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1 Abstract

2 We previously showed that postmortem serum levels of adrenocorticotropic hormone 

3 (ACTH) were significantly higher in cases of hypothermia (cold exposure) than other 

4 causes of death. This study examined how the human hypothalamic-pituitary-adrenal axis, 

5 and specifically cortisol, responds to hypothermia. Human samples: Autopsies on 205 

6 subjects (147 men and 58 women; age 15-98 years, median 60 years) were performed 

7 within 3 days of death. Cause of death was classified as either hypothermia (cold exposure, 

8 n=14) or non-cold exposure (controls; n=191). Cortisol levels were determined in blood 

9 samples obtained from the left and right cardiac chambers and common iliac veins using 

10 a chemiluminescent enzyme immunoassay. Adrenal gland tissue samples were stained 

11 for cortisol using a rabbit anti-human polyclonal antibi. Cell culture: AtT20, a mouse 

12 ACTH secretory cell line, and Y-1, a corticosterone secretory cell line derived from a 

13 mouse adrenal tumor, were analyzed in mono-and co-culture, and times courses of ACTH 

14 (in AtT20) and corticosterone (in Y-1) secretion were assessed after low temperature 

15 exposure mimicking hypothermia and compared with data for samples collected 

16 postmortem for other causes of death. However, no correlation between ACTH 

17 concentration and cortisol levels was observed in hypothermia cases. Immunohistologic 

18 analyses of samples from hypothermia cases showed that cortisol staining was localized 
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19 primarily to the nucleus rather than the cytoplasm of cells in the zona fasciculata of the 

20 adrenal gland. During both mono-culture and co-culture, AtT20 cells secreted high levels 

21 of ACTH after 10-15 minutes of cold exposure, whereas corticosterone secretion by Y-1 

22 cells increased slowly during the first 15-20 minutes of cold exposure. Similar to autopsy 

23 results, no correlation was detected between ACTH levels and corticosterone secretion, 

24 either in mono-culture or co-culture experiments. These results suggested that ACTH-

25 independent cortisol secretion may function as a stress response during cold exposure. 

26

27 Introduction 

28 Many reports have documented the pathologic changes observed in humans 

29 affected by hypothermia due to cold exposure, and “classic” morphologic findings 

30 supporting a diagnosis of hypothermia have been established [1-7]. However, as other 

31 etiologies of hypothermia include drug abuse, dementia, malnutrition, and infectious 

32 disease, only a few studies have specifically examined pathologic findings after cold 

33 exposure [8,9], especially from a biochemical perspective, such as the presence and levels 

34 of ketone bodies [10-13]. Furthermore, only a few reports have estimated hormone levels 

35 as part of the pathophysiologic findings of cold exposure [14-16].
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36 The primary stress response system is the sympathetic/adrenomedullary (S/A) 

37 system, which includes the chromogranin A [14] and hypothalamic-pituitary-adrenal 

38 (HPA) axis [16, 18]. Previous studies have suggested that postmortem serum 

39 adrenocorticotropic hormone (ACTH) concentration is a useful biomarker of death due 

40 to cold exposure and the magnitude of physical stress responses during cold exposure 

41 [17]. Increased serum concentrations of ACTH associated with activation of the HPA axis 

42 and S/A system can be biochemically evaluated by measuring catecholamine and 

43 chromogranin A levels [19-23]. With respect to the HPA axis, it is known that cortisol 

44 levels are correlated with ACTH levels, and a precursor of cortisol, which is an activator, 

45 also inactivates cortisone accounting for 4-5% and corticosterone exhibiting only weak 

46 activity [24, 25]. Thus, this study evaluated cortisol as a biomarker of cold exposure-

47 related stress by analyzing cases of human death due to hypothermia. We also assessed 

48 the relationship between ACTH and corticosterone levels during cold exposure using a 

49 mouse cell culture model. 

50

51 Material and Methods

52 Autopsy samples
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53 Autopsies were performed within 3 days postmortem at our institute. The study 

54 included 205 serial cases (147 men and 58 women), and the median age was 60 years 

55 (range 15-98 years). Cortisol levels were determined in blood samples collected 

56 aseptically from the left and right cardiac chambers and the common iliac vein using 

57 syringes. 

58 Cause of death was determined based on findings from a complete autopsy as 

59 well as macromorphological, micropathologic, and toxicologic examinations. Cases were 

60 classified as either hypothermia (cold exposure, n=14) or control. Cause of death in the 

61 latter group included blunt injury (n=37 total; head injury [n=28], non-head injury [n-

62 =9]), sharp-instrument injury (n=8), fire fatality (n=43), asphyxia (n=28), intoxication 

63 (n=12 total; methamphetamine-related fatality [n=3], psychotropic drugs [n=6], other [n-

64 =3]), drowning (n=12), hyperthermia (heat stroke, n=10), acute ischemic heart disease 

65 (n=20), and natural causes (n=22). Case profiles are shown in Table1. 

66 Table1. Case profile.

Cause of 

Death¤

Num

ber¤

Gender¶(mal

e/female)¤

Age-

structur

e¶(mean

)¤

Surv

ival 

perio

d¶ 
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Postmo

rtem 

period

¶ 

(mean, 

Hospitalization¶(

male/female)¤
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n, 

h)¤

h)¤

Hypotherm

ia¤

14¤ 9/5¤ 34-89¶ 

(62)¤

6-24¶ 

(18)¤

24-72¶ 

(52.6)¤

0/0¤

Blunt 

injury ¶

(head 

injury)¤

28¤ 19/9¤ 15-98¶ 

(66)¤

<0.5-

1056

¶ 

(128.

7)¤

12-60¶ 

(29.3)¤

9/6¤

Blunt 

injury¶ 

(non-head 

injury)¤

9¤ 9/0¤ 52-85¶ 

(67)¤

<0.5-

960¶ 

(122.

6)¤

24-60¶ 

(30.6)¤

4/0¤

Sharp 

instrument 

injury¤

8¤ 7/1¤ 40-85¶ 

(67)¤

<0.5-

24¶ 

(6.3)

¤

12-36¶ 

(27.4)¤

3/1¤

Fire 

fatality¤

43¤ 34/10¤ 28-95¶ 

(73)¤

<0.5-

3600

¶ 

(142.

4)¤

12-60¶ 

(27.8)¤

6/2¤

Asphyxia¤ 29¤ 19/10¤ 21-83¶ <0.5- 12-60¶ 4/2¤
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(57)¤ 240¶ 

(23.7

)¤

(33.4)¤

Intoxicatio

na¤

11¤ 8/3¤ 25-59¶ 

(38)¤

<0.5-

48¶ 

(11)¤

12-36¶ 

(32.7)¤

0/1¤

Drowning¤ 11¤ 7/4¤ 44-85¶ 

(62)¤

<0.5-

2¶ 

(3)¤

12-48¶ 

(29.6)¤

0/0¤

Hyperther

mia¤

10¤ 3/7¤ 28-92¶ 

(70)¤

6-

240¶ 

(33.1

)¤

24-48¶ 

(32.7)¤

2/1¤

Acute 

ischemic 

heart 

disease¤

20¤ 19/1¤ 19-88¶ 

(61)¤

<0.5-

144¶ 

(16.5

)¤

6-60¶ 

(33.6)¤

1/1¤

Other 

natural 

death¤

22¤ 14/8¤ 21-88¶ 

(70)¤

<0.5-

4320

¶ 

(243.

5)¤

24-48¶ 

(29.2)¤

5/3¤

67 aMethamphetamine-related fatalities, n=3; psychotropic drugs, n=5; others, n=3
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68 Cases of hypo- and hyperthermia due to drug abuse and bathing, respectively, were 

69 excluded. Postmortem interval was defined as time elapsed from estimated time of death 

70 to autopsy, whereas survival period was defined as the time from the onset of fatal insult 

71 to death. Only clearly described cases were examined in this study. 

72 Tissue specimens of the bilateral adrenal glands were collected and fixed in 4% 

73 paraformaldehyde in phosphate-buffered saline (PBS; pH 7.2) for histopathologic and 

74 immunohistochemical analyses. 

75

76 Biochemical analysis 

77 Blood samples were immediately centrifuged to prepare serum, and ACTH and 

78 cortisol levels were measured using an AIA-360®analyzer (TOSOH Bioscience GmbH, 

79 Griesheim, Germany) [27,28]. This analyzer utilizes a competitive fluorescent enzyme 

80 immunoassay format and is performed entirely within small, single-use test cups 

81 containing all necessary reagents. The analyte in the sample competes with the enzyme-

82 labeled hormone and incubated with a fluorogenic substrate, 4-methylumbelliferyl 

83 phosphate. The amount of enzyme-labeled hormone that binds to the beads is inversely 

84 proportional to the hormone concentration in the test sample. Calibration, daily checks, 

85 and maintenance procedures were carried out as described in the Systems Operator’s 
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86 Manual. Accurate performance data for human ACTH and cortisol, including analyte 

87 recovery and dilution studies, had been previously evaluated and were available in the 

88 manufacturer’s technical bulletins. The time required to obtain the first result using this 

89 assay is 20 minutes, with additional results obtained every minute thereafter. 

90 Serum samples (150μL each) were placed in the test cups, and both hormones 

91 were measured using the above-mentioned immunoassays. The lower (and upper) 

92 reported values for the ACTH and cortisol assays were 2.0 (2000.0) pg/mL and 28.0 

93 (1656.0) nmol/L, respectively.

94

95 Oxyhemoglobin measurement 

96 Blood oxyhemoglobin was determined using a CO-oximeter system 

97 (ABL80FLEX System; Radiometer Corp., Tokyo, Japan) in hypothermia patients [29, 

98 30]. Blood alcohol levels were determined using headspace gas chromatography/mass 

99 spectrometry (GC/MS), and amphetamine and psychotropic drugs were detected by 

100 GC/MS [17]. 

101

102 Immunohistochemistry 
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103 Harvested adrenal glands were fixed in 4% paraformaldehyde in PBS (pH 7.2) for 12 h, 

104 embedded in paraffin, and sectioned at a thickness of 4μm. Deparaffinization (Sakura 

105 tissue TEK DRS 2000, Tokyo, Japan) of each section was followed by heat-mediated 

106 antigen retrieval in citrate buffer (pH7.0) for 10min, after which each section was 

107 immersed in 0.3% H2O2-methanol for 10 min to inactivate endogenous peroxidases. After 

108 washing in PBS for 5 min, slides were incubated overnight with anti-cortisol-binding 

109 globulin antibody (ab107368; Abcam). Immunoreactivity was visualized by the polymer 

110 method using Dako Envision+ Dual Link System-HRP (K4063; Dako, CA, USA) and the 

111 Dako liquid DAB+ Substrate Chromogen System (K3468; Dako), according to the 

112 manufacturer’s instructions and with hematoxylin counterstaining [13, 17]. The total 

113 number of cells in the adrenal gland and number of cells exhibiting cytoplasmic or nuclear 

114 cortisol immunoreactivity were determined microscopically under 400× magnification. 

115 Three random fields were independently enumerated, and the data are presented as 

116 number of cortisol-positive cells (cytoplasm or nucleus, respectively)/ total number of 

117 adrenal gland cells×100. As cells in the zona fasciculata of the adrenal gland are known 

118 to produce cortisol in the cytoplasm, immunostaining for cortisol in each group was 

119 evaluated by technicians blinded to sample grouping. Three sections were randomly 

120 selected for cell counting [31, 32]. 
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121

122 Cell culture models

123 Mono-culture models of pituitary and adrenal cells

124 Mono-culture models of ACTH-secreting AtT20 pituitary cells [33-37] and 

125 corticosterone-secreting Y-1 adrenal cells [38-42] derived from mice were developed to 

126 verify whether these cells secrete hormones only upon stimulation by exposure to cold. 

127 For both cell types (AtT20 and Y-1), the culture medium consisted of a 1:1 ratio of 

128 DMEM-F12 and 15% charcoal stripped fetal bovine serum (FBS; Biological 

129 Industries,CT.,USA) with 4mM L-glutamine, 50 U/mL penicillin, and 50 μg/ml 

130 streptomycin. Initially, cells of both types were seeded and cultured at 37℃. Growth was 

131 controlled at 54,618 cells/cm2 for AtT20 and 57,803 cells/cm2 for Y-1, and the cells were 

132 allowed to proliferate until they covered the surface of the culture dishes. The culture 

133 medium for Y-1 cells was replaced once every 2 days. Once the AtT20 and Y-1 cells 

134 reached confluence, they were transferred to 4℃ and maintained. The amount of ACTH 

135 and corticosterone in the culture medium was measured at 5, 10, 15, 20, 30, 40, 60, 180, 

136 and 360 min; at 12 and 24 h; and at 3 and 5 days.  ACTH was measured using a mouse 

137 ACTH assay kit (FEK-001-21; Phoenix Pharmaceuticals, Inc., USA) [43,44], and 

138 corticosterone was measured using a mouse corticosterone assay kit (Assay MAX 
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139 EC3001-1; ANG, USA) [45-47]. At the end of the experiment, adherent cells were 

140 dissociated from the surface using trypsin and then counted; hormone concentrations 

141 were calculated using a correction formula and the measured values. 

142

143 Co-culture model development 

144 We developed a co-culture system for AtT20 ACTH-secreting cells (ECACC no. 

145 87021902) [36,37] and Y-1 corticosterone-secreting cells derived from mice [45-47] as a 

146 model of the pituitary-adrenal system. The co-culture model was used to investigate 

147 whether these cells interact as part of the HPA axis during cold-stimulated hormone 

148 production. Both AtT20 and Y-1 cells were cultured in medium containing DMEM-F12 

149 supplemented with 15% inactivated FBS, 50 μg/ml streptomycin, 50 μM penicillin, and 

150 0.25 μg/ml fungizone. To inactivate ACTH included in the culture medium, 0.2 mL of 

151 rabbit anti-mouse ACTH (1-24) serum (Siemens, Immulyze) was added to 200 mL of 

152 culture medium, we decided about the proper amount of the rabbit serum using an ACTH 

153 ELISA kit (MDB, M046006) [48].

154 Initially, both AtT20 and Y-1 cells were cultured separately at 37℃, with AtT20 

155 and Y-1 cells on the top and bottom of the filter, respectively. The cells were then co-

156 cultured at 4℃. The insert for 6-well plate (Greiner Bio-One, Frickenhausen, Germany) 
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157 used to separate the AtT20 and Y-1 cells had a diameter of 23.1 mm, pore size of 3.0 μm, 

158 and pore density of 2×106 pores/cm2. Initially, corticosterone-secreting Y-1 cells were 

159 cultured on the bottom of the filter with the filter placed upside down so that the cells 

160 formed a mono layer. Subsequently, the filter was placed upright in the culture medium. 

161 Schroten H, (2016) established this method in a choroid plexus model [49-53], and we 

162 previously described this method in a report on the physiologic significance of the blood-

163 cerebrospinal fluid barrier and prolactin [54]. 

164 Excessive growth on the filter was controlled by trypsinization to maintain a 

165 single layer of cells; the number of Y-1 cells on the filter was limited to 57,803/cm2. As 

166 the Y-1 cells formed tights junctions, movement of ACTH between the cells was 

167 prevented. Thereafter, the culture medium was replaced once every 2 days. Once 

168 culturing of the Y-1 cells was complete, AtT20 (ACTH secreting) cells were similarly 

169 grown on the other side of the filter (i.e., the side opposite to Y-1 cells). The filter was 

170 immersed in the culture medium by placing the ACTH-secreting (AtT20) cells side facing 

171 up and corticosterone-secreting (Y-1) cells side facing down. Levels of ACTH and 

172 corticosterone in the culture medium were measured at 5, 10, 15, 20, 30, 40, and 60 min, 

173 as indicated above. After measurement of both hormones, the adherent cells were 
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174 dissociated from the filter using trypsin and counted. Accurate hormone concentrations 

175 were calculated using a correction formula and the measured values. 

176

177 Statistical analysis

178 For comparisons between groups, we used the nonparametric Mann-Whitney U 

179 test. The Games-Howell test was used for analyses involving multiple comparisons. All 

180 analyses were performed using Microsoft Excel and IBM SPSS statistic viewer 24. Lines 

181 in each box represent the median, whereas lines outside each box represent the 90% 

182 confidence interval. The sensitivity and specificity for distinguishing between two groups 

183 using cut-off cortisol values based on blood collection site (i.e., left and right cardiac 

184 chambers and common iliac veins) were estimated using receiver operating characteristic 

185 (ROC) curve analysis. Areas under the curve were calculated and analyzed using a 1-

186 tailed test. The optimal compromise between sensitivity and specificity was determined 

187 graphically. 

188

189 Ethics statement

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 13, 2019. ; https://doi.org/10.1101/670836doi: bioRxiv preprint 

https://doi.org/10.1101/670836
http://creativecommons.org/licenses/by/4.0/


190 This study was evaluated by the Independent Ethics Committee of the Osaka 

191 City University Graduate School of Medicine, which approved opt-out for informed 

192 consent regarding the autopsy data analysis (authorization no.4153). 

193

194 Results 

195 Relationship between cortisol levels and sex, age, survival period, and 

196 postmortem period

197 Serum cortisol levels were not associated with postmortem period, survival 

198 period, sex and related differences, or age. 

199

200 Relationship between cortisol levels and collection site

201 Cortisol levels exhibited correlation (R=0.63-0.92) with blood collection site, 

202 namely, left and right cardiac chambers and external iliac vein. 

203

204 Relationship between cortisol levels and cause of death 

205 At all blood collection sites, cortisol levels were approximately three times 

206 higher in hypothermia cases than in cases involving other causes of death (p<0.05-

207 p<0.0001; Fig 1a-c). Specifically, serum cortisol levels were significantly higher in 
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208 hypothermia cases compared with other causes of death: left cardiac blood, 20-120 μg/dL 

209 (median 50 μg/dL); right cardiac blood, 20-100 μg/dL (median 50 μg/dL); iliac vein, 20-

210 130 μg/dL (median 60 μg/dL) versus left cardiac blood, 0-50 μg/dL (median 20 μg/dL); 

211 right cardiac blood, 0-40 μg/dL (median 10 μg/dL); iliac vein, 0-20 μg/dL (median 20 

212 μg/dL). Furthermore, most cases exhibited lower cortisol levels, except in hyperthermia 

213 cases (heat stroke: left cardiac blood, 0-60 μg/dL [median 30 μg/dL]; right cardiac blood, 

214 0-42 μg/dL [median 20 μg/dL]; iliac vein, 0-60 μg/dL [median 20 μg/dL]). There was no 

215 correlation between ACTH concentration and cortisol in hypothermia cases at any of the 

216 collection sites tested (left cardiac blood: Y = 0.0103x + 3.237; r=0.065;  p> 0.05 versus 

217 right cardiac blood: Y = 0.0217x + 2.7124; r=0.113;  p>0.05 versus iliac vein: Y = 

218 0.026x + 2.4458; r=0.170;  p>0.05). 

219 Sensitivity and specificity cut-off values for distinguishing between groups with 

220 higher (hypothermia) and lower (other cause of deaths) cortisol levels were determined 

221 using ROC curve analysis and estimated as 30 μg/mL (0.917 and 0.852) for the left 

222 cardiac chamber, 25 μg/mL (0.917 and 0.836) for the right cardiac chamber, and 30 

223 μg/mL (0.917 and 0.872) for the common iliac veins. 

224 Fig 1. Cortisol levels in blood collected from three sites. Cortisol levels by cause of 

225 death in the left (a) and right (b) cardiac chambers and the common iliac vein (c). 
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226

227 Cortisol immunopositivity in the adrenal gland 

228 Cortisol immunostaining analysis indicated that in hypothermia cases, cortisol 

229 was primarily localized in the nucleus, whereas cortisol staining was predominant in the 

230 cytoplasm in cases involving other causes of death (Fig 2 a-c). the Graph in Fig 3a shows 

231 the cortisol positivity rate in the nucleus by cause of death. Hypothermia (0-70%, median 

232 50%) cases exhibited significantly higher cortisol positivity rate than the other groups (0-

233 30%, median 5%). The graph in Fig 3b shows the number of cells that were positive for 

234 cortisol in the cytoplasm; however, it was not significantly different compared with the 

235 nucleus. 

236 Fig 2. Immunostaining of cortisol in the adrenal gland.  Micrographs showing 

237 hematoxylin-eosin staining (i) and immunostaining (ii) of cortisol in the adrenal gland in 

238 cases of (a) hypothermia, (b) intoxication, and (c) acute cardiac death (original 

239 magnification ×100). 

240 Fig 3. Cortisol positivity rate in the nucleus and cytoplasm by cause of death. 

241 Cortisol immunopositivity in the nucleus (a: hypothermia; p < 0.05), cytoplasm (b: 

242 hypothermia; p > 0.05), and nucleus to cytoplasm (c: hypothermia; p > 0.05) ratio by 

243 cause of death. 
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244

245 Mono-culture model

246 In the mono-culture models, ACTH- and corticosterone-secreting cells were 

247 cultured separately at 4°C to ensure the absence of ACTH in the culture of corticosterone-

248 secreting Y-1 cells (Fig 4a). AtT20 cells secreted ACTH after 10~15 min of cold exposure 

249 (10 min: median 120 pg/mL; 15 minutes: median 100 pg/mL), which subsequently 

250 decreased by 30 min (median 15 pg/mL) (Fig 5a). Corticosterone secretion by Y-1 cells 

251 increased slowly during the first 30 min of cold exposure (median 30 ng/mL) and 

252 subsequently decreased by 60-180 min (60 min: median 25 ng/mL; 180 min: median 20 

253 ng/mL) (Fig 5b). However, cell culture studies did not reveal a correlation between ACTH 

254 and corticosterone secretion in mono-culture experiments, and these results thus suggest 

255 that corticosterone secretion after cold exposure is independent of ACTH (Fig 5c).

256 Fig 4. Mono- and co-culture of ACTH- (AtT20) and corticosterone-secreting (Y-1) 

257 cells. Schematic illustration of mono-culture (a) and co-culture (b) models of pituitary 

258 and adrenal gland cells.

259 Fig 5. Patterns of ACTH (AtT20) and corticosterone (Y-1) secretion over time. 

260 ACTH (a) and corticosterone (b) concentrations over time under cold conditions (4°C) in 

261 mono-culture. 

262 Pituitary–adrenal cell co-culture model

263 In the co-culture model (Fig 4b), ACTH secretion peaked at 10~15 min (10 min: 

264 median 130 pg/mL; 15 min: median 120 pg/mL) and slowly decreased from 20 min 

265 onwards (median 20 pg/mL). Corticosterone levels slowly increased beginning at 10 min 

266 (median 30 ng/mL), peaked at 20 min (median 300 ng/mL), and decreased after 30 min 
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267 (median 150 ng/mL) (Fig 6). These co-culture results suggest that corticosterone secretion 

268 is ACTH independent, as seen in mono-culture experiments (Fig 7).

269 Fig 6. Secretion of ACTH and corticosterone over time in co-culture of AtT20 and 

270 Y-1 cells. Concentrations of ACTH and corticosterone over time in co-culture of ACTH- 

271 (AtT20) and corticosterone-secreting (Y-1) cells under cold conditions (4°C). 

272 Fig 7. Correlation of ACTH and Corticosterone in mono-culture and co-culture

273 The correlation between ACTH and corticosterone levels in mono-culture. The mono-

274 culture study demonstrated that corticosterone secretion following cold exposure is 

275 independent of ACTH (Y = 1.28x + 11.34, r = 0.3, p > 0.05). In co-culture the correlation 

276 between ACTH and corticosterone levels results demonstrated that corticosterone 

277 secretion following cold exposure is independent of ACTH (Y = 0.03x + 52.04, r = 0.07, 

278 p > 0.05).

279

280 Discussion

281 The correlation between cortisol levels and blood collection site in the present 

282 study suggests there were differences in cortisol levels at the various collection sites tested. 

283 Therefore, we assessed the relationship between cortisol levels in blood collected from 

284 each site and cause of death and found that cortisol levels in cases of hypothermia were 

285 three times higher than those in other causes of death. No significant correlations were 

286 observed between cortisol levels and causes of death other than hypothermia. There was 

287 no correlation between ACTH concentration and cortisol levels in hypothermia, 

288 suggesting that cortisol can be produced by the adrenal gland during cold stress without 

289 stimulation by ACTH. Such ACTH-independent production of cortisol might be 
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290 protective during prolonged (but not acute) periods of cold stress, as cold exposure 

291 promotes glucose production [55]. Importantly, micromorphologic changes in hormone 

292 expression in the adrenal cortex appear to be important for cold-induced cortisol secretion.

293 Cortisol is produced primarily in the zona fasciculata of the adrenal gland. Cell 

294 counts and nuclear and cytoplasm staining by technicians blinded to cause of death 

295 showed that during hypothermia, cortisol staining was primarily localized in the nucleus 

296 rather than the cytoplasm. Furthermore, nuclear stating of cortisol was significantly 

297 greater in cases of hypothermia than cases involving other causes of death, whereas no 

298 significant difference between groups was noted in terms of cytoplasmic staining. These 

299 findings support studies showing that glucocorticoid receptors are inactive in the 

300 cytoplasm, as they are complexed with other proteins [56]. When glucocorticoids bind, 

301 they become active dimers, move into the nucleus, and promote transcription. Here, we 

302 found high levels of cortisol staining in the nucleus during cold exposure. Considered 

303 together, these observations suggest that cortisol is secreted in large quantities in response 

304 to the stress of cold exposure and that re-uptake might also occur [57-59].

305 In this study, we used a novel co-culture system to assess ACTH and 

306 corticosterone secretion secondary to cold stimulation. We demonstrated that ACTH and 

307 corticosterone secretion levels and patterns differed and were not correlated. Mono-

308 culture of ACTH- and corticosterone-secreting cells under ACTH-free conditions at 4°C 

309 resulted in a sudden peak in ACTH at 10 min that decreased after 30 min. This can be 

310 explained by the half-life of mouse ACTH [60]. However, in an ACTH-free environment, 

311 the increase in corticosterone was lower than that seen under co-culture conditions, and 

312 there was no correlation between corticosterone and ACTH levels. These results suggest 

313 that cold exposure leads to independent increased secretion of cortisol.
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314 There are some limitations to this study. The correlation between ACTH and 

315 corticosterone levels in mouse cell culture may differ from that observed in human 

316 autopsy examples. The half-life of hormones may also differ in the cell culture models 

317 and in humans. Furthermore, it is necessary to examine differences between human 

318 cortisol and mouse corticosterone and address problems associated with temperature 

319 settings in the cell culture model [61].

320

321 In conclusion, the present study showed that serum cortisol level can be used as 

322 a biomarker for cold exposure and that cortisol production in response to cold stress does 

323 not depend on ACTH-based activation. As immunostaining for cortisol revealed high 

324 expression levels in the nucleus after cold exposure, it is possible that cortisol production 

325 following cold exposure is independent of ACTH stimulation.

326
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508 Supporting information

509 Fig S1. Correlation with cortisol level. Relationship between cortisol level in blood 

510 collected at different sites and sex (a), age (b), survival period (c), and postmortem period 

511 (d).

512

513 Fig S2. Relationship between cortisol level and blood collection site. Left and right 

514 cardiac blood (a), left cardiac blood-iliac vein blood (b), and right cardiac blood-iliac vein 

515 blood (c).
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