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Abstract 

Dynamic functional connectivity (DFC) analysis can capture time-varying properties 

of connectivity and may provide further information about transdiagnostic 

psychopathology across major psychiatric disorders. In this study, we used resting 

state functional MRI and a sliding-window method to study DFC in 150 

schizophrenia (SZ), 100 bipolar disorder(BD), 150 major depressive disorder (MDD), 

and 210 healthy controls (HC). DFC were clustered into two functional connectivity 

states. Significant 4-group differences in DFC were found only in state 2. Post hoc 

analyses showed that transdiagnostic dysconnectivity among there disorders featured 

decreased connectivity within visual, somatomotor, salience and frontoparietal 

networks. Our results suggest that decreased connectivity within both lower-order 

(visual and somatomotor) and higher-order (salience and frontoparietal) networks 

may serve as transdiagnostic marker of these disorders, and that these dysconnectivity 

is state-dependent. Targeting these dysconnectivity may improve assessment and 

treatment for patients that having more than one of these disorders at the same time. 

Introduction 

The traditional view of psychiatry holds that major psychiatric disorders (e.g., SZ, BD 

and MDD) are separate diagnostic categories with distinct etiologies and clinical 

presentations. However, existing diagnostic categories are not clearly associated with 

distinct neurobiological abnormalities [1; 2], which may hinder the search for 
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biomarkers in psychiatry [3]. Major psychiatric disorders have common abnormalities 

in many characteristics, including genetic risk and etiology [4; 5], neural alterations 

[6-8], and clinical symptoms [9-11]. In addition, comorbidity among psychiatric 

disorders is very common, with 22% of patients having 2 diagnoses and 23% having 3 

or more diagnoses [12]. Taken together, the abovementioned findings suggest that 

there are no clear-cut boundaries between different mental disorders. In contrast, each 

distinct psychiatric disorder is hypothesized to have broadly shared etiologies and 

mechanisms relative to the other psychiatric disorders [13; 14]. Transdiagnostic 

studies are necessary because they focus on fundamental processes underlying 

multiple psychiatric disorders, help to explain comorbidity among disorders, and may 

lead to improved assessment and treatment of disorders [15-17]. 

An important application of transdiagnostic models of psychopathology is to 

uncover shared (common) neurobiological abnormalities across multiple psychiatric 

disorders. The vast majority of previous studies, however, have merely compared 

patients with one specific group of psychiatric disorders to healthy controls (HC). Of 

the small number of transdiagnostic studies, many were meta-analyses that were 

based on individual studies using different methodologies [6; 8; 18; 19]. Recently, a 

small but rapidly growing number of original transdiagnostic studies have been 

conducted to directly investigate the shared abnormalities in brain structure and 

functional connectivity across multiple mental disorders [20-25]. For example, a 

previous study reported that disruptions within the frontoparietal network may be a 
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shared feature across both SZ and affective psychosis [20]; this finding was validated 

and extended by a recent study [25]. In addition, a recent study found that the risk of 

common mental illnesses mapped onto hyperconnectivity between the visual 

association cortex and both the frontoparietal and default-mode networks [23]. 

Despite the contribution of advancing transdiagnostic research with regard to 

studies using functional connectivity, these studies assumed that the functional 

properties of the brain during the entire fMRI scan were static rather than dynamic. In 

fact, interactions among large-scale brain networks are highly dynamic, and 

time-averaged or static connectivity provides limited information about the functional 

organization of neural circuits [26; 27]. Therefore, using time-varying or dynamic 

methods to investigate shared patterns of dysfunction in large-scale functional 

connectivity networks across major psychiatric disorders may provide further 

information about their psychopathology. Along these lines, a few transdiagnostic 

studies have used DFC to investigate the dynamic functional architecture of brain 

networks in healthy young adults or the neurobiological abnormalities associated with 

psychiatric disorders [28-32]. For example, a previous study showed that DFC can 

reveal connectivity abnormalities that are not observed in static functional 

connectivity, suggesting that DFC is more sensitive than static functional connectivity 

[31]. Recently, another transdiagnostic study demonstrated that DFC was quite 

reliable within participants (within and across visits) and could act as a fingerprint, 

identifying specific individuals from within a larger group [28]. Although these 
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studies that used DFC were very important, all of them had relatively small sample 

sizes (especially the patient groups) or studied only two diseases (i.e., SZ and BD or 

MDD and BD). 

Here, we employed a widely used sliding-window approach [26; 27; 33; 34] to 

characterize DFC networks among patients with SZ (N = 150), BD (N = 100), or 

MDD (N = 150) and HC (N = 210). We aim to investigate the differences in dynamic 

connectivity between HCs and patients with SZ, BD or MDD. We hypothesized that 

the three disorders would share dysconnectivity in many brain networks. 

Results 

Two dynamic functional connectivity states. We used a sliding-window approach to 

construct the dynamic connectivity network. Then, we identified two patterns of 

dynamic connectivity network states (state 1 and state 2) using the k-means clustering 

method. State 1 was the less frequent of the two (35%) and featured stronger positive 

and negative connectivity. State 2 was more frequent (65%) and featured moderate 

positive and negative connectivity. The two states (represented by the centroids of the 

clusters) are shown in Figure 1. 
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Fig. 1 Cluster medians for each state. The total number of occurrences and the percentage of total occurrences 

are listed above each cluster median. The color bar represents the z value of dynamic functional connectivity. 

SomMot = somatomotor; DorsAttn = dorsal attention; Sal/VentAttn = salience/ventral attention; Control = 

frontoparietal control; Default = default mode. 

 

Differences in dynamic functional connectivity. Significant 4-group differences 

occurred only in state 2 (Figure 2.A; analysis of covariance [ANCOVA], FDR q < 

0.05). Post hoc analyses in the state 2 identified significant dysconnectivity between 

patient group (i.e., SZ, BD and MDD) and HC (Figure 2.B-D; two-sample t-test, FDR 

q < 0.05). In general, SZ was more serious in both extent and range than those in BD 

and MDD. Figure S1 shows the group differences without statistical thresholding. To 

illustrate the pattern of differences at the level of the brain network, we present the 

average t values of the dysconnectivity within and between networks (Figure 3). 

Based on the post hoc analyses, we further identified significantly 

dysconnectivity common to the SZ, BD, and MDD groups (Figure 2.E-F). 
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Interestingly, the patterns of dysconnectivity were consistent across the three 

psychiatric disorders, i.e., they were either higher or lower than that of HC. The 

shared dysconnectivity within networks presented a consistent pattern of decreased 

connectivity, while the shared dysconnectivity between networks presented a mixed 

pattern of increased and decreased connectivity. Specifically, patients shared 

decreased connectivity within the visual, somatomotor, salience and frontoparietal 

control networks. Several patterns of dysconnectivity between networks were also 

common to these disorders. Specifically, connectivity was increased between the 

visual network and the limbic, frontoparietal and default-mode networks; between the 

dorsal attention network and the salience and somatomotor network; and between 

three pairs of regions in the frontoparietal and default-mode networks, while 

decreased connectivity between salience and frontoparietal control, default-mode and 

somatomotor networks, as well as three pairs of connectivity between frontoparietal 

and default-mode networks. 
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Fig. 2 Significant differences in dynamic functional connectivity in state 2. (A) Four-group differences among 

schizophrenia, bipolar disorder, major depressive disorder and healthy controls (ANCOVA, FDR-corrected q < 

0.05). (B-D) Group differences between patients and healthy controls (two-sample t-test, FDR-corrected q < 0.05). 

(E-F) Transdiagnostic dysconnectivity across these 3 disorders. The red dots or lines indicate increased 

connectivity, and the blue dots or lines indicate decreased connectivity. HC = healthy controls; SZ = schizophrenia; 
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BD = bipolar disorder; MDD = major depressive disorder; SomMot = somatomotor; DorsAttn = dorsal attention; 

Sal/VentAttn = salience/ventral attention; Control = frontoparietal control; Default = default mode. 

 

 

Fig. 3 Average t-values of functional connectivity within and between networks. HC = healthy controls; SZ = 

schizophrenia; BD = bipolar disorder; MDD = major depressive disorder; SomMot = somatomotor; DorsAttn = 

dorsal attention; Sal/VentAttn = salience/ventral attention; Control = frontoparietal control; Default = default 

mode. 

 

Discussion 

The present study was the first to examine alterations of DFC in SZ, BD and MDD 

with a relatively large sample size at a single site. We found that all participants 

experienced two distinct functional connectivity states during the resting state 

scanning: state 1, a less frequent, 'extreme' state characterized by stronger positive and 

negative connectivity, and state 2, a more frequent, moderate state with weaker 

connectivity. However, the group differences in DFC were expressed only in state 2. 

Post hoc analyses identified that shared patterns of dysconnectivity were marked by 

consistently decreased connectivity within most networks (visual, somatomotor, 
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salience and frontoparietal networks), and SZ was the most obvious in extent. These 

findings suggest that decreased connectivity within both lower-order (visual and 

somatomotor) and higher-order (salience and frontoparietal) networks may serve as 

transdiagnostic marker of SZ, BD and MDD, and that these dysconnectivity is 

state-dependent. This study shed new light on the current transdiagnostic knowledge 

for these disorders. Targeting these transdiagnostic dysconnectivity may potentially 

improve assessment and treatment for psychiatric patients that having more than one 

of these disorders at the same time. 

In the present study, there was no difference between the psychiatric patients and 

HC in state 1. Dysfunctional connectivity in the patients was manifested only in state 

2. Interestingly, all shared dysconnectivity within networks were consistently 

decreased. Specifically, we found decreased connectivity within the visual, 

somatomotor, salience and frontoparietal networks across these psychiatric disorders. 

The finding of dysconnectivity in the frontoparietal network was consistent with 

previous studies showing transdiagnostic disruptions in this network across multiple 

psychiatric disorders [25; 35] as well as in SZ patients [36-39], BD patients [40; 41] 

and MDD patients [42-44]. The frontoparietal network is the core hub for cognitive 

control, adaptive implementation of task demands and goal-directed behavior [45-48]. 

In addition to the frontoparietal network, we also found decreased connectivity in the 

salience network, another network that is important for executive function. These 

findings also matched those of earlier studies showing abnormalities in the salience 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2019. ; https://doi.org/10.1101/670562doi: bioRxiv preprint 

https://doi.org/10.1101/670562
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

network [6; 49]. Reduced intra-network integration (or intra-network modularity [50]) 

in the cognitive networks may be responsible for cognitive dysfunction, one of the 

most prominent transdiagnostic characteristics of psychiatric disorders [8; 16]. 

Although abnormalities in higher-order brain networks such as the frontoparietal 

network were the dominant findings in previous studies, a recent study [51] suggests 

that the focus of psychiatric neuroscience should be expanded beyond these networks 

to some lower-order networks, such as the somatomotor and visual networks. The 

present findings of dysconnectivity within the somatomotor and visual networks 

corroborated earlier studies showing abnormalities in these networks in psychiatric 

disorders [22; 23; 52]. Together, these findings suggested that intra-network 

integration was decreased in patients with psychiatric disorders not only within 

higher-order brain networks but also within lower-order brain networks. Future 

research should pay additional attention to lower-order networks. 

In contrast, the inter-network connectivity of patients compared to HC was not 

consistently decreased, but increased for some connections and decreased for others. 

Increased connectivity was mainly driven by connectivity between the visual network 

and the limbic, frontoparietal and default-mode networks. Although dysconnectivity 

between the visual network and others was not often considered primary to 

psychopathological dysfunction in early studies, this finding was in line with that of a 

recent study [23] showing that hyperconnectivity between the visual association 

cortex and the frontoparietal and default-mode networks was correlated with 
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increased p-factor scores (a single general transdiagnostic factor associated with risk 

for all common forms of mental illness). Considering that the patient groups in the 

present study were all psychiatric patients, our findings support and expand on that 

recent study, suggesting that there is dysconnectivity between the visual network and 

the frontoparietal and default-mode networks not only in those who are at a high risk 

for psychiatric disorders but also in those who already suffer from psychiatric 

disorders. This shared feature represents the possibility of a trait common to multiple 

psychiatric disorders. 

Decreased connectivity was mainly driven by dysconnectivity between the 

salience network and the frontoparietal, default-mode and somatomotor networks. 

The salience, frontoparietal and default-mode networks are the three most important 

high-order cognitive networks. Many studies have indicated that the salience network 

plays a role in switching between the frontoparietal and default-mode networks to 

improve performance of cognitively demanding tasks [53; 54]. Abnormal 

communication between these networks may be one of the factors underlying 

cognitive impairment in psychiatric disorders. Our findings are consistent with a 

recent review [8]. 

Strikingly, the shared patterns of dysconnectivity across these disorders were all 

in the same direction, i.e., they were either higher or lower than those of HC. 

Although speculative, this finding may support the idea that SZ, BD and MDD may 

lie along a transdiagnostic continuum of major endogenous psychoses [55]. 
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Our study has several limitations. The first limitation is the choice of window size 

for sliding-window analysis. In this study, we used an empirically validated fixed 

sliding-window of 17 TRs (34s) as suggested by previous studies [28; 56] to 

maximize signal estimates while still capturing the properties of transient functional 

connectivity. Future work should evaluate DFC across a variety of window sizes. 

Second, we did not record respiratory and cardiac events and use them for denoising, 

which may have had an impact on our results. Finally, this is a cross-sectional 

research, longitudinal study is needed to better understand the transdiagnostic 

pathophysiological mechanisms for these psychiatric disorders. 

In conclusion, we performed, to our knowledge, the first time-varying functional 

connectivity analyses in HC and SZ, BD and MDD patients in a single study with a 

relatively large sample size. Functional connectivity disruptions in psychosis were 

state specific and intermittent. Importantly, the patterns of shared dysconnectivity 

were marked by consistently decreased connectivity within both higher-order and 

lower-order brain networks, while there was a mixed pattern of increased and 

decreased connectivity between distributed networks. Our findings expand the current 

understanding of the transdiagnostic pathophysiological mechanisms for these 3 

psychiatric disorders. Targeting these shared dysconnectivity may potentially improve 

assessment and treatment for psychiatric patients that having more than one of these 

disorders at the same time. 

Methods 
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Participants. The study was approved by the Institutional Review Board of China 

Medical University. All participants provided written informed consent after receiving 

a detailed description of the study. Eight hundred and fifty-one individuals 

participated in this study, including 332 HC, 183 SCZ patients, 132 BD patients and 

204 MDD patients. We finally included 610 participants (see the Head motion 

control section for details), including 210 HC, 150 SZ patients, 100 BD patients and 

150 MDD patients. The demographics, clinical characteristics, cognitive function and 

head motion information of the included participants are summarized in Table 1. All 

participants with SZ, BD, and MDD were recruited from the inpatient and outpatient 

services at the Shenyang Mental Health Center and the Department of Psychiatry at 

the First Affiliated Hospital of China Medical University, Shenyang, China, between 

February 2009 and April 2018. HC were recruited from the local community by 

advertisement. 

The presence or absence of Axis I psychiatric diagnoses was determined by two 

trained psychiatrists using the Structured Clinical Interview for Diagnostic and 

Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) Axis I Disorders 

for participants 18 years and older, whereas the Schedule for Affective Disorders and 

Schizophrenia for School-Age Children–Present and Lifetime Version (K-SADS-PL) 

was used for participants younger than 18 years. All patients with SZ, BD, or MDD 

were required to meet the DSM-IV diagnostic criteria for their respective disorders 

and no other Axis I disorders. The HC did not have a current or lifetime history of any 
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Axis I disorder or a history of psychotic, mood, or other Axis I disorders in 

first-degree relatives, as determined from a detailed family history. Potential 

participants were excluded if they had (1) lifetime substance/alcohol abuse or 

dependence, (2) the presence of a concomitant major medical disorder, (3) any MRI 

contraindications, (4) a history of head trauma with loss of consciousness ≥5 minutes 

or any neurological disorder, or (5) any abnormality identified by T1- or T2-weighted 

imaging. Symptoms and cognitive measures were assessed using the Brief Psychiatric 

Rating Scale (BPRS), the Hamilton Depression Rating Scale (HAMD), the Hamilton 

Anxiety Rating Scale (HAMA), the Young Mania Rating Scale (YMRS), and the 

Wisconsin Card Sorting Test (WCST). 

MRI acquisition. MRI data were acquired using a GE Signa HD 3.0-T scanner 

(General Electric, Milwaukee, WI) with a standard 8-channel head coil at the First 

Affiliated Hospital of China Medical University. Functional imaging was performed 

using a gradient-echo-planar imaging (EPI-GRE) sequence. The following parameters 

were used: repetition time = 2000 ms, echo time = 30 ms, flip angle = 90°, field of 

view = 240 mm × 240 mm, matrix = 64 × 64, slice thickness = 3 mm with no gap, 

number of slices = 35. The scan lasted 6 minutes and 40 seconds, resulting in 200 

volumes. Participants were instructed to rest and relax with their eyes closed but to 

remain awake during the scanning. 

Data preprocessing. All images were preprocessed using SPM12 

(www.fil.ion.ucl.ac.uk/spm/) and Data Processing & Analysis of Brain Imaging 
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(DPABI) [57]. The volumes from the first 10 time points were discarded. The 

subsequent preprocessing steps included slice-timing correction and head motion 

correction. The corrected functional images were spatially normalized to the Montreal 

Neurological Institute space using the EPI template in SPM12, resampled to 3 mm × 3 

mm × 3 mm isotropic voxels, and further smoothed via a Gaussian kernel with a 

4-mm full width at half-maximum. Then, we performed linear detrending and 

temporal bandpass filtering (0.01–0.01 Hz) to reduce low-frequency drift and 

high-frequency noise. Next, several confounding covariates, including the Friston-24 

head motion parameters, white matter, cerebrospinal fluid, and global signals, were 

regressed out of the blood oxygen level-dependent (BOLD) time series for all voxels. 

Head motion control. Because excessive head motion can significantly affect 

dynamic connectivity analysis [58; 59], we carried out head motion control and 

discarded participants with excessive head motion before dynamic connectivity 

analysis. We discarded participants if they had mean framewise displacement (FD) 

values > 0.2 mm, if the outliers accounted for > 30% of all volumes (190 volumes), or 

if head motion exceeded 3 mm or 3°. According to these criteria, we excluded 41 HC, 

30 SZ, 18 BD and 25 MDD patients. To match the four groups by age and sex, we 

further excluded 81 HC patients (including 2 HC patients who lacked age and gender 

information), 3 SZ patients, 14 BD patients and 29 MDD patients. The mean FD, 

percentage of outliers and maximum head motion are presented in Table 1. 

Dynamic functional connectivity analysis. The average BOLD time series of 114 
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nodes within the 17-network functional atlas of Yeo et al. [60] were extracted. 

Dynamic connectivity was estimated from these time series with a widely used 

sliding-window approach in the software GIFT [61; 62]. The window was a 

rectangular window of 17× the repetition time (TR) convolved with a Gaussian of 

sigma 3×TR to obtain a tapered window, and it slid in steps of 1 TR. A previous study 

[56] suggested that a sliding-window width range of 30–60 s was appropriate for 

dynamic connectivity analyses. This previous study also revealed consistent state 

solution stability across varying sliding-window sizes of 33–63 s. Consequently, a 

width of 17×TR (i.e., 34 s) was chosen to maximize signal estimates while still 

capturing the properties of transient functional connectivity. As previous studies 

suggest that covariance estimation using shorter time series can be noisy, we 

estimated covariance from the regularized precision matrix (inverse covariance matrix) 

[63; 64]. Furthermore, we imposed a penalty on the L1 norm of the precision matrix 

to promote sparsity using the graphical least absolute shrinkage and selection operator 

(LASSO) method [65]. For each participant, the regularization parameter lambda was 

optimized by evaluating the log-likelihood of unseen data from the same subject in a 

cross-validation framework. For each participant, we obtained a total of 173 windows, 

each of which had (114×113)/2 = 6,441 unique functional connectivity measurements. 

Finally, Fisher r-to-z transformation was performed for all functional connectivity 

measurements. 

State clustering analysis. The k-means algorithm can identify sets of time-varying 
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network configurations in different windows that have common features, grouping 

them into clusters that are more similar to each other than to configurations in other 

clusters. We used the Manhattan distance (L1 distance) as a similarity measure in 

clustering, as it has been demonstrated to be the most effective measure for 

high-dimensional data [66]. To reduce the computational demands and to diminish 

redundancy between windows, following a previous study [26], we first used the 

subject exemplars as a subset of windows with local maxima in functional 

connectivity variance to perform k-means clustering with varying numbers of clusters 

k (2–10). The optimal number of clusters k = 2 was determined based on the 

silhouette criterion [67], a cluster validity index that reflects how similar a point is to 

other points in its own cluster compared to points in other clusters. The resulting 2 

cluster centroids were used as starting points to cluster all DFC data (610 subjects × 

173 windows=105,530 matrices) into 2 clusters. The finally resulting cluster centroids 

were regarded as functional connectivity states at the group level. For each participant, 

each state was regarded as the median of that windowed functional connectivity that 

had the same cluster index (i.e., 1 and 2).  

Statistical analysis. Group effects on dynamic connectivity were examined using 

one-way ANCOVA, with age, sex and mean FD as covariates. Regarding post hoc 

analyses, two-sample t-tests were performed following significant group effects with 

ANCOVA, which were compared in a pairwise fashion with the HC group as the 

common comparison. We used the FDR to correct for multiple comparisons in both 
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the ANCOVA and the post hoc analyses (q < 0.05). Shared dysconnectivity was 

defined as a situation in which all three patient groups had abnormal connectivity 

compared with the HC group. 

Code availability 

All analysis code is available here: 

https://github.com/lichao312214129/lc_rsfmri_tools_matlab/tree/master/Workstation/

code_workstation2018_dynamicFC 
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Table 1. Demographics, Clinical Characteristics, and Cognitive Function of 

Healthy Controls and Patients with Schizophrenia, Bipolar Disorder, and Major 

Depressive Disorder. 

 HC SZ BD MDD   

Variable (n =210) (n =150) (n =100) (n =150) F/2 values P values 

Demographic characteristic       

Age at scan (y) 24.37 (5.74) 23.67 (8.77) 24.56 (5.95) 25.53 (8.30) 1.663 0.174 

Male 86 (41%) 59 (39%) 36 (36%) 43 (29%) 6.269 0.099 

Clinical characteristic       

Duration (mo) N/A 23.27 (34.97) 36.61 (36.09) 20.57 (28.10) 7.745 0.001 

First episode (yes) N/A 96 (64%) 48 (48%) 122 (81%) 30.599 2.267E-7 

Medication (yes) N/A 111 (74%) 65 (65%) 85 (57%) 9.941 0.007 

Antidepressants N/A 12 (8%) 30 (30%) 58 (39%) 39.395 2.788E-9 

Antipsychotics N/A 71 (47%) 28 (28%) 6 (4%) 72.958 1.110E-16 

Mood stabilizers N/A 5 (3%) 39 (39%) 2 (1%) 99.370 0.000 

Anxiolytics N/A 14 (9%) 7 (7%) 31 (21%) 12.762 0.002 

Other drugs N/A 9 (6%) 0 (0%) 0 (0%) N/A N/A 

HAMD-17 (n = 194) (n = 121) (n = 94) (n = 147)   

 1.06 (1.71) 6.82 (6.14) 11.92 (9.78) 19.18 (9.84) 187.866 4.151E-84 

HAMA (n = 194) (n = 113) (n = 94) (n = 135)   

 0.92 (2.15) 5.99 (6.22) 9.56 (9.33) 15.99 (9.78) 127.235 3.937E-62 

YMRS (n = 192) (n = 113) (n = 97) (n = 135)   

 0.17 (0.66) 1.93 (4.70) 6.72 (9.71) 1.27 (2.88) 40.150 2.095E-23 

BPRS (n = 162) (n = 147) (n = 86) (n = 98)   

 18.40 (1.24) 33.82 (13.11) 26.20 (9.45) 27.18 (7.39) 78.791 1.362E-41 

Cognitive function       

WCST (n = 173) (n = 107) (n = 87) (n = 114)   

Correct responses 33.09 (10.43) 19.79 (11.44) 28.10 (11.30) 26.11 (11.20) 33.111 1.865E-19 

Categories completed 4.46 (1.90) 1.88 (1.93) 3.57 (1.97) 3.15 (1.97) 39.934 4.874E-23 

Total errors 14.95 (10.59) 28.21 (11.44) 19.54 (11.23) 21.85 (11.24) 32.645 3.308E-19 

Perseverative errors 5.30 (6.46) 11.36 (9.71) 7.74 (8.50) 8.79 (8.71) 12.624 5.919E-8 

Nonperseverative errors 9.58 (5.55) 16.79 (8.15) 12.09 (6.15) 13.06 (6.50) 27.310 2.598E-16 

Head motion parameters       

Mean FD, mm 0.10 (0.03) 0.10 (0.04) 0.11 (0.04) 0.10 (0.03) 1.923 0.125 

Percentage of excessive FD 0.07 (0.07) 0.06 (0.06) 0.08 (0.08) 0.06 (0.06) 1.805 0.145 

Max translation, mm  0.44 (0.46) 0.53 (0.55) 0.50 (0.47) 0.50 (0.44) 1.080 0.357 

Max rotation, degree 0.38 (0.34) 0.40 (0.38) 0.46 (0.37) 0.46 (0.46) 1.919 0.125 

Note: Data are presented as either number (%) or means (standard deviations). 

HC, healthy controls; SZ, schizophrenia; BD, bipolar disorder; MDD, major depressive disorder; HAMD, Hamilton Depression Scale; 

HAMA, Hamilton Anxiety Scale; YMRS, Young Mania Rating Scale; BPRS, Brief Psychiatric Rating Scale; WCST, Wisconsin Card 

Sorting Test; FD, framewise displacement. 

N/A, not available/not applicable. 
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