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Abstract

Analytical forms for neuronal firing rates are important theoretical tools for the analysis
of network states. Since the 1960s, the majority of approaches have treated neurons as
being electrically compact and therefore isopotential. These approaches have yielded
considerable insight into how single-cell properties affect network activity; however,
many neuronal classes, such as cortical pyramidal cells, are electrically extended objects.
Calculation of the complex flow of electrical activity driven by stochastic
spatio-temporal synaptic input streams in these structures has presented a significant
analytical challenge. Here we demonstrate that an extension of the level-crossing
method of Rice, previously used for compact cells, provides a general framework for
approximating the firing rate of neurons with spatial structure. Even for simple models,
the analytical approximations derived demonstrate a surprising richness including:
independence of the firing rate to the electrotonic length for certain models, but with a
form distinct to the point-like leaky integrate-and-fire model; a non-monotonic
dependence of the firing rate on the number of dendrites receiving synaptic drive; a
significant effect of the axonal and somatic load on the firing rate; and the role that the
trigger position on the axon for spike initiation has on firing properties. The approach
necessitates only calculating first and second moments of the non-thresholded voltage
and its rate of change in neuronal structures subject to spatio-temporal synaptic
fluctuations. The combination of simplicity and generality promises a framework that
can be built upon to incorporate increasing levels of biophysical detail and extend
beyond the low-rate firing limit treated in this paper.

Author summary

Neurons are extended cells with multiple branching dendrites, a cell body and an axon.
In an active neuronal network, neurons receive vast numbers of incoming synaptic
pulses throughout their dendrites and cell body that each exhibit significant variability
in amplitude and arrival time. The resulting synaptic input causes voltage fluctuations
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throughout their structure that evolve in space and time. The dynamics of how these
signals are integrated and how they ultimately trigger outgoing spikes have been
modelled extensively since the late 1960s. However, until relatively recently the
majority of the mathematical formulae describing how fluctuating synaptic drive
triggers action potentials have been applicable only for small neurons with the dendritic
and axonal structure ignored. This has been largely due to the mathematical
complexity of including the effects of spatially distributed synaptic input. Here we show
that in a physiologically relevant, low-firing-rate regime, an approximate, level-crossing
approach can be used to provide an estimate for the neuronal firing rate even when the
dendrites and axons are included. We illustrate this approach using basic neuronal
morphologies that capture the fundamentals of neuronal structure. Though the models
are simple, these preliminary results show that it is possible to obtain useful formulae
that capture the effects of spatially distributed synaptic drive. The generality of these
results suggests they will provide a mathematical framework for future studies that
might require the structure of neurons to be taken into account, such as the effect of
electrical fields or multiple synaptic input streams that target distinct spatial domains
of cortical pyramidal cells.

Introduction 1

Due to their extended branching in both dendritic and axonal fields many classes of 2

neurons are not electrically compact objects, in that the membrane voltage varies 3

significantly throughout their spatial structure. A case in point are the principal, 4

pyramidal cells of the cortex that feature a long apical dendritic trunk, oblique 5

dendrites, apical tuft dendrites and a multitude of basal dendrites. Excitatory synapses 6

are typically located throughout the dendritic arbour [1], while inhibitory synapses are 7

clustered at specific regions depending on the presynaptic cell type [2]. These cells also 8

differ morphologically not only between different layers, but also between cells in the 9

same layer and class [3, 4]. Most cortical pyramidal cells in vivo fire rarely and 10

irregularly due to the stochastic and balanced nature of the synaptic drive [5, 6]. 11

Despite the apparent irregular firing of single neurons, computational processes are 12

understood to be distributed across the population [7, 8] with the advantage that 13

encoding information at a low firing rate can be energy efficient [9]. 14

The arrival of excitatory and inhibitory synaptic pulses increases or decreases the 15

postsynaptic voltage as well as increasing the conductance locally for a short time. 16

Together with the spatio-temporal voltage fluctuations caused by the distributed 17

synaptic bombardment typical of in vivo conditions, the increase in membrane 18

conductance affects the integrative properties of the neuron, with reductions of the 19

effective membrane time constant, electrotonic length constant and overall input 20

resistance of neuronal substructures [10–12]. 21

How different classes of neurons integrate stochastic synaptic input has been a 22

subject of intense experimental [7, 13,14] and theoretical [15–19] focus over the last 50 23

years. The majority of analytical approaches have approximated the cell as 24

electrotonically compact and focussed on the combined effects of stochastic synaptic 25

drive and intrinsic ion currents on the patterning of the outgoing spike train. Such 26

models usually utilise an integrate-and-fire (IF) mechanism with some variations, and 27

have been analysed using a Fokker-Planck approach [20–23] in the limit of fast synapses. 28

However, this approach becomes unwieldy when synaptic filtering is included (though 29

see [24–26]). One approximate analytical methodology, applicable to the low-firing-rate 30

limit driven by filtered synapses is the level-crossing method of Rice [27]. In this 31

approach, which has already been applied to compact neurons [28,29], a system without 32

post-spike reset is considered with the rate that the threshold is crossed from below 33
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treated as a proxy for the firing rate; the upcrossing rate and firing rate for a system 34

with reset will be similar when the rate is low. 35

Due partly to the sparsity of the experimental data required for model constraint, 36

but also because of the mathematical complexity involved, few analytical results 37

regarding stochastic synaptic integration are available for neurons with dendritic 38

structure, excepting the work of Tuckwell [30–32]. Nevertheless there is increasing 39

interest in the integrative and firing response of spatial neuron models [33,34], for 40

neurons subject to and generating electric fields [35–37] or the effect of axonal load and 41

position of the action-potential initiation region [34,38–42]. Advances in optogenetics 42

and multiple, parallel intracellular recordings have made experimental measurement and 43

stimulation of in vivo-like input at arbitrary dendritic locations feasible [43–45]. This 44

potential for model constraint suggests it is timely for a concerted effort to extend the 45

analytical framework developed for compact models driven by stochastic synapses to 46

neurons with dendrites, soma and axon in which the voltage fluctuates in both space 47

and time. 48

Here we detail an analytical framework for approximating the firing rate of neurons 49

with a spatially extended structure in a physiologically relevant low-rate regime [46–48]. 50

To illustrate the approach we applied it to simple but exemplary neuronal geometries 51

with increasing structural features - multiple dendrites, soma and axon - and 52

investigated how various morphological parameters including the electrotonic length, 53

axonal radius, number of dendrites and soma size affect the firing properties. 54

Materials and Methods 55

Derivation of the stochastic cable equation 56

The cable equation for the voltage V (x, t) in a dendrite of constant radius a and axial 57

resistivity ra with leak and synaptic currents has the form 58

cm
∂V

∂t
= gL(EL − V ) + gs(x, t)(Es − V ) +

a

2ra

∂2V

∂x2
(1)

where cm, gL and gs are the membrane capacitance, leak conductance and synaptic 59

conductance per unit area respectively, while EL and Es are the equilibrium potentials 60

for the leak and synaptic currents. The synaptic conductance over a small area of 61

dendrite, 2πa∆x, at location x along the dendrite increases instantaneously by an 62

amount γs for each incident synaptic input and then decays exponentially with time 63

constant τs as the constituent channels close 64

2πa∆xτs
∂gs
∂t

= −2πa∆xgs(x, t) + γsτs
∑
{tsk}

δ(t− tsk). (2)

Here {tsk} denotes the set of synaptic arrival times at location x. Each synaptic pulse is 65

assumed to arrive independently, where the number that arrive in a time window ∆t is 66

Poisson distributed with a mean Ns given in terms of the dendritic section area, areal 67

density of synapses %s, and mean synaptic arrival rate rs 68

Ns = 2πa∆x%srs∆t. (3)

Note that for a Poisson process the variance will also be Ns. 69

Gaussian approximation for the fluctuating conductance 70

For a high synaptic-arrival rate we can approximate the Poissonian impulse train by a 71

Gaussian random number with mean Ns/∆t and standard deviation
√
Ns/∆t (this is an 72
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extension to spatio-temporal noise of the approach taken in [20]). Dividing Eq (2) by 73

the unit of membrane area and introducing ψ as a zero-mean, unit-variance Gaussian 74

random number allows us to write 75

τs
∂gs
∂t
≈ −gs + τsγsrs%s + τsγs

√
%srs

2πa∆x∆t
ψ, (4)

where the right-hand side should be interpreted as having been discretized over time, 76

with a time step ∆t. We now define the space-time white-noise process 77

ξ(x, t) = ψ/
√

∆x∆t that has the properties 78

〈ξ(x, t)〉 = 0 and 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′) (5)

and also note that in the steady state 〈gs〉 = τsγsrs%s. Returning to the cable equation, 79

we split gs and V into mean and fluctuating components with gs = 〈gs〉+ gsF and 80

V = 〈V 〉+ vF , giving the equation for the mean components as 81

cm
∂〈V 〉
∂t

= g(E − 〈V 〉) +
a

2ra

∂2〈V 〉
∂x2

(6)

with g = gL + 〈gs〉 and E = (gLEL + 〈gs〉Es)/g. It is useful to introduce the time and 82

space constants 83

τv =
cm
g

and λ =

√
a

2gra
. (7)

For the fluctuating component we assume that the product gsF vF is small and obtain 84

cm
∂vF
∂t
≈ −gvF + gsF (Es − 〈V 〉) +

a

2ra

∂2vF
∂x2

. (8)

Rescaling synaptic variables s = gsF (Es−〈V 〉) and σs= 1
2γs(Es − 〈V 〉)

√
%srsτs/(2πaλ) 85

results in the following form for the synaptic equation 86

τs
∂s

∂t
= −s+ 2σs

√
λτs ξ(x, t). (9)

The deterministic voltage 〈V 〉 is generally spatially varying. However, if the synaptic 87

equilibrium potential Es is far from the effective resting voltage E and the fluctuating 88

voltage remains close to E then it is reasonable to approximate the noise σs as being 89

spatially uniform with Es − 〈V 〉 ≈ Es − E. This is applicable for mostly excitatory 90

synaptic drive where Es ∼ 0mV and E ∼ −60mV. Letting v=〈V 〉 − EL + vF , 91

µ = E − EL, and substituting in τv and λ, we combine Eqs (6, 8) and (9) to obtain the 92

stochastic cable equation used in the paper 93

τv
∂v

∂t
= µ− v + λ2

∂2v

∂x2
+ s. (10)

Here µ and s comprise the constant and fluctuating inputs to the dendrite. These 94

subthreshold dynamics are supplemented by the standard integrate-and-fire 95

threshold-reset mechanism at a trigger position xth; when the voltage at xth exceeds a 96

threshold vth the voltage in the entire structure is reset to voltage vre. Under in vivo 97

conditions the action-potential will back-propagate throughout the neuron with complex 98

spatio-temporal dynamics [49–51]; however, here we are considering the low-rate case in 99

which these transient post-spike dynamics will have dissipated before the next action 100

potential is triggered. 101
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Boundary conditions 102

The morphologies explored in this paper are shown in Fig 1a and feature boundary 103

conditions in which multiple dendrites and an axon meet at a soma. To account for 104

these conditions we first define the axial current Ia in a cable, writing it in terms of the 105

input conductance of an infinite cable Gλ=2πaλg, 106

Ia(x, t) = −λGλ
∂v

∂x
. (11)

For a sealed end at x = 0, represented by a horizontal line in Fig 1a, no axial current 107

flows out of the cable giving the boundary condition 108

∂v

∂x

∣∣∣∣
x=0

= 0. (12)

When the cable is unbounded and semi-infinite in extent, as shown by two small parallel
lines in Fig 1a, we apply the condition that the potential must be finite at all positions,

|v(x, t)| <∞, for all x, t. (13)

For other cases, multiple (n) neurites join at a nominal soma x=0 which is treated as 109

having zero conductance - these cases are shown by a small circle in Fig 1a. Under these 110

conditions the voltage is continuous at the soma v1(0) = ... = vn(0) and axial current is 111

conserved 112

n∑
k=1

λkGλk
∂vk
∂xk

∣∣∣∣
xk=0

= 0, (14)

where k identifies the kth of the n neurites and Gλk is its input conductance. Note that 113

for each neurite the spatial variable xk increases away from the point of contact xk=0. 114

The addition of an axon changes this boundary condition by adding a cable of index α 115

with length constant λα and conductance Gλα . Finally, when the soma at x = 0 is 116

electrically significant (denoted by a large circle in Fig 1a), there is an additional leak 117

and capacitive current at x = 0. This results in a current-conservation condition 118

τ0
dv0
dt

= −v0 +
n∑

k=α,1

ρkλk
∂vk
∂xk

∣∣∣∣
xk=0

, (15)

where the subscript 0 denotes somatic quantities and the neurite dominance factor ρk, 119

which is the conductance ratio between an electrotonic length of cable and the soma [52] 120

is ρk=Gλk/G0. As in the case for the nominal soma, the other condition is that the 121

voltage is continuous. 122

Numerical simulation 123

The cable equations for each neurite with a threshold-reset mechanism were numerically 124

simulated by implementing the Euler-Maruyama method by custom-written code in the 125

Julia language [53]. We discretized space and time into steps ∆x and ∆t, with v and s 126

measured at half-integer spatial steps and the derivative ∂v/∂x at integer spatial steps. 127

Hence, denoting k as the spatial index and i as the temporal index such that (x, t) = 128

(k∆x, i∆t), v((k + 1
2 )∆x, i∆t) = vik+1/2 and ∂v/∂v(k∆x, i∆t) = ∂xv

i
k. The numerical 129
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algorithm used to generate v and s was therefore as follows 130

vi+1
k+1/2 = vik+1/2 +

∆t

τv

[
µ− vik+1/2 +

λ2

∆x
(∂xv

i
k − ∂xvik+1) + sik+1/2

]
,

∂xv
i+1
k =

vi+1
k+1/2 − v

i+1
k−1/2

∆x
,

si+1
k+1/2 = sik+1/2 +

∆t

τs

(
−sik+1/2 + 2σs

√
λτs

∆x∆t
ψik

)
, (16)

where ψ denotes a zero-mean, unit-variance Gaussian random number. The code used 131

to generate the figures is provided in the supplementary information [54]. When the 132

approximation of an infinite or semi-infinite neurite was required, the length L was 133

chosen to be sufficiently large such that boundary effects were negligible (L=1000µm or 134

greater). To ensure stability of the differential equation, for a spatial step of 135

∆x = 20µm, we used a time step of ∆t = 0.02 ms. We verified that this step size was 136

sufficiently small in comparison to the values of λ used by running simulations at 137

smaller ∆x and checking for convergence. 138

Results 139

Before examining more complex spatial models with multiple dendrites, soma and axon, 140

we first review the subthreshold properties of a single closed dendrite driven by 141

fluctuating, filtered synaptic drive. We then illustrate how the upcrossing method can 142

be applied to spatial models by interpreting the results for the closed dendrite as either 143

a long dendrite with a nominal soma at one end or as two long dendrites meeting at a 144

nominal soma. More complex neuronal geometries are then considered including those 145

with multiple dendrites, axon and an electrically significant soma. The parameter 146

ranges used are given in the Appendix in Table S1. 147

Subthreshold properties of a closed dendrite 148

The dendrites considered here are driven by distributed, filtered synaptic drive. For 149

reasons of analytical transparency, excitatory and inhibitory fluctuations are lumped 150

into a single drive term s(x, t), though it is straightforward to generalise the synaptic 151

fluctuations to two distinct processes. The fluctuating component of the synaptic drive 152

obeys the following equation 153

τs
∂s

∂t
= −s+ 2σs

√
λτs ξ(x, t) (17)

parametrized by a filter time constant τs, amplitude σs and driven by spatio-temporal 154

Gaussian white noise ξ(x, t) (see Materials and Methods for links to underlying 155

presynaptic rates and density, as well as the autocovariance of ξ(x, t)). Note that the 156

fluctuating component of the synaptic drive s(x, t) is a temporally filtered but spatially 157

white Gaussian process. The subthreshold voltage in the dendrite, driven by these 158

synaptic fluctuations, will also be a fluctuating Gaussian process and obeys the 159

following equation 160

τv
∂v

∂t
= µ− v + λ2

∂2v

∂x2
+ s, (18)

where the time constant τv and electrotonic length constant λ are reduced by the tonic
conductance increase coming from the mean component of the synaptic drive (again, see
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Fig 1. (a) The morphologies examined in this paper: (i) closed dendrite, (ii)
semi-infinite one-dendrite model, (iii) two-dendrite model, (iv) dendrite and axon, (v)
multiple dendrites and axon, (vi) dendrite and soma, (vii) multiple dendrites, soma and
axon. Long black lines denote dendrites, red lines indicate the axon, while the blue
arrows indicate the different spike trigger positions used. The symbols in the diagrams
illustrate the following features: horizontal line - sealed end, two parallel lines -
semi-infinite cable, small circle - nominal soma, and large circle - electrically significant
soma. (b) Illustration of the upcrossing approximation. If the time between firing
events is long compared to the relaxation time, the voltage without reset (solid blue
line) will converge to the voltage of a threshold-reset process (orange dashed line) for
the same realisation of stochastic drive. Under these conditions the upcrossing and
firing-rates for the two processes are comparable.

Materials and Methods for derivation) and µ is the effective resting potential. For a
closed dendrite of length L, shown in Fig 1a (i), there are two additional zero
spatial-gradient conditions on v(x, t) at x=0, L, Eq (12). With these definitions, it is
straightforward to derive moments of the voltage using Green’s functions Eq (S21) into
Eq (S14). The resulting second moments can then be more succinctly written by
defining the function

C(x, η) =
cosh((L− x)

√
η/λ) cosh(x

√
η/λ)

√
α sinh(L

√
η/λ)

. (19)

Hence in terms of this function C(x, η), the variance is 161

σ2
v(x) =

2σ2
sτs
τv
{C(x, 1)− C(x, κ)} , (20)

where κ = 1 + τv/τs. Similarly from Eq (S15), the variance of v̇ is 162

σ2
v̇(x) =

2σ2
s

τvτs
C(x, κ). (21)

Note that the second term in the voltage-variance equation, Eq (20), and the variance of 163

the voltage rate-of-change feature a second, shorter length constant λ/
√
κ that is a 164

function of the ratio of voltage to synaptic time constants. As expected, Fig 2a shows 165
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Fig 2. The variance profile in a sealed dendrite is a function of both the electrotonic
length λ and ratio of synaptic to voltage time constants constant τs/τv. (a) The
variance near the sealed end is higher than in the bulk with the extent of the boundary
effect decreasing with λ. (b) Normalising the variance in the cable such that the
variance at the ends is unity, it can be seen that increasing τv/τs decreases the effective
length constant. For both plots the other parameters were L = 1000µm, τs = 5ms,
σs = 1mV. (a) τv = 10ms, (b) λ = 200µm.

decreasing λ leading to a lower overall variance as well as a faster decay to the bulk 166

properties from the boundaries. We also see from κ that the relative size of the time 167

constants affects not just the magnitude of the variance but also its spatial profile. For 168

higher τv/τs, σ
2
v decreases at all positions and the profile decays faster to the bulk value 169

as the second length constant decreases. By measuring σ2
v(x) relative to the variance at 170

the ends Fig 2b shows the latter effect, though this reduction in the effective length 171

constant by increasing τv/τs is not as significant as decreasing λ. 172

Note that for the cases where λ/L� 1, which is physiologically relevant for the 173

high-conductance state, the influence of the boundary at L is negligible at x = 0 and at 174

the midpoint there is little influence from either boundary. With this in mind, the 175

morphologies treated in this paper comprise neurites that are treated as semi-infinite in 176

length. 177

Firing rate approximated by the upcrossing rate 178

Full analytical solution of the partial differential Eqs (17, 18) when coupled to the 179

integrate-and-fire mechanism does not appear trivial, even for the simple closed dendrite 180

model. However, a level-crossing approach developed by Rice [27] and exploited in many 181

other areas of physics and engineering, such as wireless communication channels [55], sea 182

waves [56], superfluids [57] and grown-surface roughness [58] has previously been applied 183

successfully to compact neuron models [28,29] and can be extended to spatial models. 184

The method provides an approximation for the mean first-passage time for any Gaussian 185

process in which the mean 〈v〉, standard deviation σv, and rate-of-change standard 186

deviation σv̇ are calculable. The upcrossing rate is the frequency at which the trajectory 187

of v without a threshold-reset mechanism crosses vth from below (i.e. with v̇>0). 188

Example voltage-time traces for the model with and without threshold are compared in 189

Fig 1b. This approach provides a good approximation to the rate with reset when the 190

firing events are rare and fluctuation driven, making it applicable to the physiological 191
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low-rate firing regime. The upcrossing approximation to the firing rate is given by 192

ruc =
1

2π

σv̇
σv

exp

(
− (vth − 〈v〉)2

2σ2
v

)
(22)

where the statistical measures of the voltage are those at the trigger point xth. Note 193

that because of the requirement that σv̇ exists the upcrossing method cannot be applied 194

to neurons driven by temporal white noise. However, it works well for coloured-noise 195

drive, which is not directly tractable using standard Fokker-Planck approaches even for 196

point-neuron models. The moments required for the upcrossing Eq (22) can be found 197

using the Green’s functions of the corresponding set of cable equations for a particular 198

morphology and, since we only need the moments at xth, we only need the Green’s 199

function for the neurite that contains the trigger position (see Appendix for details). 200

We now illustrate this using two interpretations of the closed dendrite model, the 201

one-dendrite model which focuses on the behaviour at a sealed end - Fig 1a (ii) - and 202

the two-dendrite model which focuses on the bulk - Fig 1a (iii). 203

One-dendrite and two-dendrite models 204

The method is first applied to a neuron with a single long dendrite and nominal soma 205

(the trigger point x=0= xth) and axon, both of negligible conductance so that the end 206

can be considered sealed. This corresponds to the x<L/2 half of the closed cable model 207

considered above, in the limit that L/λ→∞. The second moments have already been 208

calculated for the general case (Eqs 20, 21) so for xth =0 we have 209

σ2
v =

2σ2
sτs
τv

(
1− 1√

κ

)
and σ2

v̇ =
2σ2

s

τsτv

(
1√
κ

)
. (23)

Substitution of these second moments into Eq (22) yields the upcrossing approximation 210

to the firing rate for this geometry. 211

A second interpretation of the closed dendrite model is to place the trigger position 212

in the middle xth =L/2 and then, in the limit L/λ→∞ consider the halves as two 213

dendrites with statistically identical properties radiating from a nominal soma and axon, 214

again both with negligible conductance. Taking these limits of the closed-dendrite Eqs 215

(20, 21) for this case generates second moments that happen to be exactly half that of 216

the one-dendrite case 217

σ2
v =

σ2
sτs
τv

(
1−

√
τs

τs + τv

)
and σ2

v̇ =
σ2
s

τsτv

√
τs

τs + τv
, (24)

where here we have written the functional dependence of κ on τv and τs explicitly. 218

Given that the voltage at xth is affected by activity occurring within distances a few λ 219

down attached dendrites (see Fig 2) it might reasonably be expected that the statistical 220

quantities and therefore the firing rate at xth would be dependent on the electronic 221

length quantity λ. However, for both the one and two-dendrite models considered above 222

it is clear that there is no λ dependence for the second moments. Though this is 223

unavoidable on dimensional grounds, because in either case no other quantities carry 224

units of length once the limit L/λ→0 has been taken, the result is nevertheless a 225

curious one. 226

The upcrossing and firing rates as a function of µ for the two models are compared 227

in Fig 3, with the deterministic firing rate also shown (this is equivalent to the 228

deterministic rate of the leaky integrate-and-fire model). Note that we keep τv and λ 229

constant across the range of µ since these parameters would change little across the 230

range of mean synaptic drive we investigate and it allows us to isolate the dependence of 231
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Fig 3. The firing rates of the one and two-dendrite models driven by spatially
distributed, filtered stochastic synaptic drive for three fixed values of the fluctuation
strength σs. While the firing rates of the one and two-dendrite models are similar in the
suprathreshold regime (panels a and b, µ > 10mV), the one-dendrite model has a higher
firing rate in the subthreshold regime due to the variance being twice that of the
two-dendrite model for the same value of σs. The upcrossing approximation is accurate
when (vth − µ)/σv � 1 (panels c and d). The other parameters used were λ = 200µm,
τv = 10 ms, τs = 5ms, vth = 10mV, vre = 0mV.

the firing rate on just one parameter. The upcrossing rate provides a good 232

approximation to the full firing rate at low rates in the < 5Hz range. In this way the 233

upcrossing rate for spatio-temporal models provides a similar approximation to the 234

firing rate as did the Arrhenius form derived by Brunel and Hakim [20] for the 235

white-noise driven point-like leaky integrate-and-fire model. 236

Compared with the one-dendrite model, we see from Figs 3b and 3d that the firing 237

rate for the two-dendrite model is significantly lower in the subthreshold regime but 238

converges to the same value when µ goes above threshold. This illustrates that even 239

simple differences in morphology affect stochastic and deterministic firing very 240

differently. In addition Fig 4a shows that the firing rate is unaffected by the value of λ 241

chosen, confirming by simulation the λ-independence of the firing rate. Furthermore 242

when we choose the same value of σv for the one and two-dendrite models, then both 243

the upcrossing rate and the simulated firing rates are the same, as seen in Fig 4b. 244

However, despite the independence of λ, the firing-rate profile for this toy model is 245

distinct to that for the point-like leaky integrate-and-fire model, for which the second 246

moments are σ2
v∝τs/(τs + τv) and σ2

v̇∝1/[τs(τs + τv)] [29]. This indicates that spatial 247

structure by itself decreases the variance while increases derivative variance by a factor 248√
1 + τv/τs =

√
κ. The moments also differ in their dependence on τv and τs from 249

two-compartmental models [59]. 250
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Fig 4. Independence of the firing rate on the electrotonic length λ for the one-dendrite
model, and between the one and two-dendrite models for the same voltage variance. (a)
The firing rate of the one-dendrite model with two different λ show it to be independent
from λ, σs=1mV. (b) If the synaptic fluctuation strength σs is adjusted such that the
one and two-dendrite models have the same voltage variance σ2

v at the threshold
position, then their upcrossing rates are identical. Simulations (circles and triangles for
one and two-dendrite models respectively) suggest that the full firing rates are also
independent of geometry in this case. The other parameters used were τv=10ms,
τs=5ms, vth =10mV and vre =0mV.

Dendrite and axon 251

Next, we consider a dendrite connected to an axon at x1 =0=xα, as shown in Fig 1a 252

(iv), where dendritic and axonal quantities are denoted by subscripts 1 and α, 253

respectively. This differs from the previous two-dendrite model as the axon receives no 254

synaptic drive, so µα=0 and sα=0. Furthermore, intrinsic membrane properties of the 255

axon (τα, λα) differ from the dendrite due to the smaller axonal radius and lack of 256

synapse-induced increased membrane conductance [11,12]. Since µα=0 we omit the 257

subscript on the mean dendritic drive, µ1 = µ. Taking the reasonable assumptions that 258

the per area leakage capacitance and leak conductance are the same in the axon as the 259

soma, we can calculate τα in terms of τ1 given the mean level of synaptic drive (see Eqs 260

(S39, S41)). Unlike the closed-dendrite models, the mean is no longer homogeneous in 261

space due to the lack of synaptic drive in the axon. Defining f̃1(ω) as the input 262

admittance of the dendrite relative to the whole neuron, 263

f̃1(ω) =
Gλ1

γ1
Gλ1γ1 +Gλαγα

=
g21λ

3
1γ1

g21λ
3
1γ1 + g2αλ

3
αγα

, (25)

where γj =
√

1 + iωτj , we can show that the mean in the axon is given by (see Eq
(S12))

〈v(xα)〉 = 1
2µe
−xα f̃1(0). (26)

It is important to note that, unlike in the one and two-dendrite models, Eq (26) implies 264

that it is now possible for the neuron to still be in the subthreshold firing regime when 265

µ > vth. In general, the second moments do not have a closed-form solution but can be 266

expressed in terms of the angular frequency ω. It can be shown that the integrand for 267

σ2
v and σ2

v̇ is proportional to |f̃1(ω)|2, Eq (S38). 268

First we set the action-potential trigger position at xth =0 and evaluated the effect 269

of the axon by comparing the firing rate for the model with an axon, raxon, to the firing 270
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Fig 5. Addition of an axon significantly affects the firing rate even for small axonal
conductance loads. (a) The axon increases the input conductance of the neuron, thereby
lowering the firing rate for xth =0, µ=5mV. (b) When xth>0 (here xth =30µm) the
firing rate varies non-monotonically with the axonal radius and peaks at a
physiologically reasonable value of the ratio of axon/dendrite radii for a range of
synaptic parameters. The parameters used were λ1 =200µm, τs=5ms, τ1 =10ms,
τα=11.7ms (calculated from Eq (S39)), σs=3mV, vth =10mV and vre =0mV.

rate of the one-dendrite model with a sealed end (∂v/∂x=0) at x=0, rsealed (effectively 271

an axon with zero conductance load). We also kept the noise strength σs rather than 272

the voltage standard deviation σv fixed as we wished to see how the axon changes the 273

variance of fluctuations at the trigger position. The relative firing rate was defined as 274

raxon/rsealed. The ratio of the axonal to dendritic radius aα/a1 was varied and the 275

relative firing rate calculated, with aα/a1 =0 being equivalent to no axon present. As 276

illustrated in Fig 5a, the addition of a very low conductance or relatively thin axon 277

significantly reduces the firing rate. This effect arises because the magnitude of f̃1(ω) 278

decreases at all frequencies for a larger radius ratio, which can be understood by 279

recalling that λj ∝
√
aj , Eq (7). 280

For cortical pyramidal cells, action potentials are typically triggered around 281

xth =30µm down the axon in the axon initial segment [60–62]. It is straightforward to 282

investigate the effect of moving the trigger position down the axon using the upcrossing 283

approach. Interestingly, when xth>0, a non-monotonic relationship between the firing 284

rate and radius ratio aα/a1 became apparent (see Fig 5b), with the peak ratio of ∼ 0.25 285

being similar to that between the axonal initial segment and apical dendrite diameter in 286

pyramidal cells [41, 63]. This is caused by a non-monotonic dependence of both 〈v〉 and 287

σ2
v on aα/a1 for xth>0 with each peaking at intermediate values. Intuitively, this can 288

be understood from the definition of λα, which increases as
√
aα. Thus the decay length 289

of voltage fluctuations that enter the axon from the dendrite increases, increasing both 290

〈v〉 and σ2
v at xth. On the other hand, a larger λα increases the input conductance of 291

the neuron, which, conversely, decreases 〈v〉 and σ2
v . For smaller λα the decay length 292

effect is more significant, whereas for larger λα the increase in input conductance plays 293

a larger role. 294

Multiple dendrites and axon 295

We now consider a case with multiple dendrites and an axon radiating from a nominal
soma (Fig 1a (v)). The dendrites are labelled 1, 2, ..., n with the axon labelled α as
before. The dendrites have identical properties with independent and equally
distributed synaptic drive. As in the previous case with the dendrite and axon, we kept
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the synaptic strength σs fixed as we changed the number of dendrites. An immediate
consequence of multiple dendrites is that, since µ > 0 the mean voltage in the axon
increases as more dendrites are added, with each contribution summing linearly,

〈vα(xα)〉 =
n∑
k=1

〈vαk(xα)〉, (27)

where 〈vαk(xα)〉 is the contribution to the axonal voltage mean from dendrite k.
Introducing the relative input admittance of a single dendrite f̃n(ω)

f̃n(ω) =
Gλ1γ1

nGλ1
γ1 +Gλαγα

=
g21λ

3
1γ1

ng21λ
3
1γ1 + g2αλ

3
αγα

, (28)

it can be shown that when all dendrites have identical mean input drive µ, the mean in
the axon is given by (see Eqs (S12, S23))

〈v(xα)〉 = 1
2nµe

−xα f̃n(0). (29)

Thus we can see that as n increases the mean increases towards the constant value of 296

1
2µe
−xα . However, this is not the case for the fluctuating component: despite more 297

sources of fluctuating synaptic input both σ2
v and σ2

v̇ in the axon decrease as 1/n for a 298

large number of dendrites. We can see this by noting that for large n, |f̃n(ω)|2 and 299

hence the variance contribution from each dendrite scales as 1/n2. Therefore for n total 300

dendrites, the total variance at xth in the axon will scale as 1/n for large n. This 301

reduction in axonal variance with additional dendrites is a generalisation of the 302

reduction in variance we saw between the one and two-dendrite models earlier in Eqs 303

(23, 24). 304

When it is the fluctuations that contribute significantly for firing (i.e. smaller µ or 305

λα) then a reduction in variance from adding more dendrites will decrease the firing 306

rate; however, when the mean is more significant (larger µ or λα) then the firing rate 307

will increase as the number of dendrites increases. An example of the former case is 308

shown in Fig 6a for λα = 100µm, while an example of the latter is seen in Fig 6b for 309

λα = 150µm. The transition between these regimes can be seen in Fig 6c, which shows 310

how the value of n that maximises the firing rate, nmax, increases with µ and aα/a1. 311

Physiologically, the reduction in variance is not simply the fact that adding dendrites 312

increases cell size and thus input conductance, but that the relative conductance of each 313

input dendrite to the total conductance decreases. Given that the total input 314

conductance for n dendrites and an axon is 315

Gin(n) = n(2πa1λ1)g1 + 2πaαλαgα, (30)

we can test this idea by scaling λ1, a1 with n (i.e. making the dendrites thinner) to keep
the total input conductance the same as the single dendrite case, Gin(n = 1). This gives
the simple relationship λ1(n)=λ1(n = 1)/n1/3, with which the segment factor is

f̃n(ω) =
g21λ

3
1(n = 1)γ1

n(g21λ
3
1(n = 1)γ1 + g2αλ

3
αγα)

. (31)

Since the integrands for the second moments are proportional to |f̃n(ω)|2 (see Eq (S38)), 316

this shows that second moments and hence the firing rate for fixed λα still decrease 317

with n (see Fig 6d). 318

Dendrites, soma and axon 319

We now consider the case illustrated in Fig 1a (vii), where the electrical properties of 320

the soma are non-negligible with its lumped capacitance and conductance providing an 321
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Fig 6. Increasing the number of synaptically driven dendrites can decrease the firing
rate when the axon, of radius aα is much thinner than the dendrite, radius a1. The
length constant for each neurite is proportional to the square root of the radius
λj ∝

√
aj . (a) λα = 100µm, (b) λα = 150µm, (c) The number nmax of dendrites that

maximises firing increases with higher ratios of axon-to-dendrite radii aα/a1 and µ, (d)
λα = 100µm, λ1 = 200µm for n = 1 and λ1 is rescaled for larger n to keep the input
conductance equal to the n = 1 case. Other parameters: λ1 = 200µm (a-c), τ1 =10ms,
τα=11.7ms (calculated from Eq (S39)), σs=3mV, vth =10mV and xth =30µm down
the axon.

additional complex impedance at the point where the axon and dendrites meet. This 322

has the somatic boundary condition we gave earlier in Eq (15) and we recall that the 323

subscript 0 denotes somatic quantities. For simplicity, and as neither section receives 324

synaptic drive in our model, we will let the somatic time constant be the same as the 325

axonal time constant, so τ0 = τα. Note that somatic drive can be straightforwardly 326

added in this framework, as the variance contribution from the resultant fluctuations 327

would add linearly: this would not qualitatively change the nature of the results we 328

present here that focus on the effects of somatic filtering on transfer of dendritic 329

stimulation to the trigger point in the axon. Note also that as ρ1→∞, the model 330

without somatic drive converges to the dendrite and axon model with a nominal soma, 331

allowing a clearer comparison between the two models. 332

For an electrically significant soma the integrand for the variance has the same form
as before, Eq (S38), but f̃ now depends on the neurite dominance factor ρ,

f̃n0(ω) =
Gλ1

γ1
G0γ20 + nGλ1γ1 +Gλαγα

=
ρ1γ1

γ20 + nρ1γ1 + ραγα
. (32)

Thus for large n we should expect the variance in the axon to scale as 1/n as before, 333

but for smaller n the somatic impedance G0γ
2
0 gives some key differences. We repeated 334

the simulations for the axon-dendrite model (Fig 6), first with a single dendrite and an 335
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electrically significant soma by varying ρ1, noting that with known λ1 and λα, this also 336

determines ρα, Eqs (S45, S46). Since the soma adds a conductance load G0 to the cell 337

the overall input resistance decreases. From Eq (32), we see that this will reduce 338

|f̃n0(ω)|, for any number of dendrites which will lower both the mean and the variance. 339

Fig 7a shows that the effect of a larger soma (lower ρ1) lowers the firing rate. 340

Next, we investigated the effect an electrically significant soma has on axonal load, 341

as seen previously for a nominal soma in Fig 5a. Like with the nominal soma case 342

before, we calculated the firing rate at xth = 0 with an axon and electrically significant 343

soma, raxon, and the firing rate of a dendrite with the same size soma without an axon, 344

rno axon (Fig 1a (vi)). For each somatic size, we adjusted σs so that the firing rate for a 345

negligible axon, aα/a1 =0, the firing rate was fixed at 1Hz. This was done to account 346

for the soma’s effect on the firing rate we observed earlier and we are thus solely 347

focusing on the effect of the axonal admittance load. As we increase aα/a1 =0 Fig 7b 348

shows that raxon/rno axon decreases more rapidly with increasing aα/a1 for larger ρ1 349

(smaller soma). This means that, in comparison to Fig 5a, the axonal load had a lower 350

relative effect on the firing rate in the presence of a soma. This is in line with what we 351

should expect by looking at f̃n0; lower ρ1 increases the relative magnitude of G0γ
2
0 in 352

the denominator of f̃n0 as compared with the axonal admittance term of Gλαγα. 353

Finally, we looked at how an electrically significant soma affects the dependence of 354

the firing rate on the number of dendrites. By varying ρ1 and the number of dendrites 355

n, Fig 7c shows that the non-monotonic dependence of the firing rate on dendritic 356

number n is robust in the presence of a soma. Fig 7d illustrates that the number of 357

dendrites that maximises the firing rate is greater for lower ρ1 and higher µ. We have 358

discussed previously why the value of n that maximises firing increases with µ as the 359

increase in mean from additional dendrites becomes more significant for the firing rate. 360

Decreasing ρ1 increases the value of n that maximises firing because the relative 361

increase in conductance by adding another dendrite is smaller when the fixed somatic 362

conductance is larger. 363

Discussion 364

This study demonstrated how the spatio-temporal fluctuation-driven firing of neurons 365

with dendrites, soma and axon can be approximated using the upcrossing method of 366

Rice [27]. Despite being reduced models of neuronal structures, they demonstrate 367

considerable richness in behaviour beyond what point-like or compartmental models 368

capture. For the one and two-dendrite models, the firing rate was shown to be 369

independent of the electrotonic length constant; given that the length constant sets the 370

range over which synaptic drive contributes to voltage fluctuations, this result is 371

surprising. However, a dimensional argument extends this independence to any model 372

in which semi-infinite neurites are joined at a point and share the same λ (any other 373

properties without dimensions of length can be different in each neurite). The 374

level-crossing approach provided a good approximation for the firing rate for these 375

simple dendritic neuron models in the low-rate limit. Beyond this limit, simulations 376

suggest that there is a universal functional form for the firing rate when parametrised 377

by σv that is independent of both λ and the number of dendrites radiating from the 378

nominal soma. This functional form, for coloured noise and in the white-noise limit, 379

merits further mathematical analysis as it is distinct to that of the point-like 380

integrate-and-fire model. 381

Extending the study to multiple dendrites, we showed that the firing rate depends 382

non-monotonically on their number: adding more dendrites driven by fluctuating 383

synaptic drive can, for a broad parameter range, decrease the fluctuation-driven firing 384

rate. Dendritic structure has been previously shown to influence the firing rate for 385
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Fig 7. Effect of somatic impedance between a synaptically driven dendrite and axon
with trigger point xth =30µm for (a), (c) and (d) and xth =0µm for (b). (a) The soma
is characterised by the dendritic dominance factor ρ1 (see main text) with large ρ1
corresponding to a small somatic conductance. (b) A larger soma masks the effect of
the axonal load on the firing rate, although this masking is negligible for smaller somata
ρ1 = 16. Fig 2a (black line) result is plotted for comparison. (c) Larger somata also
reduce the firing rate in the case of n dendrites (µ=12mV). (d) With larger µ, smaller
ρ1 (a larger soma) increases the number of dendrites for which the firing rate is maximal,
nmax. Other parameters: τ1 =10ms, τα=11.7ms, λ1 =200µm, λα=100µm (calculated
from Eq (S39)), σs=3mV, vth =10mV, ρα calculated from Eqs (S45) or (S46)

deterministic input [64,65]. However, apart from the work of Tuckwell [30–32], 386

analytical studies of stochastic drive in extended neuron models have largely focussed 387

on a single dendrite with drive typically applied at a single point [36,39] rather than 388

distributed over the dendrite, or as a two-compartmental model [66]. This study 389

demonstrates that in the low-rate regime, the upcrossing approximation allows for the 390

analytical study of spatial models that need not be limited to a single dendrite nor with 391

stochastic synaptic drive confined to a single point, but distributed as is the case in vivo. 392

Including axonal and somatic conductance loads demonstrated their significant effect 393

on the firing rate - even relatively small axonal loads caused a marked reduction. 394

Furthermore, the non-monotonic dependency of the firing rate on dendrite number was 395

also shown to be affected by axonal radius and somatic size, demonstrating that the 396

upcrossing method can be used to examine how structural differences in properties 397

affect the firing rate of complex, composite, spatial neuron models. 398

The advantage of the level-crossing approach is it can be straightforwardly extended 399

to include a great variety of additional biophysical properties affecting neuronal 400

integration of spatio-temporal synaptic drive. An example of this for pyramidal neurons 401

would be the inclusion of non-passive effects arising from voltage-gated currents such as 402

Ih [67]. The only requirement for the upcrossing approximation is the derivation of the 403
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voltage mean, variance and rate-of-change variance at the point that action potentials 404

are triggered. For many scenarios, particularly in the high-conductance state, the 405

spatio-temporal response can be approximated as quasi-linear, allowing the voltage 406

moments to be calculated via Green’s functions using existing theoretical machinery, 407

such as sum-over-trips on neurons [68–70]. The approach can also be extended to 408

examine the dynamic firing-rate response to weakly modulated drive. This has already 409

been done for point-neurons using the upcrossing method [29,71,72] and would only 410

necessitate calculating the linear-response of voltage moments in the non-threshold case. 411

In summary, the extension of the upcrossing approach to spatially structured neuron 412

models provides an analytical in-road for future studies of the firing properties of 413

extended neuron models driven by spatio-temporal stochastic synaptic drive. 414
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Appendix

Green’s functions

For notational simplicity we choose to measure distance in each neurite in terms of the
length constant so xk/λk → xk and yk/λk → yk. In the Fourier domain, the Green’s
function G̃jk(xj , yk;ω) denotes the response at xj in neurite j to an input in neurite k

at yk. The voltage due to an input in the Fourier domain Ĩ is given in terms of the
double integral

v(x, t) =
1

2π

∫ ∞
−∞

eiωtdω

∫ ∞
0

G̃(x, y;ω)Ĩ(y;ω)dy. (S1)

The Green’s function in the Fourier domain for Eq (18) satisfies the equation

γ2j G̃jk =
∂2G̃jk
∂x2j

+ δjkδ(xj − yk), (S2)

where δjk is the Kronecker delta function. Eq (S2) has the general solution

G̃jk(xj , yk;ω) = c1e
−xjγj + c2e

xjγj − δjk
θ(xj − yk)

2γj
[e(xj−yk)γj − e−(xj−yk)γj ], (S3)

where the Heaviside step function θ(.) is only relevant if the input neurite and output
neurite are the same. As the Green’s function inherits the boundary conditions of the
system it describes, we apply a model’s boundary conditions to Eq (S3) to obtain the
specific solution. Green’s functions for each of the cases studied in this paper are given
later in this appendix. For an infinite dendrite, the Green’s function has the well-known
form [73]

G̃∞(x− y;ω) =
e−|x−y|γ

2γ
, (S4)

where γj =
√

1 + iωτj . For multiple neurites and a soma, one can build more complex
Green’s functions from a generalisation of Eq (S4) using the sum-over-trips
formalism [68,69]

G̃∞(xj ± yk, ω) =

{
e−|xj−yk|γk/(2γk), j = k

e−(xjγj+ykγk)/(2γk), j 6= k
. (S5)

The only additional calculation that needs to be made is the segment factor f̃(ω). This
quantity is the ratio of the admittance of the input neurite Yk (with k=α indicating the
axon), to the total admittance of all neurites which radiate from the same node. For n
dendrites radiating from a node with a soma this is

f̃(ω) =
Yk

Yα + Y0 +
∑n
j=1 Yj

. (S6)
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For each neurite, the admittance is given by

Yj = 2πgjajλjγj , (S7)

where gj is the total membrane conductance (including tonic synaptic conductance)
while for a soma with membrane conductance G0, the admittance is

Y0 = G0γ
2
0 . (S8)

If there is only a single path from xj to yk and j 6= k, then the Green’s function is given
by Eq (S23)

G̃jk(xj , yk;ω) = 2f̃(ω)G̃∞(xj + yk;ω). (S9)

Calculation of moments

The input I to each neurite has a deterministic and stochastic component, which in the
Fourier domain are

Ĩk = 2πδ(ω)µk + s̃k, s̃k =
2σs
√
τsξ̃(xk;ω)

1 + iωτs
, (S10)

where we have again removed the units from distance. Since the system is linear, this
means that the voltage will have a mean and fluctuating component

v(x, t) = 〈v(x)〉+ vF (x, t). (S11)

Substituting Ĩ into Eq (S1) and taking the expectation, the mean in neurite j due to
input in k is

〈vjk(xj)〉 = µk

∫ ∞
0

G̃jk(xj , yk; 0)dyk (S12)

while the fluctuating component is

vFjk(xj , t) =
σs
√
τs

π

∫ ∞
−∞

eiωtdω

∫ ∞
0

G̃jk(xj , yk;ω)

1 + iωτs
ξ̃(yk;ω)dyk. (S13)

Thus the variance contribution from neurite k is obtained by squaring vFjk and taking

the expectation, noting that 〈ξ̃j(yj , ω)ξ̃k(y′k,−ω′)〉 = 2πδjkδ(y − y′)δ(ω − ω′),

σ2
vjk(xj) =

2σ2
sτs
π

∫ ∞
−∞

dω

∫ ∞
0

|G̃jk(xj , yk;ω)|2

1 + ω2τ2s
dyk, (S14)

and similarly the variance of the voltage time derivative is found by multiplying the
integrand of Eq (S14) by ω2

σ2
v̇jk(xj) =

2σ2
sτs
π

∫ ∞
−∞

dω

∫ ∞
0

ω2|G̃jk(xj , yk;ω)|2

1 + ω2τ2s
dyk. (S15)

This approach is equivalent to that found in [74], where the integrand of Eqs (S14, S15)
is proportional to the power spectral density of the voltage. With these integrals for the
second moments, the definition zj = γj + γ∗j is useful for keeping the algebra compact.

For n dendrites with synaptic input, the response in the axon is simply the linear
sum from each dendrite,

〈vα(xα)〉 =
n∑
k=1

〈vαk(xα)〉, vFα(xα) =
n∑
k=1

vFαk(xα), (S16)
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and since the stochastic drive between dendrites is uncorrelated, the second moment
contributions from each dendrite also sum linearly,

σ2
v(xα) =

n∑
k=1

σ2
vαk(xα), σ2

v̇(xα) =
n∑
k=1

σ2
v̇αk(xα). (S17)

For dendrites with identical properties and drive, this means we can multiply Eqs (S14,
S15) by n to obtain the total second moments.

In all the cases given, 〈v〉 is easily analytically calculable. For the infinite dendrite
〈v〉 = µ, while the resting potential in the axon for n dendrites is

〈v(xα)〉 = 1
2nµe

−xα f̃n(0) (S18)

and the addition of a soma changes this to

〈v(xα)〉 = 1
2nµe

−xα f̃n0(0). (S19)

For many simple cases - such as the sealed dendrite, one-dendrite, and two-dendrite
models - closed-form expressions for the second moments are attainable. For all cases
with an axon and/or soma with different membrane properties to the dendrite, the
ω-integral can be calculated numerically or approximated in a limit of interest.
However, given the n in the denominator of f̃n and f̃n0, we expect from Eqs (S14, S15)
that the second moments scale as ∼ 1/n for large n.

Derivation of Green’s functions

Closed dendrite

Given the zero-current boundary conditions at the ends x = [0, l]

∂v

∂x

∣∣∣∣
x=0

= 0 =
∂v

∂x

∣∣∣∣
x=l

, (S20)

we can solve the Green’s function differential equation, Eq(S2), to obtain [73]

G̃(x, y;ω) =
cosh[(l − |x− y|)γ] + cosh[(l − |x+ y|)γ]

2γ sinh(lγ)
. (S21)

Dendrite and axon

Using the sum-over-trips method, G̃jk is given by the sum of infinite Green’s functions
of each path which traces back from output position xj to input position yk. If a given
path has length ltrip, then we represent this sum as [68,69]

G̃jk(xj , yk;ω) =
∑
trips

Atrip(ω)G̃∞(ltrip;ω), (S22)

where Atrip is the trip coefficient that depends on the intersections between cables that
a trip must path through. Since the neurites we consider are semi-infinite, there is only
a single trip for a path from the axon to the input dendrite (however, the sum-over-trips
approach provides a method for straightforward generalisation to dendrites with closed
ends). The only trip coefficient required is that for transmission through a node which
is given by Atrip = 2f̃(ω) [69]. Therefore, the Green’s function from the dendrite k=1
to the axon, j=α, is given by

G̃α1(xα, y1;ω) = 2f̃(ω)G̃∞(xα + y1;ω), (S23)

which upon substitution of f̃ and G̃∞ yields

G̃α1(xα, y1;ω) =
g21λ

3
1γ1

γ1(g21λ
3
1γ1 + g2αλ

3
αγα)

e−(xαγα+y1γ1). (S24)
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Multiple dendrites and axon

When there are n dendrites, the segment factor becomes

f̃n(ω) =
g21λ

3
1γ1

ng21λ
3
1γ1 + g2αλ

3
αγα

, (S25)

and hence the Green’s function for the axonal response is

G̃α1(xα, y1;ω) =
g21λ

3
1γ1

γ1(ng21λ
3
1γ1 + g2αλ

3
αγα)

e−(xαγα+y1γ1). (S26)

Since all dendrites have the same properties for this model, we can then claim that
G̃α1 = G̃α2 = ... = G̃αn.

Dendrites, soma and axon

For an electrically significant soma, the segment factor is now

f̃n0(ω) =
ρ1γ1

γ20 + nρ1γ1 + ραγα
, (S27)

hence the Green’s function is

G̃α1(xα, y1;ω) =
ρ1γ1

γ1(γ20 + nρ1γ1 + ραγα)
e−(xαγα+y1γ1). (S28)

Derivation of second moments

With an additive input in the Fourier domain Ĩ(y;ω), the voltage in the Fourier domain
is given by

ṽ(x, ω) =

∫ ∞
0

G̃(x, y;ω)Ĩ(y;ω)dy, (S29)

and after taking the inverse Fourier transform we obtain Eq (S1). While there are other
methods for obtaining second moments that may be more convenient for the models
which provide closed-form solutions (such as a Green’s functions in time [30] or Fourier
series decomposition [30–32]) the method we present here extends most easily to
arbitrary neuronal structures. For clarity of explanation, we derive the two-dendrite
model first.

Two-dendrite model

For the two-dendrite model |G̃|2 is given by

|G̃(x, y;ω)|2 =
e−xz

4|γ|2
(S30)

which we can readily integrate with respect to y after substituting into Eq (S14) to
receive

σ2
v =

σ2
sτs
π

∫ ∞
−∞

dω

z|γ|2(1 + ω2τ2s )
. (S31)

Using the substitution ωτv = 2q
√
q2 − 1 and splitting into partial fractions this integral

becomes

σ2
v =

2σ2
sτs
πτv

{∫ ∞
0

dq

q2 + 1
−
∫ ∞
0

4τ2s q
2dq

τ2v + 4τ2s q
2(q2 + 1)

}
, (S32)

which can be resolved to give Eq (24).
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One-dendrite model

Defining iu = γ − γ∗ we find

|G̃(x, y;ω)|2 =

{
e−xz(eyz + e−yz + eiyu + e−iyu)/(4|γ|2), y < x

e−yz(exz + e−xz + eiyu + e−iyu)/(4|γ|2), y > x
, (S33)

which integrates with respect to y, giving

σ2
v =

σ2
sτs
π

∫ ∞
−∞

dω

|γ|2(1 + ω2τ2s )

[
1

z
+ e−xz

sin(xu)

u
+ e−xz

cos(xu)

z

]
. (S34)

We can see that at x = 0 and as x→∞ the variance is double and equal to the
two-dendrite variance, respectively. For general x we can change the integration variable
in a similar manner to the two-dendrite model to obtain the desired result.

Closed dendrite

With the closed dendrite, |G̃|2 is more lengthy

|G̃(x, y;ω)|2 =
{

1
2 cosh[(l − x+ y)z] + 1

2 cos[(l − x+ y)u]

+ 1
2 cosh[(l − x− y)z] + 1

2 cos[(l − x− y)u]

+ cosh[(l − x)z] cos(yu) + cosh(yz) cos[(l − x)u]
}
/D, y < x (S35)

=
{

1
2 cosh[(l + x− y)z] + 1

2 cos[(l + x− y)u]

+ 1
2 cosh[(l − x− y)z] + 1

2 cos[(l − x− y)u]

+ cosh[(l − y)z] cos(xu) + cosh(xz) cos[(l − y)u]
}
/D, y > x (S36)

where D = 2|γ|2[cosh(lz)− sin(lu)]; however, we can see that all the functions involved
will integrate with respect to y.

Dendrite and axon

For the dendrite and axon, we will leave |G̃|2 in terms of the segment factor to show how
this approach extends to multiple dendrites and the addition of a soma

|G̃α1(xα, y1;ω)|2 =
|f̃1(ω)|2

|γ1|2
e−(xαzα+y1z1). (S37)

Integrating with respect to y gives,

σ2
v(xα) =

2σ2
sτs
π

∫ ∞
−∞

|f̃1(ω)|2e−xαzα
z1|γ1|2(1 + ω2τ2s )

dω, (S38)

which generalises to n dendrites or the addition of a soma by replacing |f̃1|2 with |f̃n|2
or |f̃n0(ω)|2 respectively.

Calculation of axonal parameters

Assuming that the following parameters have the same value in the dendrite and axon:
EL, gL and cm, we can express the axonal parameters in terms of the dendritic ones.
Since there is no synaptic drive in the axon, gα = gL, while in the dendrite
g1 = gL + 〈gs〉. We denote the ratio between the membrane time constants as ε, which
given constant cm is

ε =
τα
τ1

=
gL + 〈gs〉

gL
. (S39)
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Recalling our definitions of E and µ in the dendrite as,

E =
ELgL + Es〈gs〉
gL + 〈gs〉

, µ = E − EL, (S40)

we can rearrange to find an expression for ε in terms of potentials alone,

ε =
EL − Es

EL + µ− Es
. (S41)

Hence we can calculate τα in terms of τ1 given µ, EL and Es. For EL = −70mV,
Es = 0mV and µ = 10mV this results in ε = 7/6.

When aα and a1 are fixed - as in Figs 5, 6c, and 7b - we can calculated λα in terms
of a given λ1. Recalling the definition of the length constant from Eq (7) and making
the reasonable assumption that the axial resistivity ra is the same in the dendrite and
axon, we have

λ1 =

√
a1

2g1ra
, λα =

√
aα

2gαra
,

λα
λ1

=

√
aαg1
a1gα

. (S42)

Taking gα = gL again and our earlier definition of ε in Eq (S39), we can write this as

λα
λ1

=

√
ε
aα
a1
. (S43)

Finally, for the electrically significant soma in Fig 7 we give ρ1 but not ρα, noting that
it can be calculated given λ1 and λα or a1 and aα. Recalling our definitions of ρ and ε
we find

ρ1 =
2πa1g1λ1

G0
, ρα =

2πaαgαλα
G0

,
ρα
ρ1

=
1

ε

aαλα
a1λ1

. (S44)

Hence when λ1 and λα are fixed as in Fig 7a,c,d we have

ρα
ρ1

=
1

ε2
λ3α
λ31
, (S45)

while when a1 and aα are fixed as in Fig 7b

ρα
ρ1

=
1√
ε

a
3/2
α

a
3/2
1

. (S46)
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Parameter Units Values used/Formula
EL mV -70
Es mV 0
µ mV 4-12
ε - (EL − Es)/(EL + µ− Es)
τ1 ms 10
τα ms ετ1
τs ms 5
λ1 µm 200
λα µm 100, 150, 200

aα/a1 - gαλ
2
α/(g1λ

2
1)

ρ1 - 1-16
ρα - ρ1λ

3
α/(λ

3
1ε

2)
σs mV 1-3
vth mV 10
vre mV 10
xth µm 0, 30

Table S1. Parameters and their default values used in the figures present in the main
text. Since many of the parameters are inter-dependent, where a value is not given, a
formula for how it is derived from the other parameters is given instead.
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