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Abstract 

The Genotype-Tissue Expression (GTEx) resource has contributed a wealth of novel insights into the regulatory 

impact of genetic variation on gene expression across tissues, however thus far has not been utilized to study 

how variation acts at the resolution of the different cell types composing the tissues. To address this gap, using 

liver as a proof-of-concept tissue, we show that mouse scRNA-seq can be used as an alternative to human 

scRNA-seq for the cellular deconvolution of GTEx tissues. Then, using mouse scRNA-seq, we deconvoluted 

over 6,000 bulk RNA-seq samples corresponding to 28 GTEx tissues and show that we are able to quantify 

cellular heterogeneity, determining both the different cell types present in each of the tissues and how their 

proportions vary between samples of the same tissue type. Considering the relative cell type distributions for 

eQTL analyses in GTEx liver and skin samples, we identified thousands of additional genetic associations that 

were cell-type-specific and had lower effect sizes. We further show that cell-type-specific eQTLs in skin 

colocalize with melanoma, malignant neoplasm, and infection signatures, indicating variants that influence gene 

expression in distinct skin cell types play important roles in skin traits and disease. Overall, our results provide a 

framework to deconvolute the cellular composition of human bulk RNA-seq using readily available mouse 

scRNA-seq, which can be implemented immediately for characterizing the functional impact of cell-type-

specific genetic variation. 
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Introduction 

Understanding the regulatory impact of genetic variation on complex traits and disease has been a longstanding 

goal of the field of human genetics. To decipher the mechanistic underpinnings of complex traits, the GTEx 

Project1 has generated a large dataset, including over 10,000 bulk RNA-seq samples representing 53 different 

tissues (corresponding to 30 organs) obtained from 635 genotyped individuals, to link the influence of genetic 

variants on gene expression levels through expression quantitative trait loci analysis (eQTL). While GTEx has 

provided important biological insights, it has not yet considered how cellular heterogeneity (i.e. different cell 

types within a tissue and the relative proportions of each cell type across samples of the same tissue) present in 

bulk RNA-seq affects genotype-gene expression associations. Because regulation of gene expression varies 

across cell types, not accounting for cellular composition could result in loss or distortion of signal from 

relatively rare cell types. It is possible that future studies pursuing cell-type-specific eQTLs may utilize single 

cell approaches (e.g. single cell RNA-seq; scRNA-seq); however, non-trivial technical challenges, such as hard 

to dissociate tissues and low capture efficiencies, make the generation of a GTEx-scale single-cell expression 

dataset a substantial undertaking, which would take years to complete. Thus, as single-cell large-scale scRNA-

seq collections progress, our present knowledge of how genetic variation influences cell-type-specific gene 

expression would greatly benefit from conducting eQTL analyses on bulk GTEx tissue samples whose cellular 

heterogeneity has been characterized through existing deconvolution methods2-4. 

To characterize the heterogeneity of bulk RNA-seq samples, gene signatures from cell types known to be 

present in a given tissue can be used to deconvolute the cellular composition (i.e. the proportion of each cell 

type). The cell-type-specific gene expression signatures needed to deconvolute a heterogenous tissue can be 

obtained by analyzing scRNA-seq generated from an analogous tissue. However, there are relatively few human 

scRNA-seq resources currently available5-9, and thus only a small fraction of GTEx tissues could be 

deconvoluted using cell-type-specific gene expression signatures derived from existing human single-cell data. 

While human single-cell data is limited, the Tabula Muris exists10, which is a powerful resource of scRNA-seq 
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data from mouse including more than 100,000 cells from 20 tissue types (referred in the Tabula Muris resource 

as organs and tissues). A recent study showed that similar cell types in humans and mice share sufficient cell-

type-specific gene expression signatures to integrate scRNA-seq data between the two species11, raising the 

possibility of utilizing the available scRNA-seq from mouse to generate the cell-type-specific gene expression 

signatures for deconvolution of GTEx tissues.  

To examine the feasibility of using mouse-derived cell-type-specific gene expression signatures to deconvolute 

human tissues, we compared cellular composition estimates of GTEx liver samples generated using human 

scRNA-seq to those generated using the Tabula Muris scRNA-seq resource. We show that the human and 

mouse single-cell data captured many overlapping cell populations and that using either human-derived or 

mouse-derived cell-type-specific gene signatures to deconvolute 175 GTEx liver samples resulted in highly 

correlated estimated cellular compositions. We also show that the number of cells analyzed in a scRNA-seq 

dataset impacts the ability to both detect less abundant cell types and distinguish between similar cell types (i.e. 

resolution). We used cell-type-specific gene signatures derived from the Tabula Muris resource to deconvolute 

over 6,000 additional GTEx samples corresponding to 28 tissues from 14 organs, which enabled us to determine 

how the fractions of different cell types vary across GTEx samples derived from the same tissue. Using 

deconvoluted liver and skin GTEx samples for eQTL analyses, we identified thousands of novel (not detected 

using bulk RNAseq samples) genetic associations that tended to have lower effect sizes, some of which are cell-

type-specific. Finally, we show that skin cell-type-specific eQTLs colocalize with GWAS variants for 

melanoma, malignant neoplasm, and infection signatures, indicating that variants that are functional in limited 

skin cell types may play major roles in skin traits and disease. Taken together, our study shows the importance 

of conducting cell-type-specific QTL studies and demonstrates that the estimation of cellular heterogeneity 

enhances the genetic insights yielded from the GTEx resource. 
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Results 

scRNA-seq from murine and human analogous tissues capture similar cell types  

To examine the extent to which scRNA-seq generated from analogous human and mouse tissues captured 

similar cell types (Table S1), we selected human liver as a proof-of-concept tissue (Figure 1A, “proof-of-

concept”). We used previously defined cell types from Tabula Muris mouse liver cells (710 cells; 5 cell types) 

10, and to be consistent, we used the Tabula Muris annotation approach to analyze existing human liver scRNA-

seq data5. In brief, on the 8,119 human liver single-cells, we performed nearest-neighbor graph-based clustering 

on components computed from principal component analysis (PCA) of variably expressed genes, and then used 

marker genes to define the cell populations corresponding to each of the 15 previously observed cell types 5. 

Human and mouse scRNA-seq from liver captured several shared cell types, including hepatocytes, endothelial 

cells, and various immune cells (Kuppfer cells, B cells, and natural killer (NK) cells) (Figure 1B-E), however 

we noted that there were many more distinct cell types for human liver. This was due to the fact that cell type 

resolution (i.e. the ability to distinguish between similar cell types) increases with the number of cells captured 

12. Some of the 15 cell types identified in the human liver scRNA-seq were highly similar and clustered near 

each other, for example four hepatocytes populations distinguished by their spatial location (i.e. zonation) and 

two endothelial cell populations distinguished by zonation (Figure 1B,C). In contrast, for the mouse liver 

scRNA-seq we only observed one hepatocyte population and one endothelial population (Figure 1D,E). If we 

collapsed the cell types that were similar to each other in the human scRNA-seq, we obtained 7 distinct cell 

classes (Figure 1B,F; Table S3), which largely corresponded to the 5 cell types from mouse liver scRNA-seq 

(cholangiocytes and hepatic stellate cells were absent; Figure D,F). Overall, these results show that scRNA-seq 

generated from human and mouse liver captured similar cell types and that number of cells analyzed affects the 

cell type resolution.  
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Figure 1: Cell composition of liver from human and mouse scRNA-seq 

 

A. Overview of the study design. Our goal was to deconvolute the cellular composition of 28 GTEx tissues from 14 organs 

using mouse scRNA-seq for the purpose of identifying cell-type-specific eQTLs. We first conducted a proof-of-concept 

analyses, where we compared cellular estimates of each of the proof-of-concept GTEx tissue (liver) after having 

deconvoluted each using either mouse or human scRNA-seq. We then performed cellular deconvolution of the 28 GTEx 

tissues from 14 organs using CIBERSORT and characterized both the heterogeneity in cellular composition between tissues 

and the heterogeneity in relative distributions of cell populations between RNA-seq samples from a given tissue. Finally, we 

used the cell composition estimates as interaction terms for eQTL analyses to determine if we could detect novel cell-type-

specific genetic associations. 

B. UMAP plot of clustered scRNA-seq data from human liver. Each point represents a single cell and color coding of cell type 

populations (See Methods: Defining the cellular composition of liver) are shown adjacent (Figure 1C). Similar cell types can 

be collapsed to single cell type classifications and are noted with colored, transparent shading (Figure 1F).  

C. Bar plots showing the fraction of each cell type from the scRNA-seq data from human liver. Color-coding of cell types 

correspond to the colors of the single cells in Figure 1B. 
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D. UMAP plot of clustered scRNA-seq data from mouse liver. Each point represents a single cell and color coding of cell type 

populations are shown adjacent (Figure 1E). Each cell type has a corresponding collapsed cell type in human liver and is 

noted with colored, transparent shading (Figure 1F). 

E. Bar plots showing the fraction of each cell type from the scRNA-seq data from mouse liver. Color-coding of cell types 

correspond to the colors of the single cells in Figure 1D. 

F. Legend showing the colors of collapsed similar cell types from human liver (Shading in UMAP Figures 1B,D; Table S3). All 

cell types from mouse liver have a corresponding collapsed cell type in human liver (hepatocyte, endothelial, macrophages, B 

cell, NK/NKT cell) and human liver also contains two additional cell types not present in mouse (cholangiocytes and hepatic 

stellate cells).  

Mouse cell populations can estimate cellular composition of human GTEx samples 

To establish the ability to use cell-type-specific gene expression signatures derived from mouse scRNA-seq for 

the deconvolution of human GTEx tissues, we compared cell composition estimates of bulk RNA-seq 

deconvoluted using human versus mouse expression profiles (Figure 1A, “proof-of-concept”). To estimate 

cellular composition, we first obtained signature expression profiles of the top 200 most significantly 

overexpressed genes for each cell type identified in scRNA-seq from high resolution human liver (i.e. signature 

genes from 15 cell types) and low resolution mouse liver (i.e. signature genes from 5 cell types) (Table S2). 

Then, from 175 GTEx bulk liver RNA-seq samples 1, we independently extracted the expression of the 

signature genes at the two resolutions, and used CIBERSORT2 to estimate the cellular compositions (i.e. high 

resolution human liver estimates and low resolution mouse liver estimates) (Figure 2A,B; Table S11,12). To 

investigate how resolution impacted the correlation between human and mouse signature gene estimates, we 

also collapsed the high resolution human liver cellular composition estimates for each of the 175 deconvoluted 

samples by summing the estimates across similar cell types in each of the 7 distinct cell classes (Table S3) 

(Figures 1B,F and 2C). We then calculated all pairwise-correlations between each of the estimated cell 

populations in the 175 GTEx liver samples from human (high and collapsed resolution estimates) with the 

estimated cell populations from mouse (low resolution estimates) (Figure 2D). We found that hepatocyte 

estimates from mouse liver were positively and highly correlated with the high resolution hepatocyte population 
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from a single zone (hepatocyte 0) estimate (r = 0.71, p-value = 5.4x10-28), less correlated with the collapsed 

hepatocyte population estimate (r=0.64, p-value = 1.015x10-21), but not correlated with any of the other three 

high resolution hepatocyte populations (Figure 2D,E). This indicates that the low-resolution mouse hepatocyte 

population corresponds to one of the four human hepatocyte populations/zones. Further, we observed that the 

endothelial estimates from mouse were not correlated with either high resolution human periportal sinusoidal 

endothelial cells (SEC) or central venous SECs; however, the collapsed human endothelial population estimates 

were highly correlated (r = 0.98, p-value = 1.2x10-115) (Figure 2F). This indicates that the human endothelial 

population estimates captured a higher resolution of cell type specificity (i.e. two independent endothelial 

zones), whereas the mouse endothelial population estimates likely captured a mixture of both cell types (i.e. the 

two endothelial zones are combined into a single cell population). While in general we observed high 

correlation in the human and mouse population estimates for most cell types (hepatocytes, endothelial cells, and 

Kupffer cells), B cells were non-significantly correlated, and NK-like cells were negatively correlated (Figure 

2D). This difference in immune cell estimates in GTEx liver is not wholly unexpected, as immune response 

differences exist between species 13. Our results show that, while the number of cells captured by scRNA-seq 

impact the resolution at which cellular composition can be estimated, mouse cell signatures can be used to 

deconvolute human GTEx bulk RNA-seq samples. 
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Figure 2: Comparison of GTEx cell estimates using mouse versus human cell signatures 

 

A, B, C. Bar plots showing the fraction of cell types estimated in GTEx liver RNA-seq samples from high resolution human liver 

scRNA-seq (A), low resolution mouse liver scRNA-seq (B), and collapsed GTEx estimates from high resolution human liver 

scRNA-seq. 

D. Heatmap showing the correlation of GTEx liver cell population estimates from human liver scRNA-seq at high and 

collapsed resolutions (rows) and mouse liver (columns) at low resolution. Color coding of heatmap scales from red, 

indicating negative and low correlation in estimates, to blue, indicating positive and high correlation in estimates. 

Significance is indicated with asterisks. 

E, F. Scatter plots of estimated cell compositions across 175 GTEx livers deconvoluted using human scRNA-seq for human 

hepatocyte 0 population (d) and human collapsed endothelial cells (e) versus estimated cell populations deconvoluted using 

mouse scRNA-seq. 
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Cellular deconvolution of GTEx adult tissues show samples are heterogenous   

To understand the cellular heterogeneity of GTEx tissues (Figure 1A, “cellular deconvolution”), we used 

signature genes from 14 mouse tissue types (Table S1,2) to perform cellular deconvolution of 28 GTEx tissues 

from 14 organs (Figure 3A; Table S1, S4-18), where the number of samples for each GTEx tissue varied from 

11 (bladder) to 860 (skin). We found that each deconvoluted GTEx tissue contained a variable number of cell 

types ranging from two (bladder) to seven (brain and heart) (Figure 3B). Additionally, the relative distribution 

of the estimated cell types varied between different samples of the same tissue (Figure 3C). Tissues with the 

least heterogeneous cell population distributions between samples were spleen and aorta (Table S17,4), whereas 

those with the most heterogeneous cell population distributions between samples were colon, brain (13 tissues), 

and left ventricle (Table S8,7,18). Examining the tissues corresponding to the same organ, we noted that some 

had the same cell types estimated at similar distributions (adipose subcutaneous and visceral), some had the 

same cell types present at variable proportions (heart atrial appendage and left ventricle; 13 brain tissues), and 

others had variable cell types present/absent (colon transverse and sigmoid). These results reveal a striking 

heterogeneity in GTEx tissues that has not been previously appreciated and may be contributing noise to eQTL 

analyses.  
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Figure 3: Cellular deconvolution of 28 GTEx tissues 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2019. ; https://doi.org/10.1101/671040doi: bioRxiv preprint 

https://doi.org/10.1101/671040
http://creativecommons.org/licenses/by-nc/4.0/


12 

 

 

A. Stacked bar plots showing the fraction of cell types estimated in GTEx RNA-seq samples from mouse scRNA-seq.  

B. Bar plots comparing the number of cell types discovered in mouse scRNA-seq (light grey) vs. the number of these cell 

types that were estimable for each GTEx tissue 

C. Box plots showing per RNA-seq sample the distribution of the log2 average square distance from the mean estimated 

cellular compositions for each GTEx tissue  

eQTL analyses using deconvoluted tissues increases power   

Since we observed heterogeneity in the relative distributions of cell populations across GTEx RNA-seq 

samples, we hypothesized that considering the cell population distributions of each sample would improve 

eQTL analysis by increasing our power to detect novel tissue and/or cell-type-specific associations (Figure 1A). 

We identified 19,621 expressed genes in GTEx liver samples and performed one eQTL analysis not considering 

cellular heterogeneity (i.e. bulk resolution; Table S19), and three eQTL analysis using cell population estimates 

as covariates to adjust for cellular heterogeneity (Tables S20-22): 1) considering high resolution human liver 

estimates (15 cell types; Table S12, 20; Figure 2A); 2) considering collapsed resolution human liver estimates 

(7 cell types; Table S12,3,21; Figure 2C); and 3) considering low resolution mouse liver estimates (5 cell types; 

Table S13,22; Figure 2B). Using cell population estimates as covariates we detected many more genes with 

significant eQTLs (eGenes) than at bulk resolution (Figure 4A). We found that considering high resolution 

estimates identified the most eGenes (10,117) with 1.3 fold and 3.1 fold more than collapsed and low resolution 

estimates, respectively. These findings show that conducting eQTL analyses using highly resolved cell 

population estimates as a covariate significantly increases the power to identify eGenes. 
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Figure 4: Using cellular deconvolution to discover cell type specific eQTLs  
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A. Bar plot showing the number of eGenes detected in each eQTL analysis from liver (shades of red) and skin (shades 

of blue).  

B, C, D.  Distributions of (b) number of GTEx tissues where each eGene has significant eQTLs, (c) effect size β and (d) 

standard error of β in liver and skin. Colors are as in panel A. vertical dashed lines represent mean values. P-values 

were calculated in comparison with the bulk resolution analysis for each tissue using Mann-Whitney U test. 

E-H. Bar plots showing the number of eGenes significantly associated with each specific cell population considering cell 

estimates for: liver high resolution (e), liver collapsed resolution (f), liver low resolution (g), and skin. Total number 

of eGenes for each cell type indicates the cell type is significantly associated and the hashed number of eGenes for 

each cell type indicates the association is cell-type-specific (e.g. only significant in that cell type). In cases where a 

given cell type had no significant association, the bar is not shown. 

 

Given the differences in the number of detected eGenes based on cell-type resolution, we hypothesized that 

eGenes detected at low powered resolutions (bulk and collapsed resolution) commonly shared eQTLs with other 

GTEx tissues (i.e. tissue-neutral) and the eGenes detected using higher powered resolutions (high and low 

resolutions) had more tissue-specific eQTLs (i.e. less frequently in other GTEx tissues). For each resolution, we 

calculated the number of GTEx tissues in which each eGene has eQTLs. We observed that eGenes identified 

using cell populations as covariates in general were more tissue-specific (i.e. present in fewer GTEx tissues) 

than eGenes detected at bulk resolution. Compared to bulk resolution, high resolution eGenes were the most 

tissue specific (p = 4.2x10-194; Mann-Whitney U test), then low resolution eGenes (p = 2.17x10-174; Mann-

Whitney U test), and collapsed resolution was the least tissue-specific (p = 6.59x10-94; Mann-Whitney U test) 

(Figure 4B), showing that the resolution of cell population estimates used as covariates is correlated with the 

power of the study to identify tissue-specific eGenes.  

Furthermore, using cell populations as covariates resulted in decreased effect size (β) (Figure 4C) and standard 

error (SE) of β (Figure 4D), where relative to bulk resolution, the higher the resolution of the eQTLs, the 

smaller the β and SE of β. However, in general the β values for the top hit for each gene were highly correlated 

between eQTLs detected using cell populations and eQTLs detected without using cell populations (r > 0.975, 
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Figure S1A-C). These results indicate that using cell population distributions as covariates overall reduces the 

noise, thereby potentially increasing our power to identify eQTLs. 

Resolution of deconvoluted tissues impacts the number of identified cell-type-specific regulatory 

variants     

To examine if some of the eQTLs identified using cell population estimates as covariates were cell-type-

specific, we used a statistical interaction test14 to assess if modeling the contribution of a specific cell type 

significantly improved the observed association between genotype and gene expression. Interaction tests were 

performed on all independent pairs of eGenes and corresponding lead eQTLs using liver cell type estimates 

from the high, collapsed, and low resolution as interaction terms. Overall, across the high, collapsed, and low 

resolutions we respectively detected 74, 528 and 121 cell-type-associated eGenes (i.e. eGene is associated with 

one or more cell type(s); FDR-corrected p-values < 0.1, χ2 test, Figure 4E-G) and 54, 220 and 68 cell-type-

specific eGenes (i.e. eGene is associated with only one cell type; Figure 4E-G). Notably, using low resolution 

and collapsed resolution cell populations, we respectively detected 1.6 and 7.1 times more cell-type-associated 

eQTLs than high resolution cell populations (respectively, p = 1.9 x 10-7 and 7.3 x 10-250, Fisher’s exact test, 

Figure 4E-G). While initially counter-intuitive to the previous evidence showing higher resolution eGenes are 

more tissue-specific (Figure 4B) and have decreased noise (Figure 4C,D), it is possible we identify fewer cell-

type-associated eGenes using highly resolved cell populations estimates than collapsed estimates, because the 

eQTL signal in high resolution cell types may be diluted between similar cell populations (i.e. regulatory 

variants having similar effects across the similar cell types). Overall, these results suggest that accounting for 

cellular heterogeneity between samples allows for the discovery of novel cell-type-associated (and cell-type-

specific) eQTLs.   

eQTL analysis of deconvoluted GTEx skin confirms ability to identify cell-type-specific 

regulatory variants   
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To further investigate the impact of using cell populations on power to identify novel eGenes and cell-type-

specific eQTLs, we conducted eQTL analyses using the GTEx tissue (skin), which includes the largest number 

of RNA-seq samples (Figure 3A). We deconvoluted 749 skin RNA-seq samples from 510 distinct individuals 

using signature genes from mouse skin scRNA-seq (5 cell types; Figure 3A). We found that only 4 of the 5 

mouse skin populations were detected in GTEx human liver (Figure 3B), which may be due to differences in 

depth of skin biopsies between GTEx and Tabula Muris (basal cells of the epidermis were absent). We 

identified 24,029 expressed genes in the 749 skin RNA-seq samples and performed two eQTL analysis: 1) 

without using cell population distributions (bulk resolution) (Table S23); and 2) using deconvoluted cell 

populations (skin deconvoluted from mouse; 4 identified cell types) (Table S24). Using cell population 

distributions as covariates, we detected a 53% increase in genes with significant eQTLs (14,174 compared with 

9,232, Figure 4A). We observed that eGenes specific for the eQTL analysis performed using cell populations as 

covariates had eQTLs in fewer tissues than eGenes detected in at bulk resolution (p = 5.54 x 10-256, Mann 

Whitney U test; Figure 4B), had a decreased effect size β (p = 3.61 x 10-93, Mann Whitney U test; Figure 4C), 

and had decreased standard error (SE) of β (p = 1.71 x 10-53, Mann Whitney U test; Figure 4D). We also 

observed that the β values for the top hit for each eGene were highly correlated between eQTLs detected using 

cell populations and eQTLs detected without using cell populations (r = 0.989, Figure S1D). Further, we 

detected 417 cell-type-associated eGenes (FDR-corrected p-values < 0.1, χ2 test, Figure 4H) and 241 cell-type-

specific eGenes (FDR-corrected p-values < 0.1, χ2 test, Figure 4H). The relatively large number of cell-type-

associated eGenes compared with the liver could be reflective of sample size differences between skin and liver 

(749 and 153, respectively) impacting power to detect eGenes. These results show that even in eQTL studies 

using large sample sizes, accounting for cellular heterogeneity results in the detection of thousands more 

eGenes, which tend to show cell-type-specific differential regulation.  

Colocalization identifies cell-type-specific regulatory variants are associated with specific skin 

diseases   
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To explore the functional impact of the cell-type-specific eQTLs identified in skin, we examined their overlap 

with GWAS lead variants for skin traits and disease. From the UK Biobank, we extracted GWAS summary 

statistics for 23 skin traits where the cell types identified from skin scRNA-seq (Figure 5A,B) likely played a 

role in the traits (Table 25) and grouped them into seven categories based on trait similarity: 1) malignant 

neoplasms, 2) melanomas, 3) infections, 4) ulcers, 5) congenital defects, 6) cancer (broad definition, non-

malignant neoplasm), and 7) unspecified skin conditions. We performed colocalization to identify skin eQTLs 

and skin GWAS loci that share common causal variants using coloc15 and examining instances with PP4 > 0.5 

(PP4, posterior probability of the colocalization model having one shared causal variant). We identified 473 

variants that showed evidence of colocalization (Table 25). These results show that we could identify hundreds 

of skin eQTLs that likely share a causal variant with skin GWAS. 

We next asked if skin GWAS traits were enriched for eQTLs that are associated with distinct cell types. We 

tested the enrichment of cell-type-associated eQTLs at multiple PP4 thresholds and found malignant neoplasms 

were enriched for eQTLs associated with leukocytes (p = 1.92 x 10-4 Fisher’s Test; Figure 5C) and keratinocyte 

stem cells (p = 7.30 x 10-4), melanomas were only enriched for eQTLs associated with keratinocyte stem cells 

(p = 4.91 x 10-6 Fisher’s Test; Figure 5D), and infections were only enriched for eQTLs associated with 

epidermis cells (p = 1.3 x 10-3 Fisher’s Test; Figure 5E). The non-significant but strong signal in ulcers for 

association with keratinocyte stem cells (p = 0.25 Fisher’s Test; Figure 5F), was due to a single cell-type-

associated eQTL (antisense gene: RP11-524D16__A.3) sharing a signal with one ulcer GWAS locus. We did 

not observe an enrichment of cell-type-associated eQTLs in congenital malformations (Figure 5G), cancer 

(broad definition), or unspecified skin conditions. It is unclear if this is to be expected, as it is possible other cell 

types not estimated may be contributing to the diseases or in the case of congenital malformations, it is possible 

that expression differences impacting congenital malformations may be functioning during development and not 

detectable in adult skin. Overall, these results suggest that GWAS lead variants are commonly cell-type-

associated regulatory variants, indicating that onset or progression of human disease and traits may be 

controlled at the cell type level. 
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As the immune system has been implicated in playing a role in skin cancer16-18, which includes the various skin 

cancer types delineated by malignant neoplasms, we next sought to examine the six eGenes with eQTLs 

significantly associated with leukocytes and colocalized with malignant neoplasms to gain insight into the 

potential roles they play in disease. Among these eGenes was TCF19 (PP4 = 0.98), previously implicated in 

increasing cell proliferation in carcinomas19, ATAD3C (PP4=0.73), previously shown to influence the Fanconi 

anemia DNA repair pathway and often malfunctioning in human cancers20, and SERPINB9 (PP4=0.16), which 

disruption of the serpinb9 protein in circulating T cells was previously shown to increase risk of skin cancer 

post-kidney transplantation21. Of the remaining eGenes, two (NT5C2, and CD1E) also have also been found to 

play a role in cancer progression or immune response22, 23, supporting our ability to identify cell-type associated 

eQTLs whose functions are congruent with playing a role in the etiology of malignant neoplasms of the skin. 

Defects in the final eGene, ZNF408, have been linked to diseases of the retina (familial exudative 

vitreoretinopathy and retinis pimentosa)24, 25, however it is unclear what role it may play in malignant 

neoplasms. Together these results show that conducting eQTL studies accounting for cellular heterogeneity can 

identify the likely causal cell-type associated variants and genes underlying GWAS disease loci. 
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Figure 5: Colocalization of cell-type-specific skin eQTLs with skin GWAS traits 

 

 

A. Cartoon of describing approximate organization of cell types identified in scRNA-seq from skin. Colors used for each 

cell type are used throughout Figure. 

B. UMAP plots of clustered scRNA-seq data from mouse skin. Cells are colored following color coding of each cell type from 

5A. 

C-G.  Line plots showing the enrichment of cell-type-associated eQTLs in various GWAS traits: malignant neoplasms (c), 

melanoma (D), infection (e), ulcers (f), and congenital malformations (g). Enrichment is plotted as the log(OR) (y-

axis) over all probabilities of the eQTL signal overlapping (0 = not overlapping – 1 = completely overlapping) with the 

GWAS signal (x-axis). Lines are colored following color coding of each cell type from 5A. 
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Discussion 

Genetic association studies performed by GTEx have identified a wealth of novel insights into how human 

genetics function across bulk tissues1, however these analyses do not consider how cellular heterogeneity can 

confound these studies through biasing or even masking cell-type-specific signals. Therefore, we sought to 

deconvolute the cellular composition of GTEx tissues using the mouse scRNA-seq Tabula Muris compendium10 

and to perform eQTL analyses considering cellular heterogeneity as a covariate. Using scRNA-seq from 14 mouse 

tissue types, we deconvoluted over 6,000 GTEx RNA-seq samples mapping to 28 tissues from 14 organs. We 

found that considering cellular heterogeneity significantly improved eQTL analyses by increasing power to detect 

eGenes, as well as by identifying cell-type-specific associations that were masked in an analysis using bulk RNA-

seq from the same samples. We further show that cell-type-associated eQTLs colocalize with lead variants from 

relevant GWAS traits, highlighting a potential path forward for understanding the impact of genetic variation on 

mechanisms underlying complex traits.  

Human scRNA-seq data representative of all tissues in GTEx that can be used to deconvolute more than 10,000 

GTEx bulk RNA-seq samples does not yet exist. As the Tabula Muris resource of mouse scRNA-seq from 20 

organs was recently released, we sought to determine if mouse scRNA-seq could be used as an alternative for 

human scRNA-seq for cellular deconvolution by comparing the cellular composition estimates derived from 

using scRNA-seq from human versus mouse. We established that mouse scRNA-seq was a suitable alternative 

to human scRNA-seq for estimating cellular heterogeneity in GTEx tissues. In general human and mouse 

estimates were comparable and discrepancies in cell composition estimates between the species were a result of 

differences in cell type resolution. As Tabula Muris does not represent all of the GTEx tissues, we were only 

able to deconvolute a subset of GTEx RNA-seqs (28 of the 53 tissues). However, as we show mouse scRNA-

seq can estimate cellular composition comparable to human scRNA-seq, it is possible other scRNA-seq 

resources from mouse and other mammalian species could be used to deconvolute all of GTEx. 
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Considering cellular heterogeneity estimated from deconvolution of GTEx liver using high resolution scRNA-

seq identifies substantially more eQTLs than from using lower resolutions (low resolution or collapsed 

resolution); however high resolution cell estimates identify fewer cell-type-associated genetic associations than 

lower resolutions. It is possible this decrease in associations may be due to dilution of signal between the 

similar cell types, which indicates varying benefits between resolutions for discovering more eQTLs versus 

classifying cell-type-specific eQTLs. Overall, this emphasizes that while efforts to generate a resource of 

scRNA-seq data from human tissues26 are in progress, studies performing genetic association analyses from 

human data should utilize already existing scRNA-seq from mouse and other species comparable to human to 

estimate cellular heterogeneity to optimize power. 

Taken together, these data describe a novel approach to obtain cell-type-specific genetic associations by using 

mouse scRNA-seq to deconvolute bulk human RNA-seq. The framework we propose to deconvolute the 

cellular composition of bulk RNA-seq from GTEx opens the door to the wealth of publicly available bulk RNA-

seq samples that already exist and can be reanalyzed considering their heterogeneity. Our results further 

emphasize that this straightforward approach has the potential to greatly expand our understanding of the 

functional impact of genetic variation on complex traits and disease. 
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Methods 

Processing of scRNA-seq from human liver 

10X Genomics formatted BAM files from five human liver samples were downloaded (GEO accession: 

GSE11546) and converted to fastq files using 10X bamtofastq 

(https://support.10xgenomics.com/docs/bamtofastq). Converted fastq files were then processed using cellranger 

count utility to generate gene expression count matrices, then the five processed liver samples were merged 

using cellranger aggr utility. 

Mouse single cell transcriptome profiles from 14 mouse organs from Tabula Muris 

Single cell transcriptome profiles from 14 organs were used in this study10. Briefly, transcriptome profiles were 

generated from three female and four male mice (C57BL/6JN; 10-15 month-old) from:  aorta, atrium, bladder, 

brain nonmicroglia, colon, fat, kidney, liver, mammary gland, muscle, pancreas, skin, spleen, ventricle (Table 

S1). Upon extraction of these organs from the mice, single cell transcriptomes were generated by first sorting by 

fluorescence-activated cell sorting (FACS) (FACS method; SMART-Seq2 RNAseq libraries). We downloaded 

the normalized gene expression and annotated single-cell clusters from each organ as Seruat11 Robjects  

(https://figshare.com/articles/Robject_files_for_tissues_processed_by_Seurat/5821263/1). 

Annotation of the cell populations present in human liver scRNA-seq data 

Characterization of cell type composition of scRNA-seq from human liver5 were analyzed following the same 

approach used to annotate mouse organs10. From both tissue types, cells with fewer than 500 detected genes or 

cells with fewer than 1,000 UMI were filtered from the data, resulting in 8,119 cells analyzed from human liver.  

Gene expression was then log normalized and variable genes were identified using a threshold of 0.5 for the 

standardized log dispersion. Principal component analysis (PCA) was performed on the variable genes and 

significant PCs were identified by visual inspection of the elbow the standard deviations of the PCs observed 
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through a Scree plot. Clustering was then performed using a shared-nearest-neighbor graph of the significant 

PCs. Single cells were then visualized using Uniform Manifold Approximation and Projection (UMAP) and 

cellular subtypes were identified by observing the relative abundance of known liver marker genes10.  

Collapsing liver cell population estimates 

Cell population estimates in GTEx liver were merged based on similar cell populations. To collapse similar cell 

populations, we examined the UMAP from high resolution human liver scRNA-seq (Figure 1B) and compared 

to the UMAP from low resolution mouse liver scRNA-seq (Figure 1C) to identify broader/lower resolution 

classifications of cell types present in the liver (Table 3). We identified populations in the human liver scRNA-

seq that were similar (e.g. Hepatocyte populations 0, 1, 3, and 4; Figure 1B) with a corresponding population in 

the mouse liver scRNA-seq (e.g. Hepatocyte; Figure 1C). For populations identified in human not present in 

mouse, we did not perform any collapsing.  

Deconvolution of complex tissues using CIBERSORT 

Identification of signature genes from single cell populations: For scRNA-seq from human liver and scRNA-

seq from 14 mouse organs, we obtained signature gene profiles for each cell type identified from scRNA-seq 

(Table S2) as input into CIBERSORT2 to estimate the cellular composition of GTEx adult tissues (Table S1). 

To obtain these signature gene profiles, we first identified differentially expression genes from each scRNA-seq 

cell population within a given tissue using Seurat FindMarkers. Of these differentially expressed genes for each 

cell type, we extracted the top 200 most significantly overexpressed genes (adjusted p-value < 0.05; average 

log2 fold change > 0.25). For signature genes obtained from mouse scRNA-seq, we converted the mouse genes 

to their human orthologs using the BioMart database27, 28. The final gene signature sets only included mouse 

signature genes that also had a human ortholog. For cases that a mouse gene had more than one human ortholog 

for a given cells type, only one human ortholog was retained in final signature set. For cases that different 
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mouse genes corresponded to the same human ortholog for a given cell type, only unique human orthologs were 

retained in the final signature set.  

Cell composition estimation: The mean expression levels of the top 200 genes overexpressed in each of the cell 

type identified in the scRNA-seq from various human and mouse organs were used as input for CIBERSORT2 

to calculate the relative distribution of the cell populations of 28 GTEx tissues from 14 organs (Table S4-18). 

CIBERSORT (https://cibersort.stanford.edu/) was run with default parameters using the TPM values for the 

signature genes identified from scRNA-seq in all RNA-seq samples from the analogous GTEx tissue 

(https://gtexportal.org/home/datasets) (Table S1). GTEx tissues are defined by the distinct area of the organ 

where the tissue was taken (variable name SMTSD from sample attributes data table; phv00169241.v7.p2) and 

organs are defined as the regions where the tissues are sampled from (variable name SMTS from sample 

attributes data table; phv00169239.v7.p2). 

eQTL analysis 

To detect eQTLs, we obtained TPM for 153 liver samples and 749 skin samples (sun-exposed and not sun-

exposed) from the GTEx V. 7 website (https://gtexportal.org/home/) and downloaded WGS VCF files from 

dbGaP (525 individuals, phs000424.v7.p2). Only genes with TPM > 0.5 in at least 20% samples were 

considered (19,621 in liver and 24,029 in skin). Gene expression data was quantile-normalized independently 

for each tissue type. For all eQTL analyses, we used the following covariates: age, sex and the first five 

genotype principal components (PCs) calculated using 90,081 SNPs in linkage equilibrium29. We fitted 

different linear mixed models (LMMs) using the lme4 package 

(https://www.jstatsoft.org/article/view/v067i01/0)) to detect eQTLs in liver and skin. skin, we used the 

following model14: 

Expression ~ genotype + covariates + (1|subject_id) 
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Where (1|subject_id) denotes subject-specific random effects. We used the subject-specific random effect for 

skin because several individuals had two samples. For liver, we used sex as random effect to fit an LMM using 

a method analogous to skin eQTL analysis: 

Expression ~ genotype + covariates + (1|sex) 

Where (1|sex) denotes sex-specific random effects. We calculated associations with all variants (minor allele 

frequency > 1%) ± 1 Mb around each expressed gene. For each gene, we Bonferroni-corrected p-values and 

retained the lead variant. To detect eGenes, we used Benjamini-Hochberg FDR at 10% level on all lead 

variants.  

Using cell population distributions to improve eQTL detection  

We repeated eQTL detection using LMMs with cellular compositions as covariates. Since several cell types 

were detected at very low frequency, we only used a subset of the cell types described in Figure 3. Specifically, 

we detected liver eQTL using human (high resolution and collapsed) and mouse (low resolution) cell 

populations as covariates. We used the following cell populations: 1) for human high resolution: periportal 

sinusoidal endothelial cells, central venous endothelial cells, gdT cells, hepatocytes0, hepatocytes3, 

hepatocytes4, inflammatory macrophages and NK/NKT cells; 2) for human collapsed resolution: endothelial 

cells, hepatocytes, macrophages, NK cells, B cells, cholangiocytes, and heptatic stellate cells; and 3) for mouse 

low resolution: endothelial cells of hepatic sinusoid, hepatocytes, Kupffer cells and NK cells. For skin, we used 

the following cell populations: epidermal cells, epidermal stem cells, keratinocyte stem cells and leucocytes. 

For each cell population, we compared the following two models: 

H0: expression ~ genotype + covariates + cell_populations + (1|random) 

H1: expression ~ genotype + covariates + cell_populations + genotype:cell_population + (1|random) 

Where (1|random) denotes each tissue’s random effect. We next calculated the difference between the two 

models using ANOVA and obtained χ2 p-values using the pbkrtest package 

(https://www.jstatsoft.org/article/view/v059i09). For each eGene, we compared each cell population to H0 and 
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retained only the most significant association. Only eGenes with χ2 p-values adjusted for Benjamini-Hochberg 

FDR <0.1 and Akaike’s information criterion (AIC) < 0 were labeled as cell population-specific. 

Colocalization of UK Biobank GWAS for skin traits and eQTLs identified from skin  

For each eGene in the skin eQTL analysis deconvoluted using cell population estimates, we extracted the p-

values for all variants that were used to perform the eQTL analysis. From the UK BioBank, we obtained 

summary statistics for 23 skin-related traits (Table S25). For all the variants genotyped in both GTEx and UK 

BioBank, we used coloc V. 3.115 to test for colocalization between eQTLs and GWAS signal. For each 

colocalization test, we considered only the posterior probability of a model with one common causal variant 

(PP4) and tested the enrichment of cell-type-specific associations at multiple thresholds using Fisher’s exact 

test. 
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