifted away from the
mean of the incoming stimulus distribution (Fig. 2C-D). When the mean changes abruptly, incoming stimuli do not
fully saturate the output of the nonlinearity, and can therefore be accurately reconstructed (green curve in Fig. 2G).
These stimuli induce uncertainty in the observer’s estimate of the stimulus mean. To resolve this uncertainty, the
nonlinearity transiently sharpens and shifts to the midpoint between the two stimulus distributions (Fig. 2C). This
enables quick discrimination of stimuli that differentiate the two distributions, which in turns leads to rapid adaptation
to the new mean (green curves in Fig. 2F-G). This transient period of adaptation is signaled by a small and brief
change in firing rate (green curve in Fig. 2H).

We observe qualitatively similar behavior when the variance of the stimulus distribution is changing in time (Fig.
3). Here, a nonlinearity optimized for stimulus reconstruction has an offset that remains fixed over time and a
slope that tracks the estimated standard deviation of the incoming stimulus distribution (purple curves in Fig. 3B,D;
Methods). This enables the system to accurately resolve those stimuli that are likely given the system’s current
estimate of the stimulus distribution. In contrast, a nonlinearity optimized for adaptability retains resolution for those
stimuli that would signal a change (green curves in Fig. 3C-D). Because such stimuli can be either likely or unlikely
under the current estimate of the stimulus distribution, we see asymmetries in response dynamics following an
increase or decrease in stimulus variance (Fig. 3F-G). Despite their differences, both strategies produce constant
firing rates (Fig. 3H), a finding that would be predicted for any symmetric nonlinearity that is centered on the
(symmetric) stimulus distribution. As in the case of mean adaptation, entropy coding leads to an overall reduction
in firing rates and produces transient dynamics that again more closely resemble experimental observations (insets
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of Fig. 3H; compare to [36]).
On individual trials, nonlinearities exhibit the same qualitative changes in slope and offset, but these changes

are larger in magnitude and shorter in duration than is observed on average (Fig. 2E, 3E). Because these changes
occur at varying temporal offsets from a switch in the stimulus distribution, abrupt changes in single-trial dynamics
can lead to the smooth and gradual adaptation observed on average.

Tradeoffs between steady-state and transient performance.
To understand dynamics of information processing that underlie these observable changes in firing rates and tun-
ing curves, we use rate-distortion (RD) theory to quantify the mutual information between the input and output of
the neural encoding (i.e., the mutual information between incoming stimuli and spike counts), and the error that
this encoding induces in task performance (i.e., the error in stimulus reconstruction). The dynamically changing
relationship between these two quantities generates a trajectory on the RD plane (Fig. 4A,C,D).

Projecting dynamics on the RD plane enables a principled definition of adaptation as the return to a stationary
point on the RD plane, which coincides with the time that the system reaches a stable internal estimate of the
stimulus distribution. In steady state, when the stimulus distribution is stationary, an optimal adapted system is
represented as a single point on the plane. When comparing a system optimized for stimulus reconstruction versus
adaptability, we see that the former maintains lower reconstruction error in steady-state (insets of Fig. 4A,C,D).
When the environment abruptly changes, both systems are “kicked” from their steady-state locations (dotted arrows)
and must dynamically adapt in order to return (solid lines). The dynamics of this return depend on whether there
was a change in the mean (Fig. 4A) or variance (Fig. 4C-D) of the stimulus distribution, and in the latter case,
whether this change led to an increase (Fig. 4C) or decrease (Fig. 4D) in variance.

The details of trajectories on the RD plane further enable a principled analysis of changes in information pro-
cessing that occur during the transient period of adaptation. Following a change in the mean of the stimulus
distribution, a nonlinearity optimized for reconstruction transmits very little information about incoming stimuli. This
drop in information leads to high errors in task performance and significantly slows the system in adapting to this
change (purple curve in Fig. 4A). A nonlinearity optimized for adaptability can improve transient performance by
compromising information transmission, and thus performance, in steady state (green curves in Fig. 4A).

Together, this analysis reveals tradeoffs between steady-state and transient performance (Fig. 4B) that could
not be gleaned from firing rates or tuning curves alone. A system optimized for reconstruction maintains lower
error in steady state, but suffers from long adaptation times and high transient errors when the stimulus distribution
changes. In contrast, a system optimized for adaptability is able to quickly and accurately respond to changes in
the stimulus distribution, but suffers from higher errors when the stimulus distribution is stationary. We can leverage
the advantages of each strategy by designing interpolated systems that balance task performance and adaptability.
These systems generate trajectories that occupy an intermediate region of the RD plane (turquoise curves in Fig.
4A, C, D), and that are accompanied by adaptive changes in tuning curves and firing rates (turquoise curves in
Figs. 2D,H and 3D,H). The degree of these tradeoffs depends on environmental statistics; across all strategies, we
find that the balance between speed and error is impacted by both the variability and volatility of the environment
(defined by the magnitude of change and the rate of change in the stimulus distribution, respectively; open markers
in Fig. 4B).

Adaptive population coding of complex stimulus features.
These same principles can be generalized to neural populations, where adaptive phenomena have been observed
experimentally [12, 13] and can be manifested by a shifting of neural tuning curves in response to changes in stimu-
lus statistics [37]. To illustrate adaptation in population-level dynamics, we model a population of noisy neurons that
is designed to accurately reconstruct stimuli drawn from two different distributions of spatial frequency derived from
video footage of animals in the African savanna [38] (Fig. 5AI-AIII). Each neuron in the population is characterized by
a Gaussian tuning curve that specifies the neuron’s average firing rate in response to incoming stimuli. We assume
tuning curves with identical widths and identical maximum firing rates, but with variable preferred locations along
the stimulus axis. The set of locations is determined by a linear density function that maps uniformly-spaced values
on the interval [0, 1] to locations along the stimulus axis [26, 39] (Fig. 5A-II). Manipulating the slope and offset of this
density function produces different distributions of tuning curves that determine the precision with which incoming
stimuli are encoded in the population response. This parametrization provides a simple and compact description of
the entire population, regardless of its size.

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/669200doi: bioRxiv preprint 

https://doi.org/10.1101/669200
http://creativecommons.org/licenses/by-nd/4.0/


In order to support optimal reconstruction, the population of tuning curves should uniformly tile the range
spanned by the incoming stimulus distribution (Fig. 5B, top row). When the distribution changes, the stimulus
estimates decoded from the population response show high errors (purple curve in Fig. 5C) that persist until a
downstream observer can correctly infer the change (purple curve in Fig. 5D) and can redistribute the tuning curves
(Methods). In order to facilitate rapid detection of this change, a maximally adaptive system should distribute its
tuning curves in a manner that optimally discriminates stimuli from the two distributions. Because the stimulus
distributions do not have a parametric form, this is equivalent to a classification task that can be implemented by
maximizing the symmetrized Kullback-Leibler divergence between the distributions of population responses ob-
tained for each stimulus distribution (Methods). The resulting tuning curves are concentrated close to the peak of
each stimulus distribution (Fig. 5B, bottom row), and enable the downstream observer to quickly infer a change from
the population response (green curve in Fig. 5D). This, in turn, maximizes the speed of adaptation and minimizes
the impact on reconstruction error during the transient period of adaptation (green curves in Fig. 5CD). By con-
structing populations that are optimized for a combination of reconstruction and adaptability (Fig. 5B, middle row), it
is possible to generate a family of intermediate codes that navigate a tradeoff between performance in steady state,
and the speed and accuracy of performance during the transient period of adaptation (Fig. 5E).

Adaptive predictive coding in the face of noise.
While many studies have characterized adaptive changes in neural tuning curves, time-varying stimulus statistics
can also trigger adaptive changes in more complex properties of neural responses, such as the structure of receptive
fields [12, 40] and predictive filters [41]. To explore how such structure should optimally adapt over time, we model a
neuron whose response is characterized by a center-surround receptive field that is designed to predict the central
pixel of an image patch from the surrounding pixels [42] (Fig. 6A-II). The neuron conveys downstream only the
residual error between this prediction and the value of the central pixel (Fig. 6A-III), which reduces the energetic
cost of stimulus coding [42].

The shape of the optimal predictive filter depends on the level of noise in the image patches [42] (Fig. 6B,
top row). We consider a scenario in which this noise can fluctuate between a low and high level over time (Fig.
6A). When the noise level changes, the neuron must dynamically switch its predictive filter to maintain accurate
predictions under the new noise conditions. However, a downstream observer is very slow to infer this change
from the output of a filter that is optimized for the wrong noise conditions (purple curve in Fig. 6D). This leads
to transiently high prediction errors when the noise level changes (purple curve in Fig. 6C), which persist until
the system can correctly infer this change and update its filter accordingly. Alternatively, by using a filter that is
optimized for adaptability, the system can quickly infer changes in the noise level, but suffers from higher prediction
errors when the environment is stable (green curves in Fig. 6C-D). By designing filters that interpolate between
optimal prediction and adaptability (Fig. 6B, third row from the top), the system can increase its speed of adaptation
at the cost of reduced task performance in steady state (Fig. 6E). Due to the asymmetric nature of the task, the
same interpolated filters can cause increases in maximum prediction error when the noise level increases, but
decreases in error when the noise level decreases.

DISCUSSION

Adaptive phenomena in neural coding have long been a subject of experimental and theoretical research. To date,
the dynamics of adaptation have been traditionally characterized in terms of changes in experimentally-observable
quantities such as firing rates, tuning curves, and receptive fields [7, 8, 22, 27, 43–46], and a majority of modeling
work has focused on reproducing such dynamics in specific sensory systems [36, 47–50]. While such models can
provide useful summaries of experimental phenomena, they do not explain the role that these dynamics might serve
in performing task-relevant computations, nor do they explain whether these diverse phenomena share common de-
sign principles. Such questions fall within the domain of normative approaches to neural coding. Existing normative
accounts of adaptation, largely developed within the framework of efficient coding, propose that adaptation readjusts
the sensory code to maintain a constant rate of information transmission [6, 11, 12, 27, 51]. Prominent examples
are found in the retina, which has been shown to adapt its code to maintain efficient information transmission after a
change in stimulus statistics [41] and in a manner that depends on cell type [40]. Adaptation in the fly visual system
has also been analyzed in terms of information transmission [52], and the timescale of adaptation has been com-
pared to the timescale required to infer changes in the stimulus distribution [6, 32]. None of these studies, however,
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explicitly treat performance or information processing during the period of adaptation itself, when the sensory code
is hypothesized to be dynamically readjusting.

One obstacle to leveraging these different theoretical approaches has been the lack of a conceptual framework
for characterizing neural coding during periods of adaptation. We propose that rate-distortion (RD) theory could
address this gap by providing a common reference frame for analyzing and comparing the dynamics of adaptive
phenomena as trajectories on the RD plane. Here, we go beyond the static formulation of RD theory, where the
steady-state performance of a system is described by a single point on the RD plane, to define adaptation as the
time during which a system moves between points on the RD plane in response to changes in the environment.
To maintain high levels of task performance in the face of these changes, transitions on the RD plane should be
rapid and should have minimal impact on performance. The maximum task error and the length of the RD trajectory
provide a natural description of task performance and coding efficiency during such periods of adaptation.

To highlight the generality of our approach, we optimized and analyzed several qualitatively different types of
neural codes that were designed to perform different computational tasks in changing environments. We found a
consistent tradeoff between the accuracy of task performance when the environment was stable, and the speed of
adaptation when the environment was changing. This tradeoff arises because the stimuli that support accurate task
performance often differ from those that signal changes in the underlying stimulus distribution. Intuitively, a system
designed to minimize task error should allocate its limited coding capacity to accurately representing stimuli that
occur most frequently. Changes in the distribution of these stimuli, however, are typically signaled by infrequent
stimuli that become indistinguishable to the same encoder. As a consequence, a system optimized solely for
task performance loses the ability to quickly detect and respond to these changes, which often leads to poor task
performance when the environment changes. In order to increase adaptability, the encoder must devote some of
its limited capacity to accurately representing stimuli that signal informative environmental changes, and in doing
so must deviate from the optimal steady-state performance specified by RD theory. Such deviations from optimality
have been observed in multiple systems, including the fly visual system [26, 28] and the retina [25], and could
arise as a consequence of balancing task performance with adaptability. Achieving such a balance could rely on
task-dependent feedback from higher brain areas [53, 54], or could be implemented more locally via biochemical
interactions [55] or dendritic nonlinearities [56]. Regardless of the implementation, the ability to convey task-relevant
information in the face of environmental change will depend on which stimuli are represented with high accuracy
when these environmental changes occur.

Task-relevant information processing has also been studied within the framework of Information Bottleneck (IB)
[24, 25, 57], which is related to RD theory but with the distortion measure replaced by the mutual information
between the neural response and a task-relevant variable. Temporal trajectories on the IB plane were recently
proposed as a framework for studying learning in artificial neural networks [58]. The similarity to our approach raises
the intriguing possibility that adaptation and learning, while occurring on different timescales, might be studied with
similar conceptual tools. When viewed through the RD framework, the observed relationship between steady-state
performance, transient performance, and the speed of adaptation is reminiscent of fundamental physical tradeoffs
between speed, energy, and accuracy that have been described in sensory systems [59, 60]. Taken together, our
results fit within a broader spectrum of work that extends existing normative theories of neural coding by synthesizing
different—and often competing—objectives such as efficiency, inference [39, 54, 61, 62], and prediction [57, 63].

Since its formulation, the efficient coding hypothesis has been a guiding principle in the study of neural coding
[23]. It has generated multiple, now canonical, normative accounts of neural coding by deriving optimal solutions for
conveying information about stationary stimulus distributions (e.g. [28, 42, 64, 65]). Natural environments, however,
are constantly changing, which is reflected in the dynamic and adaptive structure of sensory codes in the brain. In
this work, we developed a normative framework based on rate-distortion theory and dynamic Bayesian inference to
study adaptive neural computation. To our knowledge, this is the first systematic extension of the efficient coding
hypothesis to nonstationary environments (however, see [66]), and as such enables a normative description of a vast
range of sensory adaptation dynamics that were previously outside of the domain of the efficient coding framework.

Sensory adaptation takes many forms and is ubiquitous across the nervous system [7, 8, 12, 16, 22, 32, 40]. The
apparent diversity of adaptive phenomena might create the perception that it is not possible to perform meaningful
comparisons across different sensory systems or modalities. By proposing a theoretical description that captures
the dynamics of information processing during adaptation, our approach facilitates the comparison of these diverse
phenomena using a common set of principles. Rigorously connecting this framework to experimental data will
require the development of statistical models that can capture time-varying changes in neural nonlinearities and
receptive fields [34, 67, 68], and theoretical approaches to deepen our understanding of rate-distortion theory in
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non-stationary environments [69]. Together, these developments may shed light on how adaptability and efficiency
guide the evolutionary design of neural representations, and thereby provide a normative understanding of a broad
range of dynamic phenomena in adaptive neural coding.
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Figure 1: A framework for characterizing the dynamics of adaptation in sensory neurons. A. (Schematic) Animals perform different tasks
in changing environments. For example, to detect a predator, an animal might have to discriminate between stimuli (here, local regions of a visual
scene) that signal a hawk in the canopy, or a wolf in the forest. B. (Schematic) A model neuron encodes these stimuli via a saturating nonlinear
response function that generates a discrete number of discriminable responses. In order to discriminate stimuli that signal the presence of a
predator, the response function of the neuron should be aligned with the stimulus distribution. When the stimulus distribution changes (right
column), incoming stimuli might no longer be discriminable to the same neuron, and the neuron could fail to signal the presence of a predator.
C. (Schematic) In order to accurately signal a predator in the new environment, the neuron should adapt its response function (lower panel).
The dynamics of this adaptation will determine the speed and accuracy of performance, and the degree and duration of errors (top panel). D.
(Schematic) We formulate a general framework for an adaptive neural system. Stimuli originating from a time-varying stimulus distribution (I)
are encoded via a neural response function (II). The output of this encoding is used both to solve diverse computational tasks (III), and to track
changes in the stimulus distribution that underlies these tasks (IV). An estimate of the stimulus distribution is used to dynamically adapt the
encoding over time. E. (Schematic) The dynamics of adaptation will determine the detailed changes in the response function of the encoder
(left), and the firing rate dynamics (right). F. (Schematic) The dynamics of adaptation can be characterized as a trajectory on the rate-distortion
(RD) plane. The RD plane relates the information that encoding conveys about incoming stimuli, and the error that this encoding induces in the
task of stimulus reconstruction. An optimally-adapted system is marked by a single point (black marker) on the RD curve (black line). A change
in the stimulus distribution will “kick” the system away from the RD curve (dashed arrows), and the system must dynamically adapt its response
function in order to return (solid arrows). Different response function dynamics (panel E) give rise to different trajectories on the RD plane.
Lower right: Departures from an optimal point on the RD curve can reflect both underuse and misuse of coding capacity. Upper right: Individual
trajectories can be characterized by their curvilinear length (quantifying the speed of adaptation), and their maximum height (quantifying the
maximum error).
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Figure 2: Neural dynamics during mean adaptation. A. Stimuli xt are drawn from a Gaussian stimulus distribution whose variance is fixed
but whose mean is determined by a latent parameter θt that switches stochastically between a low value, θL, and a high value, θH (we take
= −2, θH = 2). Stimuli are encoded in discrete spike counts yt via a saturating nonlinearity whose slope k and offset x0 can adapt over time.
The system uses these spike counts to decode an estimate x̂t of the stimulus, which is then used to update an estimate θ̂t of the mean of the
incoming stimulus distribution. This estimate is used to optimally adapt the encoding nonlinearity for task performance (stimulus reconstruction)
or adaptability. B-D. Following a switch in the stimulus mean, a nonlinearity optimized for reconstruction (B) is characterized by a constant slope
(D; upper row) and an offset that tracks track the internal estimate of the stimulus mean (D; lower row). A nonlinearity optimized for adaptability
(C) is characterized by a slope that transiently increases (D; upper row) and an offset that transiently shifts to align with the midpoint between the
two stimulus distributions (D; lower row). An intermediate strategy (turquoise) interpolates between these extremes. Color saturation indicates
time after switch. E. On individual trials, parameters of optimal nonlinearities show rich temporal dynamics that are not captured by their trial
averages (D). A nonlinearity optimized for adaptability (green) shows two distinct behaviors. On a majority of trials, there is a brief (lasting
only a single timepoint) increase in slope and shift in offset before both parameters reach their steady-state values. On the remaining trials,
the parameters abruptly switch to their new steady-state values within in a single timestep. A nonlinearity optimized for reconstruction (purple)
shows a more gradual change in offset that occurs at varying times following the change in stimulus mean. F-H. During this transient period of
adaptation, differences in nonlinearity dynamics impact how quickly the system can detect changes in the stimulus mean (F), and how accurately
the system can reconstruct stimuli that signal these changes (G). This adaptation is signaled by an abrupt change in firing rate following a switch
(H). A simple recoding procedure (insets) generates firing rate dynamics that are symmetric to upward and downward switches in the stimulus
mean. All results in panels B-D, F, H are averaged over 5000 switches in the stimulus distribution. Results in panel E are sorted by the time that
the slope of the nonlinearity first reached 90% of its peak value.
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Figure 3: Neural dynamics during variance adaptation. A. Stimuli xt are drawn from a Gaussian stimulus distribution whose mean is fixed
but whose standard deviation is determined by a latent parameter θt that switches between θL and θH . Stimuli are encoded and decoded as
described in Fig 2A, and used to update an estimate θ̂t of the standard deviation of the stimulus distribution. This estimate is used to optimally
adapt the encoding nonlinearity for task performance (stimulus reconstruction) or adaptability. B-D. Following a switch in stimulus variance, a
nonlinearity optimized for reconstruction (B) is characterized by a constant offset (D; lower row) and a slope that scales with system’s internal
estimate of the stimulus variance (D; upper row). A nonlinearity optimized for adaptability (C) shows a transient increase in slope (D; upper row)
and decrease in offset (D; lower row) following the switch. An intermediate strategy (turquoise) interpolates between these extremes. Color
saturation indicates time during the transient period of adaptation. E. On individual trials, parameters of optimal nonlinearities show rich temporal
dynamics that are not captured by their trial averages (D). A nonlinearity optimized for reconstruction (purple) shows a more gradual change
in slope that occurs at varying times following the change in stimulus variance. In comparison, a nonlinearity optimized for adaptability shows
a prolonged decrease in offset followed by a brief change in slope. F-H. During this transient period of adaptation, differences in nonlinearity
dynamics impact how quickly the system can detect changes in the stimulus variance (F), and how accurately the system can reconstruct stimuli
that signal these changes (G). This adaptation is not signaled by a change in firing rate (H). A simple recoding procedure (insets) generates firing
rate dynamics that show transient changes following a change in stimulus variance. In a system optimized for reconstruction, these changes
track changes in stimulus variance (increasing after a switch from low to high, and decreasing after a switch from low to high; insets). In contrast,
a system optimized for adaptability shows transient increases in firing rate regardless of whether stimulus variance increased or decreased. All
results in panels B-D, F, H are averaged over 5000 switches in the stimulus distribution. Results in panel E are sorted by the time that the slope
of the nonlinearity first reached 90% of its peak value.
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Figure 4: Rate-distortion analysis of adaptation dynamics. A. In steady state (inset), nonlinearities optimized for reconstruction (purple)
maintain higher information rates and lower reconstruction error than nonlinearities optimized for adaptability (green). Following an abrupt
change in the mean of the stimulus distribution (dotted arrows), both systems exhibit an abrupt increase in error and drop in information, followed
by a transient period of adaptation (solid lines and filled markers). B. Although a task-optimized encoding maintains lower error in steady state,
it reaches higher transient error and takes longer to adapt than an encoding optimized for adaptability (circular markers). Mixed codes that
balance task performance and adaptability can achieve performance that interpolates between these extremes (also indicated by the turquoise
trajectories in panels A, C, and D, and in Figs. 2-3). Decreasing the variability of the environment (square markers) leads to an increase in
adaptation time and decrease in maximum error, while increasing the volatility of the environment (diamond markers) has the opposite effect.
C-D. When the variance of the stimulus distribution is changing in time, the dynamics on the rate-distortion plane depend on whether the stimulus
variance increases (C) or decreases (D). In both cases, the task-optimized encoding maintains lower steady-state task error (inset) but higher
transient error than an encoding optimized for adaptability, and takes longer to adapt to a change in variance. Mutual information and average
reconstruction error are computed over 5000 switches in the stimulus distribution.
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Figure 5: Dynamics of adaptation in neural populations. A. Stimuli xt are drawn from one of two different distributions of spatial frequency,
derived from snippets of video footage (I). These stimuli are encoded by a population of neurons whose response yt is determined by Gaussian
tuning curves of fixed width. The locations of these tuning curves are parametrized by a linear density function (II). The system uses the
population response to linearly decode an estimate x̂t of the stimulus (III). To adapt the population code, the system must infer which of the
two environments was most likely to have generated incoming stimuli (IV). B. Populations optimized for adaptability (bottom row) maximize the
difference in population responses generated by the two stimulus distributions. Their tuning curves are therefore concentrated around modes
of each stimulus distribution. Populations optimized for stimulus reconstruction (top row) have tuning curves that uniformly tile the range of
stimuli from each distribution. An intermediate coding strategy (middle row) produces tuning curves that interpolate between these extremes.
C-D. Population codes optimized for reconstruction (purple), adaptability (green), or a mix of both (turquoise) respond with different latencies in
detecting a switch in the stimulus distribution (panel C), and achieve different levels of performance during this transient period (panel D). E. The
varied dynamics in panels C-D give rise to consistent tradeoffs between the steady-state reconstruction error, the time required for adaptation,
and the maximum reconstruction error achieved during adaptation.
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Figure 6: Dynamics of adaptive predictive coding. A. Stimuli are drawn from an ensemble of 5 × 5 pixel image patches. Image patches
are then corrupted by either low or high levels of noise (6 dB and 20 dB SNR respectively; I). The encoder predicts the value of the center
pixel yt by linear combining the image surround with a predictive coding filter (II). The predictive filter is designed to minimize the squared error
between the predicted (yt) and actual (ct,c) value of the central pixel, which improves coding efficiency (III). To adapt the encoding filter, the
system must infer whether stimuli are corrupted by low or high levels of noise (IV). B. Optimal predictive coding filters depend on the level of
noise in the environment (top row). A filter optimized for adaptability maximizes the difference in response statistics across the environments
(bottom row). An interpolated filter is constructed by linearly combining filters optimized for prediction and adaptability (middle row). C-D. Filters
that are optimized for prediction (purple), adaptability (green), or a mix of both (turquoise) differ in how quickly they can signal a change in noise
level (C), and how much prediction error they induce during this transient period (D). E The varied dynamics in panels C-D give rise to tradeoffs
between the steady-state reconstruction error, the time required for adaptation, and the maximum prediction error achieved during adaptation.
Maintaining lower error in steady state leads to longer adaptation times, regardless of whether the noise level increases or decreases, and leads
to higher transient errors when the noise level increases but lower transient error when the noise level decreases.
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METHODS

Adaptation in single neurons

Model environment. We considered a nonstationary environment whose dynamics were determined by a single
latent parameter θt that could switch between two values, θL and θH , at a fixed hazard rate h = 0.01. We took θt to
parameterize a probability distribution p(xt|θt) over stimuli xt. We considered two environments; so-called ‘mean-
switching’, in which θt parameterized the mean of a Gaussian stimulus distribution with fixed variance σ2 = 1 (i.e.,
p(xt|θt) = N (xt; θt, 1)), and ‘variance-switching’, in which θt parameterized the standard deviation of a Gaussian
stimulus distribution with fixed mean µ = 0 (i.e., p(xt|θt) = N (xt; 0, θ

2
t )). In the mean-switching environment, we

took θt to switch between θL = −2 and θH = 2; in the variance-switching environment, we took θt to switch between
θL = 1 and θH = 3.

Model neuron. We modeled a single neuron whose response yt to a stimulus xt was determined by nonlinear
function f(xt) = 1/(1 + exp(−k(xt − x0))) whose slope k and offset x0 were adaptable over time. We added
Gaussian noise with standard deviation σ2 = 0.01 to the output of this nonlinearity. We then thresholded values
below 0 or above 1, and we discretized the output into n response levels of equal width, ranging from 0 to n− 1. We
took this discrete value (representing a spike count) to be the neural response yt. All results were generated with
n = 8 response levels.

Model observer. We modeled a Bayesian observer that constructs a posterior distribution over the latent parameter
θ. To this end, the neural response yt was first decoded via a linear function with an adaptable slope p1 and offset p0
to reconstruct a stimulus estimate x̂t = p1yt + p0. This estimate was then used to update the posterior distribution
over θt. Because the latent parameter could take only two values, the posterior can be summarized by the probability
that the environment is in the low state at time t, given by PLt = p(θt = θL|x̂τ≤t). On each timestep, PLt was
updated with incoming stimulus estimates (as derived in [70]). We averaged the posterior to compute the point
estimate θ̂t = PLt θL + (1 − PLt )θH , which could then be used to estimate the stimulus distribution p(xt|θ̂t) (where
p(x|θ̂) = N (x; θ̂, 1) in a mean-switching environment, and p(x|θ̂) = N (x; 0, θ̂2) in a variance-switching environment).
This estimate was fed back upstream and used to determine the optimal encoding and decoding parameters on the
next timestep.

Optimization of nonlinear response functions. The parameters of the nonlinear encoder and the linear decoder
were optimized on every timestep given the system’s current posterior PLt . In practice, we discretized the posterior
into 101 evenly spaced values between 0 and 1. For each value of the posterior, we performed an exhaustive grid
search over a 201 × 201 grid of parameter values, spanning the ranges [0, 2], [0, 1.5] for the slope k (in the mean-
and variance-switching environments, respectively), and [−2.5, 2.5], [−1, 0] for the offset x0 (mean- and variance-
switching, respectively).

For each value of the posterior (and each corresponding value of θ̂), we generated 100000 stimulus samples
drawn from p(x|θ̂). We passed this set of stimulus samples through the encoding nonlinearity, defined by a given
combination of slope k and offset x0, to generate a distribution of spike counts y. We computed the parameters
p0 and p1 of the optimal linear decoder that minimized the reconstruction error 〈(x − x̂)2〉 between the true x and
reconstructed x̂ stimulus values. The resulting set of reconstructed stimuli were used to update the estimate θ̂(x̂)
and compute the average inference error 〈(θ̂(x) − θ̂(x̂))2〉. When iterated over all combinations of x0 and k, this
procedure resulted in two error landscapes, Einf(k, x0|PLt ) and Erec(k, x0|PLt ), for each value of the posterior PLt .

In the mean-switching environment, the symmetry of the problem guarantees that the error landscapes are
equivalent under the exchange x0 → (−x0) and PLt → (1 − PLt ). We used this equivalence to reduce numerical
noise in our optimization through the following construction: E(k, x0|PLt ) = 1

2 [E(k, x0|PLt ) + E(k,−x0|1 − PLt )].
This was not performed for the variance-switching environment. We then normalized the values of each landscape
to lie between 0 and 1, and we smoothed each landscape by replacing the error at a given entry (x0, k) with the
average over a 12× 12 region around the entry. We then constructed weighted combinations of the two landscapes:
Eε(k, x0|PLt ) = εEinf(k, x0|PLt ) + (1− ε)Erec(k, x0|PLt ), where ε is a weighting factor that we varied between 0 (pure
inference) and 1 (pure reconstruction). Finally, we found the combination of parameters (x0, k) (with corresponding
decoding parameters (p0, p1)) that minimized the error Eε(k, x0|PLt ) for each value of PLt and each value of ε.

In the main text, the ‘adaptability-optimized’ strategy was generated with ε = 0, and the ‘task-optimized’ strategy
was generated with ε = 1. The interpolated strategy shown in Figs. 2, 3, and 4A,C,D was generated with ε = 0.8.
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The interpolated strategies shown in Fig. 4B were generated with ε = [0.2, 0.4, 0.6, 0.8]. We found empirically
that when optimized for reconstruction (ε = 0), the optimal offset in the mean-switching environment tracked the
system’s current estimate of the mean of the stimulus distribution, and the optimal offset in the variance-switching
environment scaled inversely with the system’s current estimate of the standard deviation of the stimulus distribution.

Simulations. We simulated a probe environment that switched between θL and θH every 100 timesteps; this probe
signal is not unlikely given the generative process for θt [70]. At each timestep t, the system maintained a posterior
belief PLt−1 and corresponding point estimate θ̂t−1 from the previous timestep. The posterior belief specified the set
of optimal encoding and decoding parameters to be used on the current timestep (as described above). We then
randomly sampled a single stimulus sample xt from p(xt|θt). This stimulus sample was encoded and decoded to
construct an estimate x̂t, which was then used to update the posterior belief [70].

We defined a single trial of the probe environment to consist of 100 timesteps in the low state (θt = θL), followed
by 100 timesteps in the high state (θt = θH ). We simulated dynamics over 5000 continuous trials, and we averaged
the results across trials. We then separately analyzed the average response of the system to upward and downward
switches in θt.

Computation of rate-distortion dynamics. At each timestep, we estimated the mutual information between the
neuron’s response yt and the stimulus xt from the joint histogram p(xt, yt) measured across trials. Stimuli were
partitioned into n different bins that were chosen on each timepoint to partition the empirical distribution of stimuli
into bins of equal probability. This partitioning was used to estimate the marginal entropy H(X). Responses were
binned according to their discrete values and used to estimate the marginal entropy H(Y ). The joint set of bins to
was then used to estimate the joint entropy H(X,Y ) and the mutual information MI = H(X) +H(Y ) −H(Y |X).
We used n = 8 bins to partition stimuli (equal to the number of discrete response levels of the nonlinear encoder).
We note that, due to finite sampling effects, the mutual information slightly exceeds the differential entropy of the
stimulus xt in the mean-switching environment.

We measured the average distortion at each time-point by computing the trial average error in reconstruction
〈(xt−x̂t)2〉. Together with time-course of mutual information, this specified a dynamic trajectory on the rate-distortion
plane.

Computation of tradeoffs. We defined the transient period of adaptation as the period of time following a switch
in θt for which the relative magnitude of the time-derivative of the posterior, |dPLt /dt|/max(|dPLt /dt|), was greater
than a fixed threshold a. We used a = .025 in the mean-switching environment, and a = .05 in the variance-
switching environment. We defined the steady-state period as the time after adaptation and before the next switch
in θt. We reported tradeoffs between the duration of adaptation, the maximum reconstruction error measured during
adaptation, and the average reconstruction error measured during the steady-state period before the switch. In Fig.
4B, we examined the dependence of these tradeoffs on the variability and volatility of the stimulus distribution in
the mean-switching environment. We varied the ‘variability’ of the stimulus distribution by decreasing the separation
between latent states (such that θL = −1 and θH = 1). We varied the ‘volatility’ of the stimulus distribution by
increasing the hazard rate to h = 0.1. All other parameter optimizations and simulations were carried out as
described above.

Entropy coding. We used an entropy coding procedure to recode the discrete output of the encoding nonlinearity.
Entropy coding assigns codewords to response levels based on the predicted probability that the response level
will be used, such that shortest codewords (lowest spike counts) are assigned to most probable levels [35]. In our
case, we used entropy coding to reassign spike counts to the n output response levels of the encoding nonlinearity
based on the system’s current prediction of the stimulus distribution. We performed this recoding for each timepoint
and on each individual trial. We first used the system’s internal estimate of the stimulus distribution, p(xt|θ̂t−1),
to rank-order the response levels in terms of their expected probability of being used (i.e., by passing stimuli from
p(xt|θ̂t−1) through the encoding nonlinearity, and then computing the histogram over response levels). We then
assigned spike counts to response levels based on decreasing expected probability, such that the response level
that had the highest expected probability was assigned the fewest spikes, and the response level that had the lowest
expected probability was assigned the most spikes. We used this mapping to assign a spike count yt to the stimulus
sample xt that was drawn at the given timepoint and on the given trial. This resulted in a new recoded raster of
spike counts that we used to compute the trial-averaged firing rates in the insets of Figs. 2H and 3H.
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Adaptation in neural populations

Model environment. We computed distributions of average spatial frequency from two different ensembles of
images taken from excerpts of a natural movie [38]. The image ensembles were chosen by hand to ensure a large
separation between the two distributions. From each ensemble, we randomly-sampled a set of 20000 image patches,
each of size 40 × 40 pixels. We computed a 2-dimensional Fourier transform of each patch, and we separately
averaged the power spectrum along the horizontal and vertical dimensions of the patch. We then averaged these
two vectors to obtain an average power vector, and we used this vector to compute a weighted average over
frequencies for each patch. This resulted in two distributions of spatial frequencies corresponding to lower and
higher spatial frequencies (denoted L and H, respectively). We considered an environment that could switch
between the two distributions, Ft = L and Ft = H, at a small but fixed hazard rate h = 0.01, where Ft ∈ {L,H}
denotes the current frequency distribution at time t.

Model population. We modeled a population of N neurons whose response yt to a spatial frequency xt was
determined by a set of Gaussian tuning curves. Each neuron i was described by a tuning curve with fixed standard
deviation σi = 0.2 and adaptable peak location µi. We parameterized the peak locations with a linear density
function [26, 39]. We first defined a set of locations µUi that were uniformly distributed on the interval [0, 1], and then
we mapped these locations onto the stimulus axis via a linear density function: µi = aµUi + b. In this manner, the
entire population was described by only two parameters: the slope a and the offset b of the linear function.

As in our single neuron model, we mapped the output of each tuning curve onto a discrete number of response
levels, and we polluted the output with additive Gaussian noise with standard deviation σ = 0.01. All results were
generated using a population of N = 4 neurons, each with a maximum firing rate of 4 spikes (corresponding to
n = 5 response levels).

Model observer. We derived a Bayesian observer that constructs a posterior distribution over spatial frequencies
(low or high) based on the population response yt. As in the case of mean and variance estimation, this posterior
distribution can be summarized with a single value, namely the probability that the stimuli are generated from the
low-frequency distribution, given the history of past population responses: PLt = p(Ft = L|yτ≤t). On each timestep,
the posterior probability is updated according to the following update rule:

PLt = p(Ft = L|yτ≤t) = p(yt|a, b, Ft = L)p(Ft = L|yτ<t)
1

p(yt)
, (1)

where the prior probability includes the predictive component p(Ft = L|yt−1, . . . ,y1) = p(Ft−1 = L|yt−1, . . . ,y1)
p(Ft = L|Ft−1 = L). Because we consider a small hazard rate, it is reasonable for the observer to assume that
environment will not change from one timestep to the next; i.e., p(Ft = L|Ft−1 = L) = 1 [27, 70]. For simplicity, we
also assumed that the responses of individual neurons were independent across the population:

p(yt|a, b, F ) =
N∏
i=1

p(yi,t|a, b, F ), (2)

and we estimated the conditional probabilities p(yi,t|a, b, F ) by computing histograms of spike counts for each fre-
quency distribution.

This posterior was used to estimate, at each timepoint, whether stimuli were more likely to be drawn from the
low-frequency distribution (PLt > 0.5) or the high-frequency distribution (PLt < .5). This information was then fed
back upstream and used to determine the optimal distribution of population tuning curves on the next timestep.

Optimization of tuning curves. The parameters of the linear density function were optimized separately for each
frequency distribution. We performed an exhaustive search over a 32 × 32 grid of parameter values, spanning the
range [1, 4] for the slope a, and [6, 12] for the offset b. For each combination of parameters on the grid, we computed
the population response yF to all stimulus samples drawn from a given frequency distribution F ∈ {L,H}. We
then fit a set of linear decoding weights wF that minimized the reconstruction error 〈(x̂F − x)2〉, where x̂F = wFyF

was the reconstructed stimulus value. We fit these weights separately for each frequency distribution and for each
combination of parameters (a, b) on the grid.

To optimize for the task of reconstruction (‘R’), we determined the set of encoding parameters (aRF , b
R
F ) (and

corresponding decoding weights wR
F ) that minimized the reconstruction error in each environment. To optimize for
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adaptability (‘A’), we determined the set of parameters (aAF , b
A
F ,w

A
F ) that maximized the discriminability between

the two environments. To do this, we first computed the symmetrized Kullback-Leibler divergence between the
distribution of population responses to the two frequency distributions:

D(a, b) =

[
DKL

(
p(yt|a, b, F = L)‖p(yt|a, b, F = H)

)
+DKL

(
p(yt|a, b, F = H)‖p(yt|a, b, F = L)

)]
(3)

For the two distributions considered here, the function D(a, b) had two local maxima. Each maximum corresponded
to a population where all tuning curves were concentrated around the mode of one of the two frequency distributions.
For each distribution, we thus chose the set of optimal encoding parameters (aAF , b

A
F ) (and decoding weights wA

F )
corresponding to the mode of that distribution.

To construct interpolated population codes (‘I’), we linearly combined the parameters that were optimized for
reconstruction versus adaptability: aIF = εaAF + (1 − ε)aRF , and bIF = εbAF + (1 − ε) ∗ bRF . The interpolated strategy
shown in Fig. 5E was generated using ε = 0.43. The interpolated strategies shown in Fig. 5E were generated using
8 values of ε spaced uniformly between 0 and 1.

Simulations. As before, we simulated a probe environment that switches between the two stimulus distributions,
Ft = L and Ft = H, every 100 timesteps. At each timestep t, the system maintained a posterior belief PLt−1 about the
current stimulus distribution. This belief specified the optimal set of parameters (aF , bF ) that defined the population
code. When PLt−1 < 0.5, the system believed that stimuli were more likely to be coming from the high-frequency
distribution, and thus the system used a population code parameterized by (aH , bH) and a decoder parameterized
by φH . When PLt−1 > 0.5, the system used a population code and decoder parameterized by (aL, bL, φL). A single
stimulus sample xt was then randomly drawn from the stimulus distribution defined by Ft. The sample was encoded
and decoded as described above, and used to update the posterior.

We defined a single trial to consist of 100 timesteps in which stimuli were randomly drawn from the low-frequency
distribution (Ft = L), followed by 100 timesteps in which stimuli were drawn from the high-frequency distribution
(Ft = H). We simulated dynamics over 10000 continuous trials, and we averaged the results across trials.

Computation of tradeoffs. We defined the transient period of adaptation as the period of time following a switch in
Ft for which the the posterior, PLt , remained above (switch from low to high frequency distribution) or below (switch
from high to low frequency distribution) a threshold of 0.5. This hard thresholding reflects the discrete nature of the
inference problem, and the fact that the encoding changes once the posterior crosses the 0.5 threshold. We defined
the steady-state period as the first set of 50 samples after adaptation and before the next switch in Ft.

Adaptation of predictive filters

Model environment. We sampled 20000 image patches, each of size 5 × 5 pixels, from the low-frequency image
ensemble described in the previous section. We subtracted the mean pixel value from each patch, and divided
each pixel in the patch by the root-mean-squared (RMS) value computed across pixels. To simulate different noise
conditions, we distorted each patch with additive Gaussian noise whose variance was either low (σ = 0.1, corre-
sponding to an average signal to noise ratio (SNR) of 20 dB), or high (σ = 0.5, corresponding to an SNR of 6 dB).
We considered an environment that could switch between the two noise conditions, Nt = L (low noise) and Nt = H
(high noise), at a hazard rate h = 0.001, where Nt ∈ {L,H} denotes the noise level at time t.

Model neuron. We modeled a single neuron whose response yt to an image patch xt was determined by a
adaptable filter φN (with N ∈ {L,H}). Specifically, we took yt to be the dot product between φN and the surround
xs,t of the image patch: yt = φNxs,t.

Model observer. We derived a Bayesian observer that constructs a posterior distribution over noise levels (low or
high) based on the filter output yt. Again, this posterior distribution can be written as the probability that the noise
level is low, given the history of past filter outputs: PLt = p(Nt = L|yτ≤t). The posterior has same the form as given
in Eq. 1, and we again assume p(Nt = L|Nt−1 = L) = 1. We also assumed that the distribution of filter outputs y
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in each of the noise conditions was Gaussian with a mean µN and variance σ2
N that depended on the noise level:

p(yt|N) = N (µN , σ
2
N ).

As before, this posterior was used to estimate whether the the noise level was low (PLt > 0.5) or high (PLt < .5),
and this information was then fed back upstream and used to determine the optimal filter on the next timestep.

Optimization of predictive filters. To optimize for the task of prediction (‘P’), we learned separate filters φPN for the
low and high noise conditions. We used gradient descent to minimize the prediction error 〈(xc,t − yt)2〉 between the
central pixel xc,t and a weighted average of the surround, yt = φPNxs,t.

To optimize for adaptability (‘A’), we learned a single filter φA to maximize the difference of filter output distribu-
tions between low and high noise levels. This filter was used in both noise conditions, such that φAL = φAH = φA. To
learn the optimal filter, we computed the symmetrized Kullback-Leibler divergence between the output distributions
in the two noise conditions:

D(φ) =

[
DKL

(
p(y|φ, µL, σ2

L)‖p(y|φ, µH , σ2
H)
)
+DKL

(
p(y|φ, µH , σ2

H)‖p(y|φ, µL, σ2
L)
)]

(4)

Optimizations were performed using the Matlab function fminunc().
To construct interpolated filters (‘I’), we linearly combined the filters that were optimized for prediction versus

adaptability: φIN = εφAN + (1 − ε)φPN . The interpolated strategy shown in Fig. 6B-D was generated using ε = 0.29.
The interpolated strategies shown in Fig. 6E were generated using 8 values of ε spaced uniformly between 0 and 1.

Simulations. As before, we simulated a probe environment that switched between the two noise levels, Nt = L and
Nt = H, every 100 timesteps. At each timestep t, the system maintained a posterior belief PLt−1 about the noise
level that specified the optimal filter φ. When PLt−1 < 0.5, the system believed that the noise level was high and thus
used the filter φH . When P 1

t−1 > 0.5, the system used the filter φL. A single image patch xt was then drawn from
the stimulus distribution, distorted with noise whose variance was determined by Nt, encoded as described above,
and used to update the posterior.

We defined a single trial to consist of 1000 timesteps in which the noise level was low (Nt = L), followed by 1000
timesteps in which the noise level was high (Nt = H). We simulated dynamics over 10000 continuous trials, and we
averaged the results across trials.

Computation of tradeoffs. We defined the transient period of adaptation as the period of time following a switch
in Nt for which the the posterior, PLt , remained above (switch from low to high noise) or below (switch from high to
low noise) a threshold of 0.5. As in the previous section, this hard thresholding reflects the discrete nature of the
inference problem, and the fact that the encoding changes once the posterior crosses the 0.5 threshold. We defined
the steady-state period as the set of 50 samples after adaptation and before the next switch in Nt.
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