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Abstract

Epithelial-mesenchymal transition (EMT) is a fundamental biological process that plays
a central role in embryonic development, tissue regeneration, and cancer metastasis.
Transforming growth factor-� (TGF�) is a major and potent inducer of this cellular
transition, which is comprised of transitions from an epithelial state to an intermediate
or partial EMT state, then to a mesenchymal state. Using computational models to
predict state transitions in a specific experiment is inherently difficult for many reasons,
including model parameter uncertainty and the error associated with experimental
observations. In this study, we demonstrate that a data-assimilation approach using an
ensemble Kalman filter, which combines limited noisy observations with predictions
from a computational model of TGF�-induced EMT, can reconstruct the cell state and
predict the timing of state transitions. We used our approach in proof-of-concept
“synthetic” in silico experiments, in which experimental observations were produced
from a known computational model with the addition of noise. We mimic parameter
uncertainty in in vitro experiments by incorporating model error that shifts the
TGF� doses associated with the state transitions. We performed synthetic experiments
for a wide range of TGF� doses to investigate different cell steady state conditions, and
we conducted a parameter study varying several properties of the data-assimilation
approach, including the time interval between observations, and incorporating
multiplicative inflation, a technique to compensate for underestimation of the model
uncertainty and mitigate the influence of model error. We find that cell state can be
successfully reconstructed in synthetic experiments, even in the setting of model error,
when experimental observations are performed at a sufficiently short time interval and
incorporate multiplicative inflation. Our study demonstrates a feasible proof-of-concept
for a data assimilation approach to forecasting the fate of cells undergoing EMT.

Author summary

Epithelial-mesenchymal transition (EMT) is a biological process in which an epithelial
cell loses core epithelial-like characteristics, such as tight cell-to-cell adhesion, and gains
core mesenchymal-like characteristics, such as an increase in cell motility. EMT is a
multistep process, in which the cell undergoes transitions from epithelial state to a
partial or intermediate state, and then from a partial state to a mesenchymal state. In
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this study, we apply data assimilation to improve prediction of these state transitions.
Data assimilation is an approach well known in the weather forecasting community, in
which experimental observations are iteratively combined with predictions from a
dynamical model to provide an improved estimation of both observed and unobserved
system states. We show that this data assimilation approach can reconstruct cell state
measurements and predict state transition dynamics using noisy observations, while
minimizing the error produced by the limitations and imperfections of the dynamical
model.

Introduction 1

Epithelial-mesenchymal transition (EMT) is a fundamental biological process that plays 2

a central role in embryonic development, tissue regeneration, and cancer metastasis [1–3]. 3

The main characteristic of EMT is the transdifferentiation of an epithelial cell to a 4

mesenchymal cell, which includes losing epithelial-type cell-cell adhesion and gaining the 5

mesenchymal-type enhanced cell motility. While EMT is highly controlled and reversible 6

in embryonic development and wound healing, it is often misregulated in a wide array of 7

disease states, including cancer and fibrotic diseases of the liver, kidney, and heart 8

(reviewed in [1]). In disease states, EMT often progresses unchecked, as opposed to 9

embryonic development, where the process terminates when development is complete. 10

Transforming growth factor-� (TGF�) is a major and potent inducer of this cellular 11

transition [4–6]. Classically, TGF�-induced EMT has been viewed as an all-or-none 12

switch; however, recent work has demonstrated the existence of bistability in the system, 13

with an intermediate or partial state that retains some characteristics of the primary 14

epithelial state but also shows features of the mesenchymal state [7–11]. Thus, we can 15

consider TGF�-induced EMT as comprised of transitions from an epithelial state (E) to 16

an intermediate or partial EMT state (P), then to a mesenchymal state (M). 17

What drives this switch from physiological to pathological EMT? While many of the 18

pathways that drive EMT are understood, the ability to predict when EMT will occur 19

in a reversible process versus when it will proceed unchecked is difficult. The state 20

transition dynamics of the TGF�-induced EMT core regulatory pathway is governed by 21

the interactions of a series of transcription factors, including SNAIL 1/2 and ZEB1/2, 22

and their respective inhibition mediated by microRNAs, miR-34 and miR-200 [12]. 23

SNAIL 1/2 and ZEB1/2 induce the state transitions of the epithelial cell by promoting 24

the production of the mesenchymal state marker N-cadherin, while also decreasing the 25

expression of the epithelial state marker E-cadherin. These transcription factors and 26

miRNAs are linked by several feedback loops, including double negative feedback loops 27

between SNAIL1 and miR-34, in which SNAIL1 represses the expression of miR-34 28

whereas miR-34 negatively regulates the translation of SNAIL1, and between ZEB and 29

its inhibitor miR-200. 30

Computational modeling of complex cell signaling pathways has become an 31

established tool to understand signaling mechanisms and make predictions of cell states. 32

However, computational models have several key limitations: Even the most detailed 33

biophysical models reproduce the dynamics of a subset of the actual processes occurring 34

in a physiological system. Further, parameters in a computational model are often 35

compiled and extrapolated from a wide range of experimental settings and conditions, 36

and in most cases, parameter values are chosen from experimental mean or median 37

values. While simulations are often valuable tools for understanding mechanisms and 38

interactions between multiple processes with feedback, in general it is difficult to 39

perform computational predictions that correspond with a specific individual 40

experiment. That is, simulations may be representative of the “typical” system behavior, 41

but not reflective of an individual experiment. Further, long-term computational 42
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predictions will often greatly deviate from the truth, due to even a small degree of 43

uncertainty in parameters and the highly nonlinear nature of biological systems. While 44

there have been efforts to use computational models to generate so-called “populations” 45

of simulations to reproduce inter-trial experimental variability [13, 14], such approaches 46

are generally performed after the experiments to match specific key experimental 47

measurements, and not performed in real time as measurements are made. 48

Experimental measurements of EMT additionally face the technical challenges 49

associated with direct measurement of multiple epithelial and mesenchymal cell markers. 50

It is not feasible to directly measure all critical EMT-associated cell markers in a given 51

experiment, resulting in incomplete information of cell state. Further, for the cell 52

markers that are measured in a given experiment, calibrating fluorescence intensity 53

measurements and calculating the corresponding expression levels or concentrations of 54

the epithelial- and mesenchymal-associated cell markers is generally not feasible in real 55

time. Ratiometric measurements are one approach to address these calibration issues. 56

Recently, a stable dual-reporter fluorescent sensor was designed to monitor and mirror 57

the dynamic changes of the two key EMT regulatory factors [15], specifically the 58

expression of transcription factor ZEB and epithelial state marker E-cadherin. 59

Importantly, the dual-reporter sensor enables live measurement of the E-cadherin and 60

ZEB ratio. In this study, we demonstrate that we can incorporate these ratiometric 61

measurements (accounting for experimental noise) into a computational approach 62

known as data assimilation, a well-established technique in the atmospheric science field, 63

to accurately forecast cell fate, including predicting unmeasured cell marker expression 64

levels and additionally the timing of EMT-associated state transitions. 65

Data assimilation uses a Bayesian statistical modeling approach to combine high 66

resolution but imperfect dynamical model predictions with sparse, noisy, but repeated 67

experimental observations [16]. More specifically, data assimilation is an iterative 68

algorithm in which a previous state estimate (referred to as the background) is updated 69

based on new observations to produce an improved state estimate (referred to as the 70

analysis), which is the maximum likelihood estimate of the model state. The improved 71

state estimate is then used to produce the initial condition for the dynamical model to 72

predict or forecast the future system state estimate, and the process iteratively repeats. 73

While data assimilation approaches have been well-utilized in weather forecasting 74

and atmospheric science [16–19], there are relatively few applications in the biomedical 75

sciences [20–30]. In this study, we present a data assimilation approach to reconstruct 76

cell marker expression and predict the timing of the EMT-associated state transitions. 77

We utilize an ensemble Kalman filter, which combines limited noisy observations with 78

predictions from a computational model of TGF�-induced EMT [12], to reconstruct the 79

full experimental system and predict the timing of state transitions. We test our 80

approach in proof-of-concept “synthetic” or in silico experiments, in which experimental 81

observations are produced from a known computational model with the addition of 82

noise. We mimic parameter uncertainty in in vitro experiments by incorporating model 83

error that shifts the TGF� doses associated with the state transitions. We find that 84

EMT-associated dynamics can be successfully reconstructed in synthetic experiments, 85

even in the setting of model error, when experimental observations are performed at a 86

sufficiently short time interval. Further, accurate state reconstruction benefits from 87

incorporating multiplicative inflation, a technique to compensate for underestimation of 88

the true background uncertainty (described further below), which helps manage the 89

influence of model error. In summary, our study demonstrates an experimentally 90

feasible data-assimilation approach to cell fate forecasting. 91
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Methods 92

The main components of the data assimilation process used in this study are the 93

dynamical systems model (the Tian et al model, described below), the assimilation 94

algorithm (the ensemble Kalman filter), and observations. Here, to establish the validity 95

and accuracy of our approach in an experimental setting, we use synthetic observations, 96

in which the dynamical system is used to generate a known “truth,” with the addition 97

of measurement noise, which can be used for comparison with the data assimilation 98

state estimate. Data assimilation proceeds iteratively, in which simulations of the 99

dynamical model generate a prediction or forecast, after which the ensemble Kalman 100

filter incorporates observations to generate an improved state estimate, known as the 101

analysis step. The improved state estimate then provides the initial conditions of the 102

next forecast (Fig. 1). 103

snail1 SNAIL1 E-cadherin

miR34
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zeb ZEB N-cadherin

TGF-β
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Ratiometric 
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+
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Fig 1. Illustration of EMT regulatory network and data assimilation
method. (A) Illustration of the core regulatory network governing EMT dynamics,
modified from Tian et al [12] and described in the main text. (B) Diagram of the data
assimilation method: Synthetic observations are generated from ratiometric
measurements of E-cadherin-to-ZEB from the “truth” system, plus the addition of
Gaussian noise. The numerical model (in panel A) generates ensembles of forecasts.
Combining the forecasts and observations, the Ensemble Kalman Filter yields the
maximum likelihood estimator for the system state (the analysis), which provides initial
conditions for the next iteration.
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Computational model of EMT 104

We use the model from Tian and colleagues to represent the core regulatory network of 105

TGF�-induced EMT, given in Eqn. 1 [12]. The dynamics of the system are regulated by 106

two coupled bistable switches, one reversible and the other irreversible. The two 107

bistable switches are regulated by double negative feedback loops, governing the 108

production of transcription factors SNAIL 1/2 and ZEB1/2, respectively, and the 109

inhibition mediated by microRNA miR-34 and miR-200, respectively (Fig. 1A). Model 110

initial conditions and parameters are given in Tables S1 and S2, respectively. 111
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Exogenous TGF� increases the production of snail1 mRNA, activating the first 112

double negative feedback loop by increasing the translation of SNAIL1 protein,which in 113

turn inhibits miR-34 production, the inhibitor of SNAIL1 translation. SNAIL1 activates 114

the second double negative feedback loop, by increasing the production of zeb mRNA, 115

increasing translation of ZEB protein, which in turn inhibits miR-200 production, the 116

inhibitor of ZEB translation. Both SNAIL1 and ZEB suppress the epithelial state 117

marker E-cadherin and promote the mesenchymal state marker N-cadherin. Suppression 118

of miR-200 production further removes inhibition of endogenous TGF�, a positive 119

feedback that promotes the first feedback loop and results in an irreversible phenotype 120

switch. 121

A representative simulation demonstrating the transition from an epithelial to 122

mesenchymal state is shown in Figure 2A. Initial conditions are defined consistent with 123

an epithelial state, i.e., high E-cadherin and low N-cadherin expression. A constant dose 124

of 3 µM exogenous TGF� is applied for 20 days. An initial increase in SNAIL1 is 125

associated with a moderate decrease in E-cadherin and increase in N-cadherin 126

expression. The simulation illustrates the existence of a state with intermediate levels of 127

both E-cadherin and N-cadherin expression, which is defined as a partial EMT state. A 128
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secondary increase of SNAIL1 promotes a subsequent production of ZEB, and in turn, 129

production of endogenous TGF�. The transition from the partial EMT to mesenchymal 130

state is associated with a further decrease in E-cadherin and increase in N-cadherin 131

expression. 132
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Fig 2. TGF� induces EMT via a partial or intermediate EMT state
transition. (A) The time course of key epithelial and mesenchymal markers or a ratio
of markers are shown as a function, following the addition of exogenous TGF�. (B) The
expression level of N-cadherin on day 20 are shown as a function of the exogenous
TGF� dose, for different initial conditions. The step-like response illustrates distinct
cell states, corresponding with epithelial, partial or intermediate EMT, and
mesenchymal states. Parameters: (A) Exogenous TGF� = 3 µM.

Motivated by the recent development of a novel dual reporter sensor for EMT 133

state [15], which emits fluorescence proportional to E-cadherin and ZEB, we also 134

illustrate the dynamics of the ratio between E-cadherin and ZEB, which exhibits a 135

decrease ranging from several orders of magnitudes. As described below, this 136

ratiometric measurement will serve as the observations used in our data assimilation 137

approach, demonstrating the utility of this metric that can be measured experimentally. 138

In Fig. 2B, we illustrate the model responses to varying exogenous TGF� doses for 139

initial conditions in the epithelial (blue), partial (red), or mesenchymal (green) states. 140

We plot N-cadherin expression at the end of a 20-day time interval. For initial 141

conditions in the epithelial state, increasing exogenous TGF� results in a step-like 142

increase in the final N-cadherin expression level, with an intermediate level 143

corresponding with the partial EMT state and the elevated level corresponding with the 144

mesenchymal state. Interestingly, for initial conditions in the partial EMT state, 145

hysteresis is observed, such that the TGF� doses associated with the epithelial-to-partial 146

state (E-P) transition and the partial-to-mesenchymal state (P-M) transition depend on 147

the initial state. Further, for an initial mesenchymal state, the irreversibility of the 148

second bistable switch results in the maintenance of the mesenchymal state, for all 149

TGF� doses, even in the absence of any exogenous TGF� added. 150

Data assimilation 151

Data-assimilation methods are a class of algorithms that are used to improve the 152

state-estimation and forecasting ability of dynamical systems by combining observations 153

of the system with a numerical model of the system dynamics. Much of the research on 154
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data assimilation for large systems originates in the atmospheric science 155

community [18,31–33], where it is a crucial piece of numerical weather prediction. 156

While data assimilation was originally designed to improve forecasts by improving the 157

current state estimate—and therefore delaying some of the chaotic drift of the 158

forecast—data assimilation has also been used to estimate and correct parameters of the 159

forecast model. Beyond the Earth’s atmosphere, data assimilation has been used on the 160

Martian atmosphere, as well as on oceans, estuaries, lakes, and biological 161

systems [20,26,27,34,35]. 162

Ensemble Kalman filter 163

In this paper, data assimilation is completed using an ensemble Kalman filter (EnKF), 164

which is an extension of the linear Kalman filter for nonlinear problems. The EnKF 165

attempts to estimate the most likely state of the system given a prior estimate of the 166

state, a (potentially sparse) set of observations of the system, and uncertainty estimates 167

for both the state and the observations. For this problem, the state space at time t is a 168

column vector of the nine model variables at this time, 169

xt(t) = ([T](t), [s](t), [S](t), [R34](t), [z](t), [Z](t), [R200](t), [E](t), [N](t))T . (2)

The prior state estimate, which here initially comes from a previous model run, is called 170

the background state and is denoted xb. Estimating the uncertainty in the 171

background—denoted Pb—is typically the most difficult piece, especially because this 172

uncertainty is state-dependent. In an EnKF, the background uncertainty is assumed to 173

be Gaussian and the mean and covariance are parameterized by a small number of 174

model states. This is similar to a Monte Carlo approach, but with fewer ensemble 175

members (typically on the order of 10 to 100) than would be needed to fully sample the 176

space. 177

The algorithm used here is an ensemble transform Kalman filter (ETKF) that is the 178

local ensemble transform Kalman filter (LETKF) algorithm without the 179

localization [16]. Following the notation of Hunt et al. [16], given a set of background 180

states xb(i), the background is computed as the mean of the ensemble members, 181

xb =
1

k

kX

i=1

xb(i), (3)

and the covariace is given by the ensemble sample covariance, 182

PPP b =
1

k � 1

kX

i=1

(xb(i) � xb)(xb(i) � xb)T . (4)

The Kalman filter finds the state that minimizes the cost function 183

J(x̃) = (x̃ � xb)T (PPP b)�1(x̃ � xb) + [yo � H(x̃)]TRRR�1[yo � H(x̃)], (5)

where yo is the vector of observations, R is the covariance of these observations, and H 184

is a map from the model space to the observations space (which is typically 185

lower-dimensional). The state that minimizes the cost function in the subspace spanned 186

by the ensemble members is called the analysis and is denoted xa. The analysis error 187

covariance matrix in ensemble space, P̃
b

, can be computed in ensemble space as 188

P̃PP
a

= [⇢�1(k � 1)III + YYY b

T

RRR�1YYY b]�1. Here, ⇢ is a multiplicative inflation parameter. 189

Multiplicative inflation is a way of compensating for the fact that the small ensemble 190

size tends to lead to underestimation of the true background uncertainty. Multiplying 191
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the covariance matrix by a constant greater than 1 (⇢ here) is the simplest and most 192

computationally efficient way of correcting for this underestimation. The inflation 193

factor, ⇢, is a tunable parameter for the assimilation. The columns of the Yb matrix are 194

the perturbations of the background ensemble members mapped into observation space. 195

Mathematically, the jth column of Yb is yb

j

= H(xb(j))� yb, where 196

yb = 1
k

P
k

j=1 H(xb(j)) is the mean of the background ensemble in observation space. 197

The analysis covariance is then used to transform the background ensemble 198

perturbations into analysis ensemble perturbations according to 199

XXXa = XXXb

⇥
(k � 1)P̃PP

a

⇤1/2
. Finally, the new analysis mean is computed as 200

xxxa = xxxb +XXXbP̃PP
a

YYY b

T

RRR�1(yyyo � yyyb). (6)

The analysis mean is added to each column of XXXa to generate the analysis ensemble 201

members, which then become initial conditions for the model integration to the next 202

analysis time. Descriptions of the variables in the EnKF method are provided in 203

Table 1. A more detailed description of the algorithm, including derivations, can be 204

found in [16]. In this study, we consider ensemble sizes k between 5 and 50, 205

multiplicative inflation factors ⇢ between 1 and 1.6, and observation intervals (i.e., 206

intervals between analysis steps) �t
obs

between 2 and 48 hours. 207

Notation Description

k Number of ensemble members
m Model space dimension
l Number of observations
✏ Gaussian random variable added to the truth to form observations
⇢ Multiplicative inflation factor
�t

obs

Observation interval
H Map from model space to observation space
xt m-dimensional true state vector
xb(i) m-dimensional vector of background ensemble member i
yb(i) = H(xb(i)) l-dimensional vector of the background state estimate mapped to observation space
xa m-dimensional analysis vector

xb = 1
k

P
k

i=1 xb(i) m-dimensional background state estimate vector

yb = 1
k

P
k

i=1 yb(i) l-dimensional vector of the mean of yb(i)

yo = H(xt) + ✏ l-dimensional observations vector
XXXb m ⇥ k matrix of background ensemble member perturbations from their mean xb

YYY b l ⇥ k matrix of background ensemble perturbations in observation space from their mean yb

XXXa m ⇥ k matrix of analysis ensemble member perturbations from their mean xa

PPP b k ⇥ k ensemble sample covariance
RRR l ⇥ l observation covariance matrix

P̃PP
a

k ⇥ k analysis error covariance matrix

Table 1. Data assimilation variables. Notation and description of key variables defined and utilized in the Ensemble
Kalman filter method for data assimilation. See text for details.

Numerical experiments 208

For a given data assimilation trial, the truth system was initialized with all state 209

variables in the epithelial state. To initialize each ensemble member of the background, 210

a separate model simulation was performed, with a random TGF� dose (uniformly 211

sampled between the 0 and given dose for that trial), for a random duration (uniformly 212

sampled between 0 and 20 days), and final state variable concentrations were chosen for 213
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the ensemble initial state. Synthetic observations were generated from the truth system 214

using a ratiometric measurement of E-cadherin and ZEB. Observational measurement 215

noise or error was reproduced by adding a Gaussian random variable, with standard 216

deviation equal to 10% of the true ratio magnitude, to the true ratio. Minimum 217

E-cadherin and ZEB concentrations were set to 1.1⇥ 10�5 µM, to avoid negative or 218

undefined ratio values. 219

We assess the accuracy of a given data assimilation trial with two approaches: (1) 220

We calculate the root mean squared deviation (RMSD) between the true system and the 221

average of the analysis ensembles, summing over all state variables, as a function of time: 222

RMSD(t) =

vuut 1

m

mX

j=1

(xa

j

(t)� xt

j

(t))2, (7)

where xa

j

(t) and xt

j

(t) are the jth element of the analysis and truth m-dimensional 223

vectors, respectively, at time t. We calculate the area under the RMSD vs. time curve 224

to quantify error for a single trial. (2) For each ensemble, we predict the timing of the 225

E-P and, where appropriate, P-M state transitions, and compare with the true timing of 226

these transitions. These calculations are performed as follows: After each analysis step, 227

each ensemble is simulated for the remaining time of the 20-day simulation duration. 228

The E-P and P-M state transitions are determined as the time when N-cadherin 229

expression increases above 1.5 and 3.0 µM, respectively. Finally, we average the 230

predicted thresholds over all ensembles. This calculation is repeated for each analysis 231

step. 232

We first consider the case in which the same parameters are used to simulate both 233

the truth and ensembles, using the baseline parameter set in Tian et al [12]. To assess 234

the data-assimilation approach in the context of parameter uncertainty, we then also 235

consider the influence of model error by increasing the snail1 mRNA degradation rate 236

k
d,s

from 0.09 to 0.108. This modification alters the dynamics of the first double 237

negative feedback loop and shifts the TGF� doses associated with the E-P and P-M 238

state transitions to higher levels (see Fig. 6). We conducted two variations of our 239

synthetic experiments, with the true system (ensembles) simulated (i) using the baseline 240

(increased) parameter k
d,s

value, and (ii) using the increased (baseline) parameter k
d,s

241

value. 242

Both in the presence and absence of model error, we assessed RMSD and state 243

transition predictions for varying data assimilation properties. Specifically, we varied 244

the time interval between observations/analysis steps �t
obs

, the number of ensembles k, 245

and multiplicative inflation ⇢. For each set of data assimilation properties, measures 246

were averaged over 25 trials to account for randomness in the initialization process. 247

Results 248

A representative data assimilation experiment is shown in Fig. 3, for which the truth 249

(black line) and ensembles (dashed blue lines) utilize the same model parameters (i.e., 250

no model error) and using synthetic E-cadherin-ZEB ratiometric observations (red stars) 251

with an observation interval of 24 hours, 10 ensembles, and no multiplicative inflation 252

(i.e., ⇢ = 1). In both truth and ensemble simulations, 3 µM TGF� is applied at time 0. 253

The background ensemble mean (magenta line) followed the true E-cadherin-ZEB ratio 254

within the initial 48 hours (i.e., two analysis steps, Fig. 3B). Importantly, the dynamics 255

of the unobserved state variables, including SNAIL1, ZEB, E-cadherin, N-cadherin, and 256

endogenous TGF�, were also reconstructed successfully by the background ensemble 257

mean after 48 hours (Fig. 3A). 258
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Fig 3. Data assimilation reconstructs unobserved EMT dynamics. (A) The
truth (black), ensembles (blue), and ensemble mean (magenta) are shown as a function
of time, for key epithelial and mesenchymal markers. (B) Observations (red stars) of the
E-cadherin-ZEB ratio are shown for each observation interval �t

obs

. Parameters:
Exogenous TGF� = 3 µM. Observation interval �t

obs

= 24 hours, number of ensembles
k = 10, multiplicative inflation ⇢ = 1.

We first quantified the accuracy of the data-assimilation experiments by measuring 259

RMSD error relative to the true system (Fig. 4A). RMSD error with data assimilation 260

(blue line) demonstrates small increases near the timing of state transitions; however the 261

RMSD error is greatly reduced compared with trials without data assimilation 262

(magenta). We next quantified the accuracy of the data-assimilation corrected 263

simulations to predict the true timing of state transitions from the epithelial-to-partial 264

(E-P) state and partial-to-mesenchymal (P-M) state as follows: After each analysis step, 265

each ensemble was simulated for the remainder of the 20-day duration, and the timing 266

of each transition was determined (if the transition was predicted). We then calculated 267

the mean transition threshold over all ensembles and report this prediction as a function 268

of time (Fig. 4B). We find that the ensemble mean predictions (solid blue lines) initially 269

underestimate the timing of both the E-P and P-M state transitions, due to a subset of 270

ensembles initialized in or near the partial state. However,, the data assimilation 271

predictions converge towards the true timing of E-P and P-M state transitions (black 272

dashed lines) within 48 hours (i.e., two analysis steps), which importantly is before 273

either transition occurs (see Fig. 4B). In contrast, without data assimilation corrections, 274

predictions of both transitions are underestimated (dashed magenta lines). 275

We next varied the observation interval and number of ensemble members (Fig. 5). 276

For each condition, we calculated the area under the RMSD curve, averaging over 25 277

trials to account for randomness in the initialization process. Consistent with Fig. 4, for 278

all conditions, RMSD error was much less than the error for trials without data 279

assimilation (dashed magenta). We find that RMSD error area increased approximately 280

linearly as the observation interval increased, i.e., larger error for fewer observations and 281

analysis steps. Interestingly, for these conditions, we also find that varying the number 282

of ensemble members had minimal effect on the RMSD error area, with the exception of 283

a slight increase for 5 ensemble member trials. These results demonstrate that in the 284

absence of model error, this data assimilation approach can greatly reduce error in 285
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Fig 4. Data assimilation error and predictions. (A) The RMSD error (Eq. 7) for
a trial with (blue) and without (magenta) data assimilation (DA) are shown as a
function of time. The trial without data assimilation was initialized randomly but no
analysis steps were performed. (B) The truth (dashed black) value and ensemble mean
(blue), and ensembles without data assimilation mean (dashed magenta) predictions for
the epithelial-partial state transition and partial-mesenchymal state transition are
shown as a function of time. Ensemble mean predictions ± 1 standard deviation
(dashed red) are also shown. Parameters same as Fig. 3.

predictions of system variables and state transition timing, in a manner that depends on 286

the interval for observations while minimally depending on ensemble size. We next 287

consider several conditions in which model error is introduced and further consider key 288

factors that determine the predictive power of the data assimilation approach. 289

We next consider the accuracy of the data assimilation approach in the presence of 290

model error. In particular, we are interested in the situation in which model error 291

results in different steady-state behavior for a given TGF� dose. We consider a 292

modified parameter set in which the snail1 mRNA degradation rate k
d,s

is increased 293

from 0.09 to 0.108. This modification (red line, Fig. 6A) alters the dynamics of the first 294

double-negative feedback loop and right-shifts the TGF�doses associated with the E-P 295

and P-M state transitions to higher levels, relative to the baseline parameter set (black 296

line). Specifically, we consider four exogenous TGF� doses test cases (vertical dashed 297

blues lines) that result in four combinations of final steady states between systems with 298

the baseline parameter set and the modified parameter set: (i) 1.1429 µM, which 299

produces a partial EMT state for the baseline system and an epithelial state for the 300

modified system; (ii)1.675 µM, which produces a partial EMT state for both systems, 301

but with altered dynamics; (iii) 2.626 µM, which produces a mesenchymal state on the 302

baseline system and a partial EMT state for the modified system; and (iv) 4.05 µM, 303

which produces a mesenchymal state for both systems, but with altered dynamics 304

(Fig. 6B). 305

For the next series of synthetic experiments, the true system uses the baseline 306

parameter set, while the ensemble simulations forecast using the modified parameter set 307

with an increased k
d,s

. Figure 7 illustrates the performance of the data assimilation 308

algorithm for k = 20, ⇢ = 1, and �t
obs

= 6 hours. For exogenous TGF� of 1.1429 µM 309

(Dose 1), data assimilation failed to reconstruct the true system dynamics (Fig. 7A, top 310

panel), as the ensemble mean remained in the epithelial state, while the true system 311

transitioned to the partial EMT state. RMSD error was comparable to simulations 312

without data assimilation (middle panel), and furthermore, the E-P transition of the 313

true system was not predicted at any point throughout the simulation (bottom panel). 314

For exogenous TGF� of 1.675 µM (Dose 2), data assimilation successfully 315
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Fig 5. Shorter observation interval reduces prediction error. The area under
the RMSD vs time curve is shown as a function of the observation interval �t

obs

, for
different number of ensembles k (solid lines) and without data assimilation (DA, dashed
magenta). Parameters: Multiplicative inflation ⇢ = 1.

reconstructed the true system dynamics (Fig. 7B, top panel),with a reduction of the 316

RMSD error before the E-P transition (middle panel). The ensemble prediction of the 317

E-P transition was initially overestimated (consistent with the modified parameter set, 318

see Fig. 6); the prediction improved throughout the simulation, but only accurately 319

predicting the timing immediately preceding the transition (bottom panel). 320

For exogenous TGF� of 2.626 µM (Dose 3), data assimilation failed to reconstruct 321

the true system dynamics, as the ensemble mean remained in the partial EMT state, 322

while the true system transitioned to a mesenchymal state (Fig. 7C, top panel), similar 323

to the first example. Similarly, P-M transition of the true system was not predicted at 324

any point throughout the simulation, although the E-P transition was accurately 325

predicted (bottom panel). Finally, for exogenous TGF� of 4.05 µM (Dose 4), data 326

assimilation successfully reconstructed the dynamics of the E-P transition of the true 327

system; the ensemble mean also reproduced the P-M transition although at a later time 328

than the true system (Fig. 7D). The ensemble predictions of both the E-P and P-M 329

transition were initially overestimated; the E-P transition prediction converged on the 330

true timing, while the P-M prediction improved but did not converge before the 331

transition occurred in the true system. Thus, in general, these data assimilation 332

conditions generally failed to predict the timing of state transitions and only predicted 333

steady state behavior when the steady state of true and modified parameter sets were 334

the same (i.e., simulations without data assimilation would also predict the steady state 335

behavior). 336

We next consider the effect of incorporating multiplicative inflation by increasing ⇢ 337

to 1.4 (Fig. 8). For all TGF� doses, the ensemble mean accurately reproduces the 338

dynamics of the true system (top panels) and the RMSD error remained lower than 339

simulations without data assimilation (middle panels). Further, for all exogenous doses, 340

the predictions of the state transitions timings converged to the true values (bottom 341

panels). Importantly, while for TGF� Doses 1 and 3, the E-P and P-M transitions, 342

respectively, are initially not predicted to occur, after a sufficient time, these transitions 343

are predicted and indeed converge to the true value (Fig. 8A, C, bottom panels). Thus, 344

we find that incorporating multiplicative inflation greatly improves the predictions of 345

state transitions sufficiently before their respective occurrence in the presence of model 346

error. 347
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Fig 6. Modified EMT dynamics and TGF� dose dependence. (A) N-cadherin
expression level on day 20 is shown as a function of the exogenous TGF� dose, for
baseline (black) and modified (red) parameter sets. (B) N-cadherin expression as a
function of time is shown for the four TGF� doses denoted in panel A (vertical dashed
blue lines). Parameters: baseline: k

d,s

= 0.09, modified: k
d,s

= 0.108. Other model
parameters are unchanged.

With the inclusion of multiplicative inflation, we next investigate the importance of 348

the observation interval by increasing �t
obs

to 24 hours (Fig. 9). We find that, in 349

general, similar to Fig. 7, the data assimilation approach fails to reproduces the 350

dynamics of the true system. In the case of TGF� Dose 1, the steady-state dynamics 351

are predicted, but the timing of the E-P transition is not, while for Dose 3, the 352

steady-state dynamics are not predicted and the P-M transition is not predicted to 353

occur at any point during the simulation. Thus, we find that even with the addition of 354

multiplicative inflation, infrequent observations and analysis step corrections can result 355

in a failure to predict the true system dynamics and associated state transitions. 356

For this final example, we return to the data assimilation parameters in Fig. 8, with 357

⇢ = 1.4 and �t
obs

= 6 hours; however, we consider the case for which the true system 358

used the modified parameter set and the ensembles used the baseline parameters. 359

Similar to Fig. 8, we find that ensemble mean successfully reproduces the dynamics of 360

the true system (top panels), and RMSD error is consistently less than simulations 361

without data assimilation (middle panels). Importantly, for TGF� Dose 1, the ensemble 362

mean does not predict the occurrence of the E-P transition. For TGF� Dose 3, the P-M 363

transition is initially predicted to occur (consistent with the baseline parameter set, see 364

Fig. 6); however the predicted P-M transition timing gradually increases until the 365

transition is no longer predicted to occur. Finally, for TGF� Doses 2 and 4, the timing 366

of the E-P transition and P-M transition (for Dose 4) are initially underestimated and 367

then converge to the true value before the transitions occurred. These simulations thus 368

suggest that data assimilation with properly determined parameters can accurately 369

reproduce the true system dynamics, for conditions in which model error without data 370

assimilation would lead to a failure to predict a state transition (as in Figs. 7-9) or to an 371

erroneous prediction of a state transition (as in Fig. 10). 372

To broadly quantify the predictive power of the data assimilation approach with the 373

presence of model error, we next performed a parameter study over a wide range of 374

different data assimilation properties, varying k, ⇢, �t
obs

, and the TGF� dose. We 375

performed 25 trials for each case and quantified the mean RMSD error area under curve 376
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Fig 7. Data assimilation fails to reconstruct EMT dynamics with model
error, with frequent observations and without multiplicative inflation. (Top)
N-cadherin expression for the truth (black), ensemble members (dashed blue), and
ensemble mean (magenta); (Middle) RMSD error with (blue) and without (magenta)
data assimilation (DA); and (Bottom) the truth value (dashed black) and ensemble
mean (blue) and ensembles without DA mean (dashed magenta) predictions for state
transitions are shown as a function of time, for (A-D) four TGF� doses. Parameters:
observation interval �t

obs

= 6 hours, number of ensembles k = 20, multiplicative
inflation ⇢ = 1. Truth system: k

d,s

= 0.09, Ensembles: k
d,s

= 0.108.

over these trials (Fig. 11). 377

For the case of the true system using the baseline parameter set and the ensemble 378

background system using the modified parameter set, we find that in the absence of 379

multiplicative inflation (⇢ = 1), RMSD error area is only slightly better than 380

simulations without data assimilation (magenta line) for most TGF� doses and 381

generally did not depend on observation interval or ensemble size. Consistent with 382

Figs. 7-9, incorporating multiplicative inflation reduced error, generally more so for 383

sufficiently small observation intervals (typically less than 24 or 48 hours). For 384

intermediate multiplicative inflation ⇢ = 1.2, error decreased as the observation interval 385

decreased. For larger multiplicative inflation ⇢ of 1.4 or 1.6, error had a U-shaped 386

dependence, with a minimal error for �t
obs

of 6 hours typically, for all TGF� doses. 387

This demonstrates that while observations are necessary with sufficiently frequent 388

interval to reduce error, too frequent observations (and analysis steps) results in 389

over-correction (i.e., ensemble collapse) and an increase in error. Further, for larger 390

multiplicative inflation (⇢ = 1.4� 1.6) and short observation intervals �t
obs

below 6 391

hours, a subset of data assimilation trials became unstable, due to state variables in the 392

non-physiological regime, resulting in a dramatic increase in the mean RMSD error, 393

which occurred more frequently for larger ensemble sizes. In general, ensemble size has 394

negligible effect on the error for most cases. 395

Finally, we performed the same broad data assimilation parameter study, for which 396

the true system used the modified parameter set and the ensemble background the 397
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Fig 8. Data assimilation successfully reconstructs EMT dynamics with
model error, with frequent observations and multiplicative inflation. (Top)
N-cadherin expression for the truth (black), ensemble members (dashed blue), and
ensemble mean (magenta); (Middle) RMSD error with (blue) and without (magenta)
data assimilation (DA); and (Bottom) the truth value (dashed black) and ensemble
mean (blue) and ensembles without DA mean (dashed magenta) predictions for state
transitions are shown as a function of time, for (A-D) four TGF� doses. Parameters:
Observation interval �t

obs

= 6 hours, number of ensembles k = 20, multiplicative
inflation ⇢ = 1.4. Truth system: k

d,s

= 0.09, Ensembles: k
d,s

= 0.108.

baseline parameter set (as in Fig. 10). Similar to the previous study (Fig. 11), without 398

multiplicative inflation, RMSD error generally does not depend on the ensemble size or 399

observation interval, although for this case, is generally lower than simulations without 400

data assimilation (Fig. 12). Also, as in Fig. 11, error decreases for smaller observation 401

interval �t
obs

for moderate multiplicative inflation (⇢ = 1.2) while error generally has a 402

U-shaped dependence for larger multiplicative inflation (⇢ = 1.4� 1.6), with a minimum 403

near �t
obs

of 3 or 6 hours. We similarly find dramatic increases in error for larger ⇢ and 404

small �t
obs

. Thus, across a wide range of data assimilation experiments incorporating 405

model error and multiple TGF� doses resulting in different EMT states, we find that 406

moderate multiplicative inflation and short observation intervals consistently 407

demonstrate the lowest state variable predictive error. 408

Discussion 409

In this study, we used a data assimilation approach on a series of synthetic experiments 410

to forecast cell fate in the setting of epithelial-mesenchymal transition or EMT. First, 411

proof-of-concept in silico experiments were performed in which experimental 412

observations were produced from a known computational model with the addition of 413

noise, but in the setting of no model error, i.e., all model parameters were assumed to 414

be known. In the absence of model error, EMT dynamics were successfully 415
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Fig 9. Data assimilation fails to reconstruct EMT dynamics with model
error, with infrequent observations and multiplicative inflation. (Top)
N-cadherin expression for the truth (black), ensemble members (dashed blue), and
ensemble mean (magenta); (Middle) RMSD error with (blue) and without (magenta)
data assimilation (DA); and (Bottom) the truth value (dashed black) and ensemble
mean (blue) and ensembles without DA mean (dashed magenta) predictions for state
transitions are shown as a function of time, for (A-D) four TGF� doses. Parameters:
Observation interval �t

obs

= 24 hours, number of ensembles k = 20, multiplicative
inflation ⇢ = 1.4. Truth system: k

d,s

= 0.09, Ensembles: k
d,s

= 0.108.

reconstructed generally within 48 hours of observations. 416

To mimic parameter uncertainty present in in vitro experiments, we introduce model 417

error in a manner which shifts the TGF� doses associated with state transitions. In the 418

presence of model error, EMT dynamics were successfully reconstructed using the data 419

assimilation approach incorporating multiplicative inflation and an optimal observation 420

interval. That is, sufficiently frequent observation were needed to observe and predict 421

EMT transitions, while a sufficient interval between observations and the addition of 422

multiplicative inflation mitigate overconfidence in model predictions. With these ideal 423

conditions, even in the presence of model error, the timing of EMT state transitions and 424

steady state behavior were successfully predicted. Further, we found that these results 425

negligibly depend on the number of ensembles in the EnKF, demonstrating that a 426

computationally efficient approach using fewer ensembles is feasible and sufficient. 427

EMT is a process characterized by a phenotypic shift in epithelial cells to motile and 428

oftentimes invasive mesenchymal cells. This tightly regulated process is fundamental in 429

the generation of new tissues and organs during embryogenesis and is a key factor in 430

tissue remodeling and wound healing [1–3]. While EMT is critical for development, its 431

misregulation is implicated in many diseases, including cardiac fibrosis, cirrhosis, and 432

cancer. In these disease states, it is not only crucial to understand what drives EMT in 433

order to better understand the pathology, it is equally important to predict the timing 434

of EMT-associated state transitions, with an eye towards developing effective therapies 435

to reverse EMT-related disorders. One of the main complications with making such 436

predictions is the limited number of EMT-associated markers that can be observed 437
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Fig 10. Data assimilation successfully reconstructs modified EMT
dynamics with model error, with frequent observations and multiplicative
inflation. (Top) N-cadherin expression for the truth (black), ensemble members
(dashed blue), and ensemble mean (magenta); (Middle) RMSD error with (blue) and
without (magenta) data assimilation (DA); and (Bottom) the truth value (dashed black)
and ensemble mean (blue) and ensembles without DA mean (dashed magenta)
predictions for state transitions are shown as a function of time, for (A-D) four
TGF� doses. Parameters: Observation interval �t

obs

= 6 hours, number of ensembles
k = 20, multiplicative inflation ⇢ = 1.4. Truth system: k

d,s

= 0.108, Ensembles:
k

d,s

= 0.09.

experimentally in any specific experiment; all experimental measurements are inherently 438

providing an incomplete snapshot of the system state at a given moment in time. 439

The data assimilation approach presented in this study demonstrates several key 440

advances in the prediction of EMT dynamics: (1) Expression levels of unmeasured 441

EMT-associated cell markers are accurately reconstructed and predicted, based on a 442

single ratiometric measurement of two cell markers. While these predictions are 443

inherently limited by the details of the biophysical model from which they are based, 444

this approach can be easily adapted to utilize more detailed predictive models of cell 445

signaling to predict expression levels of additional unmeasured markers. (2) By 446

integrating a predictive biophysical model with experimental observations, we can 447

accurately predict future events, specifically the timing of cell phenotype state 448

transitions. This technique can be more generally applied as a tool to probe responses 449

to various experimental perturbations applied at different stages and timings throughout 450

the EMT process, such as changes in TGF� dose or agonists and antagonists of different 451

signaling pathways. Both of these extensions are the focus of ongoing future work. More 452

broadly, potential future work will also explore the data assimilation performance in the 453

setting of larger model error, accounting for potentially significant parameter 454

uncertainty and differences between in vitro and in silico experiments. 455

A few prior studies have applied data assimilation approaches to different biological 456
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Fig 11. Optimal observation intervals and multiplicative inflation reduce
prediction error of EMT dynamics, with model error. The area under the
RMSD vs time curve is shown as a function of the observation interval �t

obs

, for
different number of ensembles k (solid lines) and without data assimilation (DA, dashed
magenta), for (A-D) four TGF� doses and multiplicative inflation values ⇢ (different
rows). Parameters: Truth system: k

d,s

= 0.09, Ensembles: k
d,s

= 0.108.

systems. Several studies, including those by two of the authors of this work, have 457

reconstructed excitable cell dynamics, for various levels of scale and complexity. Munoz 458

and Otani applied a Kalman filter on single cardiac cells to predict the dynamical 459

behavior of state variables not directly observed, such as intracellular ionic 460

concentrations [36]. Hoffman and colleagues used an ensemble Kalman filter approach 461

to reconstruct complex electrical rhythms in one-dimensional and three-dimensional 462

cardiac tissues, and similarly find that the addition of inflation in the data assimilation 463

algorithm was pivotal to improve prediction accuracy, while also showing minimal 464

influence on ensemble size [26, 27]. Several studies by Hamilton and colleagues have 465

applied data assimilation approaches to predict dynamics of neural electrical activity, 466

including determination of neural network connectivity [21], and reconstruction of 467

intracellular ion concentrations [22] and of intracellular potential [23]. Moye and 468

Diekman apply two different classes of data assimilation approaches to improve 469

estimates of both neural cell state and model parameters for different types of 470

bifurcation behavior [28]. Ullah and Schiff applied Kalman filters to predict unobserved 471

states in neurons and small neural networks [24, 25]. 472

Data assimilation has also successfully been applied to improve predictions of a 473

human brain tumor growth in in silico experiments using synthetic magnetic resonance 474

images [20]. Using predictions from a simple tumor growth model and integrating 475

measurements from a more detailed model, the data assimilation algorithm successfully 476

produced accurate qualitative and quantitative analysis of brain tumor growth. A 477

similar Kalman filter approach has also been applied to dynamical state reconstruction, 478
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Fig 12. Optimal observation intervals and multiplicative inflation reduce
prediction error of modified EMT dynamics, with model error. The area
under the RMSD vs time curve is shown as a function of the observation interval �t

obs

,
for different number of ensembles k (solid lines) and without data assimilation (DA,
dashed magenta), for (A-D) four TGF� doses and multiplicative inflation values ⇢
(different rows). Parameters: Truth system: k

d,s

= 0.108, Ensembles: k
d,s

= 0.09.

with a focus on prediction of unobserved state variables, and parameter estimation in a 479

model of mammalian sleep dynamics [30] and blood glucose levels [29]. In general, prior 480

work has focused on reconstructing physiological system dynamics, often predictions of 481

unobserved system states, with several applications to excitable cells and tissue. While 482

the dynamics of these systems are often governed by excitable, oscillatory, and bursting 483

behavior, here we consider a system with distinct dynamics that are regulated by 484

multiple bistable switches, and we show that data assimilation can successfully 485

reconstruct cell state dynamics and transitions in such a system that governs cell 486

phenotype. 487

As this study is an initial proof-of-concept demonstration of using data assimilation 488

to predict EMT dynamics, there are several key limitations to be addressed in future 489

studies. The Tian et al model used in this study represents the core regulatory pathway 490

of TGF�-induced EMT. While the model is based on key experimental findings of the 491

interactions of critical transcription factors and microRNAs regulating the EMT 492

process [12], there are other signaling pathways, e.g., Wnt and �-catenin 493

signaling [37,38], involved in EMT that are not accounted for. However, our approach 494

can be naturally extended to account for the details of additional signaling pathways. 495

As an initial test, we only consider signaling occurring in a single cell and do not 496

consider spatial interactions occurring within a multicellular tissue during EMT. Model 497

development of spatial interactions during the EMT process is complex, and this 498

challenge is indeed an area of ongoing work within our lab and others [39–41]. As 499

described by Hunt and colleagues [16], the EnKF can be further extended to account for 500

spatial localization and interacting spatial dynamics, and we plan to extend the 501
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approach demonstrated here to multicellular tissues in the future as well. 502

Additionally, we consider model error in the setting of a single inaccurate parameter, 503

while multiple parameters are likely to be unknown or inaccurate in a more realistic 504

scenario. However, here we consider the case in which model error arises due to 505

differences in a single parameter, such that the source of model behavior is unambiguous 506

and can be clearly attributed. Nevertheless, as noted above, we plan to determine how 507

generalizable our results are by considering additional sources of model error in future 508

work. Finally, our long-term goal is to consider realistic biological model error, that is, 509

using our approach with in vitro observations from fluorescence measurements of the 510

E-cadherin-ZEB dual sensor, and ultimately to predict cell fate during EMT. 511

Supporting information 512

S1 Table. Model state variables. Notation, description, and epithelial-state 513

initiation conditions for all state variables in the Tian et al model [12]. 514

S2 Table. Model parameters. Parameters, description, baseline values, and units 515

for the Tian et al model [12]. *Value unless otherwise noted. 516
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