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Abstract. Converging evidence indicates that each nominally distinct psychiatric 

disease entity have both broadly shared and distinct risk genes, clinical symptoms, 

and brain structural and functional disruption. Many studies used the static 

(time-averaged) functional connectivity to examine the similarities and differences in 

functional brain networks in psychiatric disorders. However, little is known about the 

similarities and differences in dynamic functional connectivity (FC) networks across 

multiple major psychiatric disorders. A total of 655 participants (125 with 

schizophrenia (SZ), 121 with bipolar disorder (BD), 192 with major depressive 

disorder (MDD), and 217 demographically matched healthy controls (HC) completed 

resting-state functional magnetic resonance imaging at a single site. We used 

sliding-window approach to construct dynamic FC networks, and used k-means 

clustering to obtain four dissociated networks by different states. We identified shared 

and distinct dysconnectivity across these psychiatric disorders compared with HC in 

each state. We found dysconnectivity in psychosis were state-specific, rather than a 

time-invariant global abnormality. SZ, BD and MDD shared decreased intra-network 

FC (especially frontoparietal control network (FPN)), whereas increased 

inter-network FC (especially between visual network (VN) and both default mode 

network (DMN) and FPN). Almost all dysconnectivity in BD and MDD were 

included in those in SZ, with SZ had distinct dysconnectivity that preferentially 

involving inter-network dysconnectivity between high-level cognitive networks. 

Many dysconnectivity were not detected by static FC. These findings shed new light 

on the current transdiagnostic knowledge, and advocate future researches use dynamic 

methods to study psychiatric disorders, besides use static methods. 

 

Introduction 

Modern mainstream view of psychiatry holds the idea that major psychiatric disorders 
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are separate diagnostic categories with distinct etiologies and clinical presentations. 

According to the DSM-V, the major psychiatric disorders are divided into three 

separate diagnostic categories, i.e., schizophrenia (SZ), bipolar disorder (BD), and 

major depressive disorder (MDD). However, existing diagnostic categories are not 

clearly associated with distinct neurobiological abnormalities(1, 2), which may hinder 

the search for biomarkers in psychiatry(3). Major psychiatric disorders have common 

abnormalities in many aspects, including genetic risk and etiology (4, 5), neural 

alterations (6-8), and clinical symptoms (9-11). In addition, co-morbidity among 

psychiatric disorders is very common, with 22% carried 2 diagnoses and 23% carried 

3 or more diagnoses (12). Above mentioned findings together argue that there are no 

clear-cut boundaries between the different mental disorders. In contrast, each distinct 

psychiatric disorder entity is hypothesized to have both broadly shared and distinct 

etiologies and mechanisms among multiple psychiatric disorders (13, 14). 

Transdiagnostic studies are necessary due to they focus on fundamental processes 

underlying multiple disorders, help to explain co-morbidity among disorders, and may 

lead to more effective assessment and treatment of disorders (15-17). 

 

An important way to apply transdiagnostic models of psychopathology is to uncover 

shared (or common) and distinct (or specific) neurobiological abnormalities across 

several psychiatric disorders. The vast majority of previous studies, however, have 

only compared one specific group of psychiatric disorder with healthy controls (HC). 

In a small number of transdiagnostic studies, many of them are meta-analyses that 

were based on individual studies using different methodologies (6, 8, 18, 19). 

Recently, a few but rapidly growing original transdiagnostic researches have been 

conducted to directly investigate the shared and distinct abnormalities in brain 

structure and functional connectivity (FC) across multiple mental-disorders (20-25). 

For example, a previous study reported disruptions within the frontoparietal control 

network (FPN) may be a shared feature across both SZ and affective psychosis (20),  

which was validated and extended by a recent study (25). In addition, a recent study 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 13, 2019. ; https://doi.org/10.1101/670562doi: bioRxiv preprint 

https://doi.org/10.1101/670562
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

found that higher p factor scores and associated risk for common mental illness maps 

onto hyperconnectivity between visual association cortex and both FPN and default 

mode network (DMN) (23).  

 

Despite the contribution of advancing the transdiagnostic research, with regard to the 

studies using FC, these studies assumed that the brain functional properties during the 

entire fMRI scan were static but not dynamic. In fact, interactions among large-scale 

brain networks are highly dynamic, time-averaged or static connectivity provides 

limited information about the functional organization of neural circuits (26, 27). 

Therefore, using time-varying or dynamic method to investigate shared and distinct 

dysfunction of large-scale FC networks across major psychiatric disorders may 

provide more information about their psychopathology. Follow this idea, a few 

transdiagnostic studies used dynamic FC to investigate the dynamic functional 

architecture of the brain network in healthy young adults or neurobiological 

abnormalities of the psychiatric disorders (28-32). For example, a previous study 

showed that dynamic FC can found connectivity abnormalities that are not observed 

in the static FC, which suggests dynamic FC is more sensitive than static FC (31). 

Recently, another transdiagnostic study demonstrated that dynamic FC are quite 

reliable within participants (within and across visits), and can act as a fingerprint, 

identifying specific individuals within a larger group (28). Although these studies that 

using dynamic FC are very important, either their sample size is relatively small 

(especially the patient’s groups) or they only studied two diseases (i.e., SZ and BD, or 

MDD and bipolar depression). 

 

Here, we used a widely used sliding-window approach (26, 27, 33, 34) to characterize 

dynamic FC networks among SZ, BD, MDD and HC (N = 655). Then, we applied 

k-means clustering to cluster these dynamic networks into 4 network states. In each 
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state, we identified shared and distinct dysconnectivity across these psychiatric 

disorders compared with HC. We found state-specific, intermittent shared and distinct 

disruptions of connectivity. These dysconnectivity tend to only occur in state 1 and 

state 2, rather than state 3 and 4. In general, shared dysconnectivity across these 3 

psychiatric disorders marked by decreased intra-network connectivity (especially 

within FPN), while increased inter-network connectivity between most networks 

(especially between visual network (VN) and both FPN and DMN). In addition, 

interestingly, almost only SZ has distinct dysconnectivity, and almost all of the 

distinct dysconnectivity are between high-level cognitive networks (i.e., between 

DMN, SN, FPN and dorsal attention network (DAN)). In respect of time-averaged or 

static connectivity, however, we detect only a few significant results compared with 

dynamic connectivity.  

 

Results 

Dynamic Connectivity State. We used sliding-window approach constructed 

dynamic connectivity network. Then, we identified four dynamic connectivity 

network states using k-means clustering method. Dynamic connectivity matrices in 

four states are shown in Figure 1 (the top row). All nodes were grouped into brain 

networks to which they belong according functional atlas of Yeo et al. (35). Note that 

not all subjects have dynamic windows that are assigned to every state (26, 31, 34, 36). 

HC and psychiatric patients had similar network connectivity patterns in the four 

states. In state 1, which accounts for the largest proportion (47%) of all time windows, 

the network configuration was similar to static network configuration, which 

presented both weak positive and weak negative connectivity. In contrast to state 1, 

both positive and negative connectivity in state 3 was strong. In state 2, connectivity 

between VN and most nodes in FPN as well as that between VN and DMN was 

strongly negative, and connectivity between VN and sensorimotor network (SMN) 

was relatively strongly positive. Connectivity pattern in state 4 was seems to between 
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state 1 and 3. 

 

Shared Dynamic Dysconnectivity Across Psychiatric Disorders. Figure 2 shows 

the results of ANCOVA and post-hoc two-sample t-tests for dynamic connectivity. In 

state 3 (both positive and negative connectivity was strong), no connectivity showed 

differences between groups. Based on the statistical results in state 1, 2 and 4, we 

identified the shared and distinct dysconnectivity across the three diseases. The first 

column in Figure 3 showed the shared dysconnectivity (see Figure S8 and Table S2 in 

Supplementary Materials for the unique identification number and name of each 

node). 

 

In state 1, interestingly, all within-network dysconnectivity were hypoconnectivity, 

but almost all of the between-network connectivity were hyperconnectivity, with 

exception of a few pairs of connectivity between SN and other networks (i.e., FPN, 

DMN and SMN) and between FPN and DAN. Specially, in state 1, SZ, BD and MDD 

shared hypoconnectivity within FPN, SN, VN and SMN, whereas hyperconnectivity 

between most networks. 

 

In state 2, shared dysconnectivity across the three diseases was marked by 

hyperconnectivity between VN and other networks (i.e., FPN and DMN). On the 

contrary, all within-VN connectivity were hypoconnectivity across the three groups. 

Besides, in state 2, we also found shared hyperconnectivity between SN and both 

DAN and SMN, but hypoconnectivity between SN and FPN. In state 4, we only 

detected one hyperconnectivity between DMN and FPN. 
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Distinct Dynamic Dysconnectivity among Psychiatric Disorders. In terms of the 

quantity of dysconnectivity, only the SZ had obvious distinct dysconnectivity. BD and 

MDD almost had no distinct dysconnectivity (the last 3 columns in Figure 3), which 

means that almost all of the dysconnectivity in BD and MDD were shared by at least 

two of patients’ groups. 

 

In state 1, almost all of the distinct dysconnectivity in SZ were between higher-order 

cognitive networks (i.e., DMN, SN and DAN). Specifically, SZ mainly showed 

hyperconnectivity between DMN and SN, while hypoconnectivity between DMN and 

DAN. 

 

In state 2, also almost all of the distinct dysconnectivity in SZ were between 

higher-order cognitive networks (i.e., DMN, SN, DAN and FPN). Specifically, SZ 

mainly showed hypoconnectivity between DMN and DAN, and between SN and FPN. 

In addition, we also observed five pairs of hyperconnectivity between SN and DAN, 

which was significantly more than the quantity of shared hyperconnectivity between 

these two networks in the same state. 

 

In state 4, SZ mainly showed hyperconnectivity between SN and other networks (i.e., 

DMN, VN and SMN). 

 

Gradient in the Extent of Shared Dynamic Dysconnectivity across Psychiatric 

Disorders. Figures S3-S7 display the mean z values of all dysconnectivity in state 1, 

2 and 4 for 4 groups. In state 1, the extent of abnormality in SZ is the greatest in most 

(23/38) shared dynamic dysconnectivity. In most (25/38) shared dynamic 
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dysconnectivity, the extent of abnormality in BD was greater than that in MDD. 

Consequently, a gradient in the extent of abnormality was SZ>BD>MDD in most 

shared dynamic dysconnectivity in state 1. 

 

In state 2, however, the extent of abnormality in BD is the greatest in most (13/22) 

shared dynamic dysconnectivity. In most (14/22) shared dynamic dysconnectivity, the 

extent of abnormality in MDD was greater than that in SZ. Consequently, a gradient 

in the extent of abnormality was BD>MDD>SZ in most shared dynamic 

dysconnectivity in state 2. 

 

In state 4, a gradient in the extent of abnormality was SZ>BD>MDD in 

dysconnectivity between control and default mode network. 

 

Discussion 

The present study is the first to examine the dynamic FC in three major psychiatric 

disorders, SZ, BD, and MDD, at relatively large sample size in a single site. We 

explored dynamic FC patterns using sliding-window approach and k-means clustering. 

Our study had four main findings. (1) Patients showed significant dysconnectivity 

only in state 1 and 2, rather than state 3 and 4. (2) Shared dysconnectivity that cross 

traditional diagnostic categories were that overall decreased intra-network 

connectivity, especially those within FPN, while increased inter-network connectivity, 

especially those between VN and both FPN and DMN. (3) Among the three 

psychiatric disorders, only SZ had significant distinct dysconnectivity, and all these 

distinct dysconnectivity were between high-level cognitive networks, i.e., DMN, SN, 

FPN and DAN. (4) Most of the dysconnectivity cannot be detected by time-averaged 

FC. Collectively, these results support and advance current knowledge regarding 
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transdiagnostic findings across psychiatric disorders, and strongly advocate the 

application of time-varying or dynamic methods to explore the dysfunction of FC in 

psychiatric disorders. 

 

State-specific and Network-specific Dysconnectivity. State-specific and transient 

dysfunction of large-scale cortical networks in psychiatric disorders was also found 

by previous studies and these dysconnectivity preferentially evident during the 

expression of particular network configurations (28, 31, 34). In the present study, as 

shown in Figure 3 and Figure S1, there was almost no difference between psychiatric 

patients and HC in state 3 and state 4. All the dysfunction of connectivity in patients 

was only manifested in state 1 and state 2. In addition, the pattern of abnormal 

connectivity between state 1 and state 2 was also obviously different, expressed as 

network specificity in specific state. In state 1, which accounts for the largest 

proportion (47%) of all time windows and in which the connectivity pattern resemble 

those of static FC, dysconnectivity were widely distributed. However, in state 2, in 

which the VN had both strongest positive and negative connectivity with other 

networks, dysconnectivity were very limited that almost only between VN and other 

networks, e.g. FPN and DMN. Together with previous studies, the present study 

suggests that FC disruptions in psychosis may be an intermittent disruption, rather 

than a time-invariant global abnormality during a whole resting-state scan. 

 

Advantages of a Dynamic Analysis. Our viewpoint was supported by previous 

studies advocating advantages of a dynamic approach (28, 31, 34, 37). In fact, 

intrinsic fluctuations are a hallmark of neural activity, which emergent over time 

scales spanning milliseconds and tens of minutes (26). Previous research has 

established that individuals freely engage in various states of mental activity during 

the measurement period, e.g. resting-state scan (38). In the present study, we clustered 

the interaction between brain regions into four states according to the whole-brain 
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dynamic connectome. Many dysconnectivity that found by dynamic analysis were not 

found by time-averaged analysis. A speculative explanation is that in the present 

study the connectivity in normal mental states (i.e., state 3 and 4) may "neutralize" 

those at abnormal mental states (state 1 and 2), making the time-averaged or static 

connectivity shows no abnormal. Future researches need to test this hypothesis. 

 

Decreased Intra-network and Increased Inter-network Connectivity May be an 

Important Transdiagnostic Characteristic. Overall, in present study, the 

dysfunction of dynamic connectivity across these three psychiatric disorders 

manifested as decreased intra-network but increased inter-network connectivity. The 

decreased intra-network connectivity was mainly expressed in state 1, in which the 

abnormality of FPN was the most obvious. This finding is consistent with that of 

previous studies which found decreased FC within FPN in multiple psychiatric 

disorders (25, 39) as well as in SZ (40-42), BD (43, 44) and MDD (45-47). The FPN 

is the core hub for cognitive control, adaptive implementation of task demands and 

goal-directed behavior (48-51). Reduced intra-network integration (or intra-network 

modularity(52)) in FPN may be responsible for cognitive dysfunction, one of the most 

prominent transdiagnostic characteristics of psychiatric disorders (8, 16). 

 

Although the abnormality of FPN is the most obvious, SN, VN and SMN also showed 

transdiagnostic decreased intra-network connectivity in state 1. These findings also 

match those observed in earlier studies that found abnormality in salience (6, 53), VN 

and SMN (22, 23, 54) in psychiatric disorders. Together, these findings suggest that 

the intra-network integration is decreased in patients with psychiatric disorders, at 

least within FPN, SN, VN and SMN. 
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In contrast, most inter-network dysconnectivity were increased, especially between 

VN and both FPN and DMN. These disruptions were almost only expressed in state 2 

in which the negative connectivity between VN and both FPN and DMN was 

strongest. While the dysconnectivity between VN and other networks are not often 

thought of as primary to dysfunction in psychopathology by early researches, this 

finding was in line with that of a recent work (23). This study performed a novel 

connectome-wide association study (CWAS) of the p factor (a single general 

transdiagnostic factor associated with risk for all common forms of mental illness) 

using multidimensional matrix regression (MDMR) in 605 university students (133 

met criteria for substance abuse or a mental illness). They found that 

hyperconnectivity between the visual association cortex and the heteromodal FPN and 

DMN was correlated with higher p factor scores. Considering that the patients’ groups 

of the present study were all psychiatric patients, our finding support and expand the 

recent study, suggesting that the more effortful or less efficient integration of 

bottom-up visual sensory information with attentional demands and executive control 

processes not only in those at higher risk for psychiatric disorders, but also in those 

already suffering from psychiatric disorders. This represents the possibility of a trait 

in multiple psychiatric disorders. 

 

SZ had the Most Distinct Dysconnectivity that were Inter-network 

Dysconnectivity between High-level Cognitive Networks. In the present study, we 

found SZ not only had almost all dysconnectivity that BD and MDD had, but also had 

dysconnectivity that BD and MDD did not have. When integrating the information in 

Figure 3 and Figure S1 which shown the shared dysconnectivity across the three 

disorders and any two of the diseases respectively, our findings further illustrated that 

dysconnectivity in BD and MDD seem to be two similar but not identical parts that all 

were divided up from those of SZ. This finding was partially supported by previous 

studies (21, 22, 30) that reported psychiatric disorders have more shared but less 
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distinct brain abnormality and SZ has the most obvious abnormality. Together with 

previous studies, this finding support the idea that SZ, BD and MDD may be a 

transdiagnostic continuum of major endogenous psychoses (55), with SZ have more 

dysconnectivity. 

 

Intriguingly, almost all these distinct dysconnectivity in SZ were between high-level 

cognitive networks. The distinct dysconnectivity was characterized by 

hypoconnectivity between DMN and DAN, whereas hyperconnectivity between 

DMN and SN networks. The DMN supports internally oriented attention and 

self-monitoring, among other functions, whose activity is high when the brain system 

is engaged in autobiographical memory retrieval, envisioning the future, and 

conceiving the perspectives of others, while low when the brain system is engaged in 

specific behavioral tasks on the external environment (56-58). In contrast to DMN, 

the SN and DAN are responsible for control attentional processes in relation to 

bottom-up sensory stimulation and top-down goals respectively (59, 60). Given the 

functions of the three networks mentioned above, this finding may reflect that the 

inappropriate communication of internal and external cognition is more likely to be a 

distinct/specific feature of SZ. These findings are consistent with previous studies 

found psychosis was correlated dysconnectivity between the DMN and task-positive 

networks (i.e., SN, DAN, and FPN) (2, 61). 

 

Conclusion. We performed, to our knowledge, the first time-varying functional 

connectivity analyses in HC, SZ, BD and MDD in a single study at relatively large 

sample size. We used the same scanner and acquisition sequence for all participants, 

ensuring comparability of the data across multiple psychiatric disorders. We highlight 

the following three key findings. First of all, FC disruptions in psychosis may be 

state-specific and intermittent, rather than a time-invariant global abnormality at least 

during a scan. Secondly, both decreased intra-network integration and decreased 

inter-network segregation (especially within FPN and between VN and both DMN 
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and FPN) may be the important transdiagnostic substrate across the three psychiatric 

disorders. Lastly, almost all dysconnectivity in BD and MDD were contained in those 

in SZ, with SZ had more dysconnectivity that only involving inter-network 

dysconnectivity between high-level cognitive networks. These findings support and 

shed new light on the current knowledge about transdiagnostic findings, and strongly 

advocate that future researches should use dynamic methods to study psychiatric 

disorders, besides use static methods. 

 

Materials and Methods 

Participants. The study was approved by the Institutional Review Board of China 

Medical University. All participants provided written informed consent after receiving 

a detailed description of the study. Demographics, clinical characteristics, and 

cognitive function of included participants are summarized in Table S1. Six hundred 

and seventy-eight individuals participated in this study. We finally included 655 

participants (see Data Preprocessing section for detail; ages 13–45 years), including 

125 with SZ, 121 with BD, 192 with MDD, and 217 healthy controls. The study was 

approved by the Institutional Review Board of China Medical University. All 

participants provided written informed consent after receiving a detailed description 

of the study. All participants with SZ, BD, and MDD were recruited from the 

inpatient and outpatient services at the Shenyang Mental Health Center and the 

Department of Psychiatry, the First Affiliated Hospital of China Medical University, 

Shenyang, China. Healthy controls participants were recruited from the local 

community by advertisement. 

 

The presence or absence of Axis I psychiatric diagnoses was determined by two 

trained psychiatrists using the Structured Clinical Interview for Diagnostic and 
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Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) Axis I Disorders 

for the participants 18 years and older, while using the Schedule for Affective 

Disorders and Schizophrenia for School-Age Children-present and Lifetime Version 

(K-SADS-PL) for participants younger than 18 years. Patients with SZ, BD, or MDD 

must met the DSM-IV diagnostic criteria for SZ, BD, or MDD, respectively, and no 

other Axis I disorders. Healthy controls did not have a current or lifetime history of an 

Axis I disorder or a history of psychotic, mood, or other Axis I disorders in 

first-degree relatives, as determined from a detailed family history. Participants were 

excluded for (1) lifetime substance/alcohol abuse or dependence, (2) the presence of a 

concomitant major medical disorder, (3) any MRI contraindications, (4) a history of 

head trauma with loss of consciousness ≥5 minutes or any neurological disorder, and 

(5) any abnormality identified by T1-and T2-weighted image. Symptoms and 

cognitive measures were obtained using the Brief Psychiatric Rating Scale (BPRS), 

Hamilton Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale (HAMA) 

and Young Mania Rating Scale (YMRS), and Wisconsin Card Sorting Test (WCST). 

 

MRI Acquisition. MRI data were acquired using a GE Signa HD 3.0-T scanner 

(General Electric, Milwaukee, WI) with a standard 8-channel head coil at the First 

Affiliated Hospital of China Medical University. Functional images were collected 

using a gradient-echo planar imaging (EPI-GRE) sequence. The following parameters 

were used: interleaved scanning, repetition time = 2000 ms, echo time = 30 ms, flip 

angle = 90°, field of view = 240 mm × 240 mm, and matrix = 64 × 64, slice thickness 

= 3 mm without a gap, number of slices = 35. The scan lasted 6 minutes and 40 

seconds, resulting in 200 volumes. Participants were instructed to rest and relax with 

their eyes closed but to remain awake during scanning. 

 

Data Preprocessing. All images were preprocessed using SPM12 

(www.fil.ion.ucl.ac.uk/spm/) and DPABI (62), like previous studies. Volumes at the 
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first 10 time points were discarded. The subsequent preprocessing steps included slice 

time correction and head motion correction. During head motion correction, 23 

subjects (9 with SCZ, 6 with BD, 4 with MDD, and 4 healthy controls) were excluded 

from subsequent analyses due to excessive head motion, based on a criterion of 3 mm 

or 3°. No significant differences in mean framewise displacement (FD) were observed 

among these groups (P = .151). The corrected functional images were spatially 

normalized to the Montreal Neurological Institute space using the EPI template in 

SPM12, and resampled to 3 mm × 3 mm × 3 mm isotropic voxels, and further 

smoothed via a Gaussian kernel with a 4-mm full-width at half-maximum. Then we 

performed linear detrending and temporal band-pass filtering (0.01–0.01 Hz) to 

reduce low-frequency drift and high-frequency noise. Next, several confounding 

covariates, including the Friston-24 head motion parameters, white matter, 

cerebrospinal fluid, and global signals, were regressed from the BOLD time series for 

all voxels. Finally, BOLD series were despiking by replaced the outliners (detected 

based on the median absolute deviation) with the best estimate using a third-order 

spline fit to clean the portions of time course implemented in 3dDespike 

(http://afni.nimh.nih.gov/afni). 

 

Dynamic Connectivity Analysis. Average BOLD time series of 114 nodes within the 

17-network functional atlas of Yeo et al. (35) were extracted. Dynamic Connectivity 

was estimated with a widely used sliding-window approach. Pearson’s correlation 

coefficients were calculated between each pair of nodes using segments of the time 

series within a time window. The window had a width of 17 TRs (i.e., 34 s) and slide 

on time with a time step of 1 TR (i.e., 2 s). Previous study (63) suggests that a 

sliding-window width range of 30–60 s is appropriate for dynamic connectivity 

analyses. This previous study also revealed consistent state solution stability across 

varying sliding-window sizes of 33–63 s. Consequently, 17 TRs (i.e., 34 s) width 

were chosen in order to maximize signal estimates, while still capturing properties of 
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transient functional connectivity. Then, for each participant, we obtained a total of 

174 windows, each of which had (114×113)/2 = 6,441 unique functional connectives. 

Finally, Fisher r-to-z transformation was performed for all functional connectivity. 

 

Clustering Analysis. K-means algorithm can identify sets of time-varying network 

configurations in different windows with common features, grouping them into 

clusters that are more similar to each other than to configurations in other clusters. A 

previous (28) study applied k-means clustering to identify possible dissociable 

network configurations in solutions from 2 to 20 brain states in healthy people. Their 

results indicate relative stability in state solutions from 2 to 8, with 2-, 4-, 5-, and 

8-state solutions showing points of increased stability, and they chose the four-state 

solution for following analyses due to the stability of the associated clustering 

solution and the relatively high within-participant reliability. According to previous 

study, we first apply k-means clustering to cluster these dynamic connectivity 

networks into 4 network states. Our k-means clustering used the city distance (L1 

distance) function with 100 times to repeat clustering using new initial cluster 

centroid positions to increase chances of escaping local minima. We selected k (k = 4) 

seeds by implementing the k-means++ algorithm for cluster center initialization for 

each iteration of the 100 times repeat clustering. The input of k-means clustering were 

a n_instances-by-n_fc matrix, where n_instances was equal to the number of sliding 

windows (n = 174) multiplied by the sample size (n = 655), and n_fc was equal to the 

6,441 unique functional connectivity. The resulted cluster medians (centroid) were 

regarded as FC states in group level. For each participant, each state was regarded as 

the median of those windowed FC networks that had the same cluster index (index = 

1, 2, 3 or 4). Given that we propagated group cluster indices to the subject level, not 

all subjects have dynamic windows that are assigned to every state (26, 31, 34, 36). 
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Static Connectivity Analysis. Average BOLD time series of 114 nodes within the 

17-network functional atlas of Yeo et al. (35) were extracted for each individual by 

averaging the whole time series throughout all voxels in each node. Static functional 

connectivity between each pair of nodes was calculated using Pearson’s correlation 

analysis, producing (114×113)/2=6,441 unique functional connectives for each 

subject. Fisher r-to-z transformation was performed for all functional connectives 

(correlation coefficients) to improve the normality of the correlation coefficients. See 

Supplementary Materials for results of static analyses. 

 

Statistical Analysis. Group effects on each pair of static and dynamic connectivity 

were examined using one-way analysis of covariance (ANCOVA), with age and 

gender as covariates. Post hoc analyses two-sample t-tests were performed for 

significant group effects in the ANCOVA to determine the shared and distinct 

dysconnectivity across the SZ, BD, and MDD groups, which were applied in 

pair-wise fashion with the HC group as the common comparison. We used 

false-discovery rate (FDR) to perform multiple comparison correction for both the 

ANCOVA and post-hoc analyses (q < 0.05). Shared dysconnectivity were thought to 

be those where all three patients’ groups have either hypoconnectivity or 

hyperconnectivity compared with HC. Besides, we also identified the shared 

dysconnectivity across any two of the diseases (Supplementary Figure S1). Distinct 

dysconnectivity of one patient group were thought to be those where only one patient 

group have abnormal compared with HC. Finally, we count the quantity of 

dysconnectivity in which each node or network involved in all states with 

dysconnectivity (see Figure S10). 

 

Effects of Medication on FC. Considering that most patients have been treated with 

medications, an important question was whether medications influenced functional 
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connectivity. We compared the functional connectivity between medicated and 

un-medicated patients using ANCOVA, with age and gender as covariates 

(false-discovery rate (FDR), q < 0.05; comparison times = 6441). Because of the low 

sensitivity of static connectivity analysis (Figure S2) in the present study, our focus 

was on dynamic connectivity. Consequently, we only analyzed the effect of 

medications on dynamic connectivity. We found no statistical difference in dynamic 

connectivity in state 1, 2 and 4 between the medicated and un-medicated patients 

(because no statistical difference among the four groups in dynamic connectivity in 

state 3, we discarded the analysis of state 3). Figure S9 displays the F value map. 

 

Validation Analysis.  First, we also used width of 18 TRs (i.e., 36 s) to construct 

dynamic connectivity network. We also cluster these dynamic connectivity networks 

into 4 network states using as the same methods and parameters as those of 17 TRs. 

Then we calculated the Pearson's correlation coefficients in FC values between 20 

TRs and 17 TRs. The best coefficient range from 0.9983 to 0.9999, showing very 

good consistency and robustness (see Supplementary Figure S11). 

 

Data availability. The data used in the present study can be accessed upon request to 

the corresponding authors. All analysis code is available here: 

https://github.com/lichao312214129/lc_rsfmri_tools_matlab. 
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Fig. 1. The cluster medians by state for healthy controls (the first column), schizophrenia (the second 

column), bipolar disorder (the third column) and major depressive disorder (the forth column) along 

with the count of subjects that had at least one window in each state. The percentage in parentheses 

denotes the percentage of occurrences of each state. The color bar represents z value of dynamic 

functional connectivity. 

HC, healthy controls; SZ, schizophrenia; BD, bipolar disorder; MDD, major depressive disorder; 

SomMot, somatomoto; DorsAttn, dorsal attention; Sal/VentAttn, salience/ventral attention; Control, 

frontoparietal control; Default, default mode.  
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Fig. 2. Results obtained by ANCOVA (the first column) and post-hoc two-sample t-tests (from the 

second to the forth column) for dynamic connectivity in the four groups. 

HC, healthy controls; SZ, schizophrenia; BD, bipolar disorder; MDD, major depressive disorder; 

SomMot, somatomoto; DorsAttn, dorsal attention; Sal/VentAttn, salience/ventral attention; Control, 

frontoparietal control; Default, default mode. 
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Fig. 3. Shared (the first column) and distinct (from the second to the forth column) dysconnectivity 

across schizophrenia, bipolar disorder, and major depressive disorder. Each dot in the circle represents 

a network node, and the nodes in the same network have the same color. The yellow line indicates 

increased dysconnectivity. The blue line indicates decreased dysconnectivity. 

SZ, schizophrenia; BD, bipolar disorder; MDD, major depressive disorder; SomMot, somatomoto; 

DorsAttn, dorsal attention; Sal/VentAttn, salience/ventral attention; Control, frontoparietal control; 

Default, default mode. 
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