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11 Abstract 

12 The temporal dynamics of stride-to-stride fluctuations in steady-state walking reveal important 

13 information about locomotor control and can be quantified using so-called fractal analyses, 

14 notably the detrended fluctuation analysis (DFA). Gait dynamics are often collected during 

15 treadmill walking using 3-D motion capture to identify gait events from kinematic data. The 

16 sampling frequency of motion capture systems may impact the precision of event detection and 

17 consequently impact the quantification of stride-to-stride variability. This study aimed i) to 

18 determine if collecting multiple walking trials with different sampling frequency affects DFA 

19 values of spatiotemporal parameters during treadmill walking, and ii) to determine the reliability 

20 of DFA values across downsampled conditions. Seventeen healthy young adults walked on a 

21 treadmill while their gait dynamics was captured using different sampling frequency (60, 120 

22 and 240 Hz) in each condition. We also compared data from the highest sampling frequency to 

23 downsampled versions of itself. We applied DFA to the following time series: step length, time 

24 and speed, and stride length, time and speed. Reliability between experimental conditions and 

25 between downsampled conditions were measured with intraclass correlation estimates and their 

26 95% confident intervals, calculated based on a single-measurement, absolute-agreement, two-

27 way mixed-effects model (ICC 3,1). Intraclass correlation analysis revealed a poor reliability of 

28 DFA results between conditions using different sampling frequencies, but a relatively good 

29 reliability between original and downsampled spatiotemporal variables. Our results suggest that 

30 sampling frequency (between 60 and 240 Hz) does not significantly alter DFA. A small trend 

31 toward lower DFA values with lower sampling frequencies lead us to recommend that gait 

32 kinematics should be collected at around 120 Hz, which provides an optimal compromise 

33 between event detection accuracy and processing time. 
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34 Introduction

35 The temporal organization of stride-to-stride fluctuations during steady-state walking can 

36 reveal important information about locomotor control [1-6]. With aging and neurodegenerative 

37 diseases, gait variability become more random [7-8], compared to the persistent, fractal-like 

38 pattern of fluctuations observed in healthy young adults, where large fluctuations are likely to be 

39 followed by larger fluctuations, and vice-versa [4,9]. In healthy adults, the temporal organization 

40 of fluctuations may also change under different conditions: during metronomic walking (i.e., 

41 stepping in time with an auditory metronome), stride time fluctuations become anti-persistent, 

42 i.e., large fluctuations are likely to be followed by smaller fluctuations, and vice-versa [1,9]. 

43 Similarly, stride length and stride speed become anti-persistent when healthy young adults step 

44 on visual targets or walk on a treadmill, respectively [3,10]. 

45 A dominating method to analyze stride-to-stride fluctuations is the detrended fluctuation 

46 analysis (DFA) [11], because it provides more accurate results for ‘short’ time series (<1000 data 

47 points) compared to other techniques such as power spectral analysis or rescaled range analysis 

48 [12-14]. DFA partitions a time series (e.g., stride time intervals) of length N into nonoverlapping 

49 windows and calculates the average root mean square (RMS) at each window size. The average 

50 RMS at every window size is then plotted against the corresponding window size on a log-log 

51 plot. The slope resulting from the line of best fit produces the scaling exponent α-DFA. In an 

52 effort to standardize DFA processing, researchers determined some gait-specific parameters 

53 required to produce accurate DFA results. Based on both experimental and artificial time series, 

54 it is recommended to consider time series of at least 500 data points [13,15-17]. The 

55 recommended range of window sizes is 16 to N/9 stride (or step) intervals [18], although for 

56 shorter time series a range of 10 to N/4 may be preferred [15,19]. Recent investigations also 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/670810doi: bioRxiv preprint 

https://doi.org/10.1101/670810
http://creativecommons.org/licenses/by/4.0/


4

57 recommended to use a modified version of the original DFA algorithm, namely the evenly 

58 spaced average DFA, to increase the precision of the estimation of the scaling exponent [19-20]. 

59 In the context of locomotion, it is also important to consider the parameters underlying 

60 data acquisition and pre-processing before applying DFA. In particular, motion capture systems 

61 are typically used to record gait kinematics during treadmill walking, but there is no consensus 

62 on the most appropriate sampling frequency to reliability apply DFA. While sampling frequency 

63 may not have a significant effect on linear measures of gait (e.g., mean and coefficient of 

64 variation), it is more likely to influence DFA, because this technique directly depends on the 

65 accuracy and precision of gait event detections. In the context of postural control, Rhea et al. 

66 [21] found that downsampling linearly decreased the α-DFA scaling exponent of center of 

67 pressure (CoP) displacement and CoP velocity. On the other hand, higher sampling frequencies 

68 are more likely to introduce artificial white noise (i.e., to decrease α-DFA toward more 

69 randomness), and may increase the processing time for little or no benefits. 

70 The goal of this study was to provide guidelines regarding the best sampling frequency to 

71 capture fractal dynamics of gait during treadmill walking. We calculated α-DFA values from 

72 spatiotemporal variables in different conditions where motion was captured at different sampling 

73 frequencies. We compared the average values between conditions, but also the reliability of α-

74 DFA between conditions, using intraclass correlation (ICC) coefficients. Low ICC between 

75 different conditions may be due to low between-trial consistency, independently from the 

76 sampling frequency. Therefore, we also compared data from a high sampling frequency 

77 condition to downsampled data from the same condition. 

78 In summary, this study addressed the following research questions: does motion capture 

79 sampling frequency affect α-DFA of spatiotemporal parameters during treadmill walking? What 
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80 is the reliability of α-DFA values across downsampled conditions? Our central hypothesis was 

81 that lower sampling frequency and downsampling will shift α-DFA values toward 0.5, i.e., more 

82 randomness due to lower precision in the estimation of gait events. 

83

84 Materials and Methods

85 Participants

86 Seventeen young adults (Age 23.9 ± 2.7 years, 7 females) were recruited through convenience 

87 sampling to participate in the study. All participants were free from cognitive, neurological, 

88 muscular, or orthopaedic impairments. All participants provided written informed consent 

89 according to the procedures approved by the local Institutional Review Board. 

90 Equipment

91 All participants wore their preferred walking shoes and wore a tight-fitting suit. Participants were 

92 affixed with 11 retroreflective markers on the following anatomical landmarks to track their 

93 motion while walking on a motorized treadmill (Bertec, Columbus, OH): left and right anterior 

94 iliac spines, left and right posterior iliac spines, sacrum, dorsal region of the left and right foot 

95 between the great toe and long toe, left and right heels, and left and right lateral malleoli. Marker 

96 motion was captured through 8 infrared cameras (Vicon, Centennial, CO) at different sampling 

97 frequencies in each condition (cf. below).

98 Protocol

99 Participants completed three 15-minute walking trials at their preferred speed. Prior to the trials, 

100 individual preferred speed was determined by gradually increasing and decreasing the treadmill 

101 speed. The speed at which participants reported being comfortable walking for 15 minutes was 
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102 selected as their preferred walking speed. Participants were given two minutes to walk at their 

103 preferred speed for familiarization before the experimental trials begins. Each trial was collected 

104 at a different sampling frequency - 60 Hz, 120 Hz, and 240 Hz - in a randomized order. 

105 Experimental conditions are described later in this paper by the sampling frequency number (i.e., 

106 conditions 60, 120, 240).  

107 Data Processing

108 Gait events were automatically identified with a custom Matlab function based on the heel, toe, 

109 and the average antero-posterior position of hip markers to find the heel strikes and toe offs [22]. 

110 We also downsampled the kinematic data from the 240 condition to 120 Hz and 60 Hz (i.e., 

111 further referred as DS120 and DS60 conditions, respectively), using Matlab downsample 

112 function. In this study, we focused on the following spatiotemporal variables from each of the 

113 five conditions (three experimental conditions: 60, 120 and 240; two downsampled conditions: 

114 DS60 and DS120): step length, stride length, step time, stride time, step speed and stride speed. 

115 Each time series were reduced to the length of the shortest time series (i.e., 740 intervals) for 

116 reliable comparisons across participants and conditions. The first 60 step or stride intervals in 

117 each time series were removed to reduce the potential confounding effect of gait initiation. 

118 Therefore, further analyses considered only 679 step or stride intervals (Fig 1). We calculated the 

119 mean, coefficient of variation (CV) and scaling exponent (α-DFA) from each spatiotemporal 

120 variable. The scaling exponent was calculated using the evenly spaced average DFA, which was 

121 briefly described in the Introduction. We used a range of window from 10 to N/8, where N is the 

122 time series length. We selected 18 points in the diffusion plot for the evenly spaced average DFA 

123 [19]. An α-DFA value between 0.5 and 1 indicates persistent fluctuations, whereas 0.5 indicates 

124 random fluctuations.
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125

126 Fig 1. Time series. Representative time series from a participant in the three experimental 

127 conditions (top three) and the two downsampled conditions (bottom two). 

128

129 Statistical analysis

130 One-way repeated measure ANOVAs were performed 1) between conditions 240, 120, and 60, 

131 and 2) between conditions 240, DS120, and DS60 (mean, CV and α-DFA) for each of the six 

132 spatiotemporal variables. Post-hoc analysis entailed Tukey’s multiple comparison’s tests. For 

133 each spatiotemporal variable, intraclass correlation (ICC) estimates and their 95% confident 

134 intervals were calculated using SPSS statistical package version 23 (SPSS Inc, Chicago, IL) 

135 based on a single-measurement, absolute-agreement, two-way mixed-effects model (ICC 3,1) to 

136 determine the reliability of mean, CV and α-DFA [23-24]. We compared 1) conditions 240, 120 

137 and 60, and 2) conditions 240, DS120 and DS60. The reliability was graded based on the lower 

138 95% CI values [24], with values less than 0.50 indicating poor reliability, values between 0.50 

139 and 0.75 indicating moderate reliability, values between 0.75 and 0.90 indicating good reliability 

140 and values above 0.90 indicating excellent reliability [23]. Level of statistical significance for 

141 every test was set at a p-value < 0.05. 

142

143 Results

144 Data from three participants were excluded due to technical difficulties. There was no 

145 statistically significant difference between sides, so we only report results from the right side in 

146 further analyses for the sake of clarity.
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147 Effect of sampling frequency

148 There was no statistically significant difference between any conditions for any measures of any 

149 spatiotemporal variables (p>0.05). The ICCs revealed good to excellent reliability for mean of 

150 step length and step speed, and excellent reliability for all other spatiotemporal variables (Table 

151 1). Based on the 95% confidence interval, the reliability of CV was poor to good for stride 

152 length, step time, stride time and stride speed, and moderate to excellent for step length and step 

153 speed. In contrast, for α-DFA the ICC coefficients were poor to good, and the 95% confidence 

154 interval revealed poor to moderate reliability for step length, step time, step speed and stride 

155 speed, and poor to good reliability for stride length and stride time (Fig 2). 

156

157 Table 1. Mean and standard deviation (SD) of time series mean, CV and α-DFA from 

158 condition 240, condition 120 and condition 60, and corresponding intraclass correlations 

159 and 95% confidence intervals. 

Mean (SD) for conditions

240 120 60 ICC [95% CI]

Mean (m) 0.63 (0.06) 0.62 (0.06) 0.62 (0.07) 0.915 [0.811-969]

CV (%) 1.75 (0.64) 1.81 (0.57) 2.00 (0.58) 0.804 [0.585-0.929]

Step 

length

α-DFA 0.72 (0.13) 0.68 (0.09) 0.67 (0.08) 0.309 [-0.004-0.652]

Mean (m) 1.26 (0.11) 1.26 (0.11) 1.26 (0.11) 0.991 [0.979-0.997]

CV (%) 1.30 (0.43) 1.41 (0.51) 1.45 (0.32) 0.620 [0.326-0.840]

Stride 

length

α-DFA 0.77 (0.13) 0.75 (0.12) 0.73 (0.11) 0.536 [0.214-0.797]

Mean (s) 0.54 (0.04) 0.53 (0.04) 0.54 (0.04) 0.992 [0.981-0.997]Step 

time CV (%) 1.55 (0.47) 1.67 (0.46) 1.93 (0.33) 0.509 [0.175-0.783]
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α-DFA 0.73 (0.11) 0.68 (0.09) 0.65 (0.09) 0.382 [0.079-0.697]

Mean (s) 1.07 (0.07) 1.07 (0.07) 1.07 (0.07) 0.993 [0.984-0.998]

CV (%) 1.25 (0.54) 1.28 (0.48) 1.32 (0.30) 0.542 [0.222-0.801]

Stride 

time

α-DFA 0.79 (.14) 0.77 (0.10) 0.77 (0.11) 0.546 [0.227-0.803]

Mean (m/s) 1.17 (0.12) 1.17 (0.12) 1.15 (0.14) 0.911 [0.801-0.968]

CV (%) 1.74 (0.57) 1.71 (0.42) 1.88 (0.39) 0.861 [0.680-0.950]

Step 

speed

α-DFA 0.55 (0.06) 0.56 (0.06) 0.54 (0.05) -0.072 [-0.290-0.301]

Mean (m/s) 1.18 (0.12) 1.18 (0.12) 1.18 (0.12) 0.998 [0.995-0.999]

CV (%) 1.34 (0.84) 1.17 (0.25) 1.39 (0.32) 0.370 [0.040-0.698]

Stride 

speed

α-DFA 0.43 (0.07) 0.50 (0.20) 0.53 (0.26) 0.382 [0.052-0.706]

160

161 Figure 2. Results. Individual α-DFA values for stride length (left), stride time (middle) and 

162 stride speed (right) in the three experimental conditions and the two downsampled conditions. 

163

164 Effect of downsampling 

165 There was no statistically significant difference between any conditions for any measures of any 

166 spatiotemporal variables (p>0.05), except for CV of step time (F(df1, df2) = 3.917, p=0.028). 

167 The ICCs revealed excellent absolute agreement of means for all spatiotemporal variables (Table 

168 2). For CV, while ICC coefficients were above 0.9 for all spatiotemporal variables, based on the 

169 95% confidence interval the reliability was poor to excellent for step length, moderate to 

170 excellent stride length, stride time and step speed, good to excellent for stride speed and 

171 excellent for step time. For α-DFA, the 95% confidence interval revealed moderate to excellent 
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172 reliability for step length, step time, stride time, step speed and stride speed, and good to 

173 excellent for stride length (Figure 2). 

174

175 Table 2. Mean and standard deviation (SD) of time series mean, CV and α-DFA from 

176 condition 240, condition DS120 and condition DS60, and corresponding intraclass 

177 correlations and 95% confidence intervals.

Mean (SD) for conditions

240 DS120 DS60 ICC [95% CI]

Mean (m) 0.63 (0.06) 0.63 (0.06) 0.63 (0.06) 0.999 [0.998-1]

CV (%) 1.75 (0.64) 1.80 (0.61) 1.98 (0.59) 0.958 [0.475-0.991]

Step 

length

α-DFA 0.72 (0.13) 0.71 (0.11) 0.68 (0.11) 0.906 [0.747-0.968]

Mean (m) 1.26 (0.11) 1.26 (0.11) 1.26 (0.11) 1 [1-1]

CV (%) 1.30 (0.43) 1.34 (0.41) 1.45 (0.39) 0.959 [0.501-0.991]

Stride 

length

α-DFA 0.77 (0.13) 0.75 (012) 0.73 (0.11) 0.952 [0.888-0.983]

Mean (s) 0.54 (0.04) 0.54 (0.04) 0.54 (0.04) 1 [1-1]

CV (%) 1.55 (0.47) 1.65 (0.77) 1.98 (0.37) 0.978 [0.946-0.992]

Step 

time

α-DFA 0.73 (0.11) 0.72 (0.10) 0.66 (0.10) 0.88 [0.736-0.956]

Mean (s) 1.07 (0.07) 1.07 (0.07) 1.07 (0.07) 1 [1-1]

CV (%) 1.25 (0.54) 1.28 (0.53) 1.41 (0.50) 0.97 [0.594-0.993]

Stride 

time

α-DFA 0.79 (.14) 0.78 (0.14) 0.74 (0.14) 0.945 [0.662-0.986]

Mean (m/s) 1.17 (0.12) 1.17 (0.12) 1.17 (0.12) 1 [1-1]

CV (%) 1.74 (0.57) 1.79 (0.56) 1.95 (0.49) 0.952 [0.532-0.989]

Step 

speed

α-DFA 0.55 (0.06) 0.54 (0.06) 0.54 (0.04) 0.767 [0.537-0.909]
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Mean (m/s) 1.18 (0.12) 1.18 (0.12) 1.18 (0.12) 1 [1-1]

CV (%) 1.34 (0.84) 1.38 (0.83) 1.58 (0.83) 0.964 [0.768-0.991]

Stride 

speed

α-DFA 0.43 (0.07) 0.43 (0.06) 0.45 (0.06) 0.820 [0.624-0.932]

178

179 Discussion

180 The goal of this study was to determine how motion capture sampling frequency and 

181 downsampling procedures affect DFA during treadmill walking. Our four main findings are that 

182 i) in general, mean, CV and α-DFA values of all spatiotemporal variables were similar between 

183 conditions, whether the data was collected at different sampling frequencies or downsampled, ii) 

184 α-DFA values were not reliable between conditions using different sampling frequencies, iii) α-

185 DFA values were reliable between original and downsampled spatiotemporal variables, and iv) 

186 α-DFA from stride intervals were more reliable than α-DFA from step intervals.  

187 Our original hypothesis that lower sampling frequency shift α-DFA values toward more 

188 randomness was not supported. We observed a small, non-significant trend toward a reduction in 

189 the scaling exponent α-DFA for step length, stride length, step time and stride time, for data 

190 originally sampled at 60 Hz or downsampled at 60 Hz. Previous studies have used a range of 

191 sampling frequencies to study gait dynamics during treadmill or overground walking 

192 [2,5,18,25,26]. Our results suggest that when the research question focuses on within-group or 

193 between-group comparisons, a sampling frequency as low as 60 Hz may be able to capture 

194 differences. While the reductions in α-DFA were not significant, 120 Hz may allow for more 

195 precise event detection. In addition, walking speed may also play a role: as lower limbs move 

196 faster, a greater sampling frequency is needed to capture gait events with the same precision. 

197 While this question was beyond the scope of this study and will need to be addressed later, it is 
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198 an important factor to consider when selecting motion capture sampling frequency. It is also 

199 important to note that the number of potential individual values present in a time series depend 

200 not only from the sampling frequency, but also from the coefficient of variation (or the range) in 

201 that time series. As an illustration, for a stride time series centered around 1-sec with a CV of 5% 

202 (i.e., a range of [0.95 – 1.05]), sampling at 100 Hz would lead to 11 potential values (i.e. 0.95, 

203 0.96, 0.97, etc.). In contrast, a CV of 2% (i.e., a range of [0.98 – 1.02]) would lead to only 5 

204 potential values and a much more ‘squared’ signal.  

205 While α-DFA values were not significantly different between conditions, they were not very 

206 reliable. Based on the lower 95% confidence intervals, the reliability was graded as poor for all 

207 spatiotemporal variables (Table 1). This is an important finding, as it suggests that collecting 

208 data from the same participant using different sampling frequencies would lead to very different 

209 scaling exponents in each condition. However, as stressed in the Introduction, a low reliability 

210 between conditions may also arise independently from sampling frequencies. While previous 

211 studies have shown that α-DFA presented relatively high within-day reliability [26-27], it is 

212 possible to observe within-subject differences in gait dynamics between conditions. This may 

213 arise from different factors such as fluctuations in attention levels, fatigue or habituation to 

214 treadmill walking. We anticipated such potential confounding effects, and therefore studied the 

215 effect of downsampling (from the highest sampling frequency). 

216 We found that the reliability of α-DFA values graded as moderate and good between original and 

217 downsampled spatiotemporal variables (Table 2). This result contrasts with our previous finding 

218 (comparing different conditions), and suggests that the low reliability observed between 

219 conditions sampled at different frequencies originated from within-subject differences more than 

220 reflecting a true effect of sampling frequency. 
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221 It should also be stressed that α-DFA from stride intervals were more reliable than step intervals. 

222 This may be because a single stride interval ‘encompasses’ two step intervals (i.e., one from each 

223 side). Therefore, small corrections occurring at the step level may not be reflected in a more 

224 global stride interval. 

225 Our study presents several limitations. We collected only healthy young adults, as in previous 

226 methodological studies, because healthy gait patterns are often used as a reference [17,25,26,30]. 

227 We cannot exclude the possibility that the results would be different with other populations such 

228 as older adults or people with gait disorders. Another limitation of our study is that we only 

229 considered three different sampling frequencies. While technically motion can be captured at any 

230 sampling frequency (i.e., on a continuous scale), we chose to focus on the most representative 

231 values reported in previous literature. In addition, collecting human gait below 50 Hz would 

232 certainly alter not only DFA results but also mean and CV, and collecting above 240 Hz would 

233 dramatically increase processing time. Finally, there is little reason to think that DFA results 

234 from data sampled at 120 Hz would significantly differ from data sampled at a slightly lower 

235 frequency (e.g., 100 Hz), because our results at 240 Hz or 120 Hz were very similar. As 

236 mentioned earlier, walking speed and the coefficient of variation of time series may also play a 

237 role. Future studies should investigate the reliability of DFA results at different walking velocity. 

238 Another limitation is that we only considered treadmill walking, but our conclusions may not 

239 hold true for overground walking. Note that the study of fractal dynamics during overground 

240 walking is often performed on data captured with small accelerometers or footswitches 

241 [1,4,7,10,16]. Footswitches in particular – while limited in capturing only temporal variables 

242 such as stride time intervals – are often capable of higher sampling frequency (e.g., data is often 

243 collected at 1000 Hz or more). A final limitation of this study was that we focused solely on the 
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244 scaling exponent α-DFA, and did not test other techniques. While this may be considered a 

245 limitation, our goal in this paper was to provide guidelines specifically related to the application 

246 of DFA to spatiotemporal variables. Previous studies have already compared the effect of 

247 sampling frequency on other measures of gait [30], and future studies may use our data (S1 

248 Matlab file) to ask other questions related to the reliability of gait parameters during treadmill 

249 walking. 

250 In conclusion, sampling frequency seems to have little effect on α-DFA applied to 

251 spatiotemporal variables during treadmill walking. Overall, stride intervals seem to provide more 

252 reliable results than step intervals. While no significant differences were observed between 

253 conditions, a small trend toward lower α-DFA values with lower sampling frequencies lead us to 

254 recommend that data should be collected at around 120 Hz. This seems to be the best 

255 compromise between precise event detection and reduced processing time. 

256
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