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Single-cell RNA sequencing (scRNAseq) is a robust technology for parsing gene expression in individual 

cells from a tissue or other complex source. One application involves experiments where cells from multiple 

species are recovered from a single sample, such as when human cells are transplanted into an animal 

model. We transplanted microglial precursor cells into newborn mouse brain and then recovered 

unenriched cortical tissue six months later. Dissociated cells were assessed by scRNAseq. The default 

method for analyzing these results begins by aligning sequencing reads with a mixture of both mouse and 

human reference genomes. While this clearly identifies the human cells as a distinct cluster, the clustering 

is artificially driven by expression from non-comparable gene identifiers from different species. We devised 

a method for translating expression counts from human to mouse and evaluated four algorithms for parsing 

mixed-species scRNAseq data. Our optimal approach split raw sequencing reads according to the best 

alignment score in each genome, and then re-aligned reads only with the appropriate genome. After gene 

symbol translation, pooled results indicate that cell types are more appropriately clustered and that 

differential expression analysis identifies species-specific patterns. This method should be applicable to any 

mixed-species scRNAseq experiment.  

Summary of optimal strategy: 
• Mixed-species scRNAseq data are aligned with mixture of mouse and human reference genomes 

• The BAM file is scanned to find the best alignment score for each sequencing read identifier; these are used 

to split the paired FASTQ files into two sets of files 

• Each set of species-specific, paired FASTQ files is re-aligned with only the appropriate reference genome 

• Raw counts imported into Seurat 

• The human counts table is translated to mouse gene symbols using a custom HomoloGene translation table 

• Results are merged and analyzed 

 

Introduction 
As single-cell RNA sequencing (scRNAseq) becomes 

widely utilized, one obstacle is the analysis of cells in a 

single assay from multiple species. An example 

application that is novel to this technology is when cells 

from one species are transplanted into another, and then 

both host and graft cells are recovered by scRNAseq for 

parsing into cell-level data. In our case, human iPSC-

derived microglial precursor cells were implanted into 

newborn mouse brain (Xu et al., 2019). We recovered 

cortical tissue from mouse after six months of 

development to assess microglial gene expression 

patterns in both the xenograft human cells as well as the 

host mouse microglia. A primary goal was to compare 

human and mouse microglia residing in the same host 

brains. 

In general, scRNAseq requires dissociation of tissue into 

single cells, followed by microfluidic packaging of 

individual cells into a droplet along with a single bead 

encoded with a barcoded primer (Macosko et al., 2015). 
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After cell lysis and reverse transcription from the 

barcoded primer within the droplet, the resulting cDNAs 

can be pooled and prepared for sequencing as with a 

traditional RNA sequencing library. We used the 10X 

Genomics version of the technology, with a microfluidic 

chamber to encapsulate cells and a design to produce 

paired-end sequencing results with one end (R2) giving 

cDNA sequence and the other (R1) revealing the cell-

specific barcode sequence. The data are generally aligned 

with a reference genome (only the R2 reads) and counts 

of observed transcripts summed by barcode. An excellent 

review of scRNAseq technologies and analysis pipelines 

is available elsewhere (Hwang et al., 2018). Our goal was 

to process a dataset from two species. In another 

example, mouse and human brain scRNAseq data have 

been integrated for a combined cell-type analysis 

(Johnson et al., 2019), but this is a different design. 

In our experiments, the first step in processing the 

samples was to align raw, barcoded sequencing results 

(FASTQ files) with a mixture of human and mouse 
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reference genomes. It was assumed that each cell, 

identified by a unique barcode, would predominantly 

match only one of the two genomes. A standard workflow 

would then normalize/scale the data, calculate principal 

components, and then visualize clusters of cells in a t-

distributed stochastic neighbor embedding (tSNE) plot. If 

only one cell type in the experiment derives from the 

transplanted human cells, only one tSNE cluster would 

be identified by expression of human genes. We observed 

this result as expected. However, this result poses a 

problem, since all other clusters are identified using 

mouse gene identifiers and therefore the two expression 

patterns cannot be compared.  

To resolve this problem a simple approach would be to 

isolate barcoded identifiers from the human cluster, 

translate human gene measurements into homologous 

mouse genes, and re-assemble the expression data, 

similar to strategies used by others (Butler et al., 2018). 

This requires a unique (1:1) translation table to be 

constructed that reasonably compares expression 

patterns between the two species. Mouse-human 

homology tables generally have multiple matches that 

would need to be resolved or filtered. Furthermore, it is 

not clear if alignment of raw sequences to a combined 

reference genome would underestimate counted gene 

expression in the appropriate species due to some reads 

having inappropriate alignment with the wrong genome. 

One can devise several alternate strategies for 

translating and combining reads from multiple species—

which is the most effective? To identify the optimal 

strategy, this study will evaluate differences among the 

methods, and compare methods for combining cells from 

multiple species. We will evaluate the specificity of 

species assignment of barcodes and we will identify gene 

expression differences between two species for the same 

clustered cell type (microglia). 

Results 
Transplants and sequencing. Human presumptive 

macrophage precursor (PMP) cells were prepared from 

iPSC and transplanted into the cortices of newborn (P0) 

immunocompromised (rag2-/-), hCSF-expressing mice as 

described (Xu et al., 2019). Four xenografted mice (two 

males and two females, labeled s1 through s4) were 

harvested 6 months after transplant. Isolation and 

dissociation of mouse brain tissue, single-cell isolation, 

and library preparation were described previously (Xu et 

al., 2019). Raw sequencing results are archived at NIH 

GEO, accession number GSE129178.  

Combined analysis. 10X Genomics cellranger software 

was used to align raw sequencing reads (n=4 samples, 

mean 98,245,520 reads/sample) with a mixture of human 

(hg19) and mouse (mm10) reference genomes, resulting 

in an average of 112,048,732 alignments/sample. 

Barcoded counts per gene were loaded into the R package 

Seurat (Satija et al., 2015). After normalization, scaling, 

and clustering, one cluster was clearly enriched with 

human cells (Figure 1A, labeled as Human Microglia). A 

list of 1,684 barcodes identifying this human-specific 

cluster was exported for use in subsequent analyses. 

Another list of the remaining 17,459 barcodes was also 

exported, presumably corresponding to mouse cells.  

Homologene table. Many human gene symbols 

correspond to multiple orthologous mouse genes, and vice 

versa. To obtain a table of unique gene symbols, a 

homologene table was downloaded from Jackson Labs 

(2019). This list was hand-curated to produce a unique 

list of 17,629 pairs of mouse-human matches 

(Supplemental File: geneTrans.txt). This list was 

edited by searching for duplicated gene symbols, 

removing symbols that were derived from clone names 

when traditional gene symbols were also available and 

choosing among numbered or lettered sets of symbol 

codes. For example, human IL11RA is homologous to 

mouse Il11ra1, Il11ra2 and Gm13305. Gm13305, which 

is derived from a name in a cDNA collection, designates 

a predicted gene overlapping Il11ra2. For this homology 

table, only Il1ra1 was retained and both Il11ra2 and 

Gm13305 were deleted. Similarly, if multiple gene 

orthologs were listed, and they were clearly labeled as an 

ordered series (e.g., with suffixes such as a,b,c…), only 

the first element was chosen. Any genes with multiple 

homologs that could not be resolved with these simple 

rules were deleted. The editing process, while somewhat 

arbitrary, was designed to produce a reasonable sampling 

of genes with known orthology between species. During 

analysis of scRNAseq data it was further determined that 

mitochondrial genes were missing from this list, and so 

they were added during sample processing (33 genes).  

Summary of Strategies. The initial approach was to 

extract human cell results from the genes x barcodes 

matrix, convert human gene symbols directly to mouse 

using the homologene table, and recombine results with 

mouse cells (this method is named Direct Homologene 

Translation [DHT]). A second strategy was to simply 

align the original FASTQ files with each genome 

separately (named Each Genome [EG]). For this to be 

effective, the 100 nt cDNA reads would need to be 

sufficiently distinct between species so as not to 

exacerbate the problem of inappropriate alignment. A 

third strategy would also rely on the human barcode list 

but, instead of re-naming existing gene counts, use it to 

split the original FASTQ reads into two species-specific 

subsets, which would each be aligned with only the 

appropriate genome (Split by barcode identifier [ID]). 

This would have the advantage of eliminating cross-

species alignment but of course it would be limited by the 

accuracy of the initial clustering. Finally, the process of 

parsing and splitting read files could be extended to 

ignore the human-specific barcode list and instead 

directly split reads according to which genome produced 

the best alignment score for each sequencing read (Split 

by best score [BS]). The split FASTQ files could then be 
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re-aligned with only the appropriate genome and re-

assembled as before. Each of these will be evaluated by 

comparing the splitting of reads and barcodes into 

distinct genomes and how well each method drives the 

comparison of mouse and human microglia. 

Direct homologene translation (DHT). For this 

strategy, sequencing counts were loaded from the mixed-

genome cellranger count output into a Seurat data object 

with each replicate distinguished by prepending a sample 

identifier tag (s1…s4) to the barcode sequence tags. Raw 

counts were exported to a table in R. The human cells 

were selected using the barcodes exported from the initial 

combined analysis. In this subset table, only human 

genes appearing on the homologene table were preserved 

and translated from human to mouse gene symbol, 

resulting in a table of 9,689 gene symbols for 1,684 

barcodes. The raw data table was similarly filtered using 

the mouse barcode array and only the mouse gene 

symbols present in the homologene table, producing a 

table of 14,828 gene symbols for 17,459 barcodes. These 

tables were re-loaded into separate Seurat data objects 

and then merged into a single object (15,022 genes x 

19,143 barcodes). The R commands used for this process 

and diagnostic output are displayed in an RMarkdown 

report (Supplemental File 1). The tSNE plot from this 

strategy (Figure 1B), shows a different pattern of 

clusters but overall a similar distribution of mouse brain 

cell types as the combined analysis (Figure 1A). 

Alignment with each genome (EG). Raw FASTQ files 

were aligned separately to both human (hg19) and mouse 

(mm10) reference genomes using the cellranger count 

command, resulting in a mean 5,479,238 alignments per 

sample to hg19 and 103,991,443 alignments to mm10. 

Counts from each genome were loaded into distinct 

Seurat objects. The human object was exported to a table 

of raw counts, converted to mouse symbols using the 

homologene table, and re-imported into a Seurat object 

(11,377 gene symbols x 16,708 barcodes). The mouse 

object was selected to include only the mouse genes 

present in the homologene table (14,545 symbols x 29,055 

barcodes). The two objects were then merged (14,781 gene 

symbols x 45,763 barcodes). An RMarkdown report for 

this procedure is shown in Supplemental File 2. A 

tSNE plot from this strategy (Figure 1C) splits several 

cell type clusters into distinct sub-clusters. 

Splitting sequencing reads by clustered barcode 

(ID). With the list of human-specific barcodes from the 

initial clustering, we sought to select reads from the 

original FASTQ files that could be assigned as human 

sequences. Instead of beginning with the FASTQ file, this 

strategy required parsing the BAM file produced by 

cellranger count, since only this file contains the 

“corrected” barcode string that would perfectly match the 

human-specific list. A python script (Supplemental File: 

splitByID.py) iterated through the BAM file and stored 

FASTQ read IDs associated with the human barcodes 

from the cluster found in the combined analysis. The 

script then iterated through the paired FASTQ files, 

splitting them into two matching sets of barcode reads 

(R1) and cDNA sequences (R2) for each genome based on 

matching the selected read IDs. Each set was then 

separately aligned with the appropriate genome using 

cellranger. Counts were imported into Seurat objects. The 

human object was converted to mouse symbols using the 

homologene table (resulting in 9,336 gene symbols x 

1,683 barcodes) and then merged with the mouse object, 

 

Figure 1. Clustering by Method. Individual cells were clustered and plotted 
as a tSNE projection. Cell types were labeled according to top genes 
differentiating each cluster from all others. (A) Mixed: All samples were 
aligned with a mixture of mouse and human reference genomes (mm10 and 
hg19). In this case the Human Microglial cluster primarily expresses human 
genes (gene symbol prepended with “hg19_”) and all other clusters primarily 
express mouse genes (symbol prepended with “mm10_”). (B) DHT: The 
human microglial clustered barcode identifiers were used to isolate a count 
table, which was translated to mouse symbols and merged with the remaining 
barcodes. (C) EG: The original FASTQ files were aligned with human and 
mouse reference genomes separately. The human count table was translated 
to mouse gene symbols and merged with the mouse count table. (D) ID: The 
Human Microglial cluster (from panel A) was used to extract sequencing read 
IDs from the mixed-genome BAM file. These were used to split the original 
FASTQ files into human and mouse-specific files, which were each aligned 
with the appropriate genome. The human counts table was translated to 
mouse symbols and merged with the mouse counts table. (E) BS: The mixed-
genome BAM file was scanned to find the genome with the best alignment 
score for each read ID. These read IDs were used to split the original FASTQ 
files, which were then processed as in the ID method. 
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which was selected to include only genes matching the 

homologene table (14,526 gene symbols x 28,218 

barcodes, resulting in a merged object of 14,725 gene 

symbols x 29,901 barcodes). An RMarkdown session 

using this procedure is found in Supplemental File 3. 

Results (Figure 1D) produce a more uniformly coalesced 

set of clusters, with human and mouse microglia adjacent 

on the plot. 

Splitting raw sequencing reads by best alignment 

score (BS). During preparation of the ID python script, 

we realized that the BAM file also contained the 

alignment score for each read matching one or both 

genomes. We reasoned that alignment with the correct 

species would produce the better alignment score. The 

python script was revised to iterate through the BAM file, 

store the read ID, the alignment score and the aligned 

species, retaining only the one with the highest 

alignment score for each read ID. The original list of 

barcode IDs was not used. The split FASTQ files were 

aligned with the appropriate genome using cellranger. As 

before, counts from each set of alignments were loaded 

into Seurat, the human matrix was translated to mouse 

symbols (9,337 gene symbols x 3,354 barcodes), and 

combined with the mouse matrix containing only 

homologous gene symbols (14,523 gene symbols x 28,237 

barcodes; resulting in an object with 14,745 gene symbols 

x 31,591 barcodes). The RMarkdown session for this 

procedure is found in Supplemental File 4 and the python 

script can be viewed on a GitHub repository file 

(Supplementary File: splitByScore.py). Results (Figure 

1E) exhibit distinct clusters with greater separation.  

Splitting FASTQ files. Two of the strategies split the 

original reads into two species-specific sets of FASTQ 

files for re-alignment (Figure 2). Using only the selected 

human cluster barcode IDs from the initial analysis, after 

splitting, the human-specific reads averaged 5,469,135 

per sample (5.6% of total) and the mouse reads averaged 

92,776,385 per sample (94.4%). Splitting by best 

alignment score slightly increased the number of detected 

human reads to an average of 8,233,854 (8.4%) with lower 

mouse reads (83,422,959; 84.9%). In one example, a read 

having an alignment score of 99 on human chr10 was not 

part of the barcode list used to split by ID, so in the ID 

strategy it aligned to mouse chr1 with alignment score of 

35. The ID method, then, counted the read towards an 

incorrect gene while the BS method correctly partitioned 

the read to the human genome. While this is only one 

limited example, this illustrates that it is possible for a 

low-quality alignment to be split to the wrong genome 

and mis-counted when a less accurate strategy is 

employed, such as ID. 

The numbers of aligned reads largely reflected the split 

of FASTQ reads for the ID and BS methods, but were 

surprisingly nonspecific for the EG method, which did not 

split the FASTQ files. Over 20% of the number of total 

alignments in mixed genomes were identified in human 

genome, much more than any other method. This likely 

demonstrates that an acceptable alignment can be found 

for similar exon sequences in both genomes.  

Separation of Barcodes by Species. After loading all 

recombined tables into Seurat objects, the numbers of 

barcodes identified by species for each method were 

compared for genome selectivity and overlap (Figure 3). 

In this analysis we counted only cells with at least 500 

genes detected above 0 counts per gene. Not surprisingly 

based on the original algorithm, the DHT method had no 

overlap in barcodes because one cluster of barcodes was 

used to split the table of counts by species (Figure 3A). 

Similarly, using the same cluster of barcodes to split the 

original reads into two species-specific files (ID method, 

Figure 3C) also produced no overlap. However, slightly 

more human-specific barcodes were identified by ID than 

DHT methods (1,300 vs. 1,269, an increase of 2.4% for the 

ID method). This difference may be minor, but it 

exemplifies that DHT likely underestimates not only 

barcodes but also gene counts due to the presence of the 

alternate reference genome during alignment. The other 

two methods produced overlapping barcodes assigned to 

both genomes. The EG method had 1,001 overlapping 

barcodes (Figure 3B), which was judged to be 

unacceptably large and likely indicates the unexpected 

proportion of reads that aligned to both genomes. 

Splitting by score (BS, Figure 3D) produced only 147 

overlapping barcodes, but also had a larger number of 

human-only barcodes (1,314).  

The barcodes assigned to human were compared for 

overlap and differences in a Venn diagram (Figure 3E). 

As expected EG identified a large number of barcodes 

(780) that were distinct from all other methods. 

Surprisingly, DHT identified only 7 barcodes overlapping 

with EG and the remainder (1,262) were common to all 

methods. 168 barcodes overlapped between BS and EG, 

 

Figure 2. Numbers of reads aligned to each genome. The bars show the 
mean numbers of reads aligned with each genome (red: mixed; green: 
human; blue: mouse), by each strategy, plotted on a log scale. Dots show the 
numbers of reads for each sample (n=4). 
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but not ID or DHT, likely identifying human cells missing 

from the mixed-genome combined alignment (Figure 

1A). To visualize the specificity of these subsets of 

barcodes, the tSNE plot (as calculated with the BS 

method, Figure 1E) was color-coded by the major groups 

from the Venn diagram (Figure 3F). Both the Common 

(1,262 barcodes common to all methods; light orange) and 

the overlap between EG and BS (168 barcodes; blue) 

overlaid the human microglia cluster nicely, but the EG-

specific barcodes (780; green) were spread throughout the 

plot, seemingly a random subset of all cells. These 

comparisons indicate that while a core group of barcodes 

could be identified by any of the four methods, the EG 

method produced barcodes inconsistent with the one 

 

Figure 3. Separation of barcodes by species. (A-D) Venn diagrams of overlapping sample/barcode identifiers assigned to each species. For each method, the 
total numbers of sample/barcode identifiers (used as a proxy for numbers of cells) is shown for mouse (coral), human (light blue) and those found in both 
(shaded). Methods that distinctly separated counts (DHT) or reads (ID) showed no overlap. (A) DHT. (B) EG (C) ID (D) BS. (E) Human-assigned barcodes are 
compared for each method. (F) The BS tSNE plot (Figure 1E) was colored according to overlapping region from the Venn diagram (panel E). All barcodes 
assigned to human by all methods (Common, light orange) as well as those only identified as human by both BS and EG (BS.EG; blue-green) are found within 
the cluster of human microglia. Many of the barcodes assigned to human by EG (green) are scattered throughout the mouse cell types. 
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human cell type (microglia) and therefore this strategy 

should be avoided. Only the BS method identified a larger 

number of human cells with little evidence of 

misidentifying mouse cells.  

To better compare the causes of multi-species overlaps, 

15 randomly-selected barcodes were chosen from the 147 

overlapping by BS (Figure 3D). Summarizing the 

distribution of alignment scores per read by genome 

(Supplemental Figure 1), as determined from BS, EG, 

or ID bam files, there was clear indication that these 

barcodes likely represented two-cell droplets. That is, 

reads encoded with each of the 15 sampled barcodes 

exhibited a high distribution of alignment scores in both 

species for either BS or EG methods. As expected, some 

barcodes were not members of the combined-genome 

human barcode list and therefore had no results from the 

ID method. This conclusion was confirmed by 

determining that there was a similar number of reads in 

each genome per barcode (Supplemental Figure 2). A 

direct comparison of alignment scores for each read from 

barcodes overlapping both genomes using the EG method 

(Supplemental Figure 3) showed that while most reads 

(here depicted as single dots) exhibited stronger 

alignment scores in one genome (dots plotted near either 

y=100 or x=100), most reads also produced relatively 

strong alignments in the alternate genome (dots between 

70 and 100 in the alternative genome). That is, most 

reads in this sample exhibited strong alignment scores 

against both genomes. Therefore, this set of 147 barcodes 

should be removed from the analysis as technical 

contaminants since they were likely produced by adding 

more than one cell to the microfluidic droplet. Certainly, 

this indicates that other double-cell barcodes also exist in 

the dataset but would be undetectable since, in most 

cases, both cells would likely derive from the same 

species. However, only 147 out of 19,154 cells, or 0.76%, 

could be identified as two-cell droplets, suggesting that 

the scale of this problem is relatively small. 

In contrast, a randomly-selected set of 15 barcodes in the 

EG overlap that were absent in the BS overlap produced 

a different pattern of results (Supplemental Figures 4-

6). In several cases there were much larger discrepancies 

in summarized alignment scores by genome, read counts, 

and individual read alignment scores across both species. 

In this set most barcodes were enriched in mouse-specific 

alignments but with lower-quality alignments to human 

genome. Finding evidence of reads that align with both 

species in this analysis demonstrates why using any 

method that allows individual reads to align with more 

than one species (DHT or EG) should be unacceptable.  

Comparison of mouse vs. human microglia gene 

expression. A biologically-relevant measurement to 

compare the methods is to use each expression dataset to 

find significantly different genes between converted 

human and mouse microglia. This was a major goal of our 

initial analysis (using the DHT algorithm), where we 

found evidence of human-specific expression differences 

in human microglia, including several classes of disease-

associated genes (Xu et al., 2019). To compare methods, 

lists of human vs. mouse microglia genes found by Seurat 

using the FindMarkers function by contrasting human-

specific and mouse-specific clusters identified by 

expression of the characteristic human and mouse-

specific genes, Spp1 and Hexb, respectively. The p-value 

for difference was calculated by a Wilcoxon Rank Sum 

test with a default log fold change of 0.25 and minimum 

percent expression of 0.1, with a Bonferroni correction 

applied. For functional analysis, a stringent filter was 

applied, requiring an adjusted p-value of 0.05 or less and 

a log fold change of 1 or more (2-fold). Using these 

methods, the DHT algorithm found 1,711 genes with 246 

passing the stringent filter. Other methods identified: 

EG, 1,258 total with 161 passing the stringent filter; ID, 

1,728 total with 234 stringent; and BS, 1,483 total with 

177 passing the stringent filter. These lists were 

compared by Venn diagram on the total differences 

(Figure 4A) or the stringent differences (Figure 4B). In 

each case there was a common core of genes selected by 

all methods (917 for the total lists, 121 for the stringent 

lists). BS appeared to exhibit the fewest differences from 

the common list among the stringent list (56 additional 

genes, of which only 2 were not in common with at least 

one other method). 

Taking the common genes from the stringent lists 

(Figure 4B, 121 overlap), functional analysis was run 

with g:Profiler (Reimand et al., 2016) focusing only on 

biological processes (Figure 4C). The top 10 (by smallest 

p-values) included many expected functional terms 

relating to microglia including immune system process, 

response to external stimuli, and cellular response to 

chemical stimulus. All of these would be expected to be 

enriched in microglia, although it is interesting that these 

are differences between mouse and human microglia. 

There are several studies demonstrating that mouse and 

human microglia are distinct with characteristic gene 

expression patterns (Gosselin et al., 2017; Galatro et al., 

2017; Xu et al., 2019). When stringent differential 

expression lists of genes from each method were similarly 

analyzed for enriched biological processes, there was 

substantial overlap with the common list but also many 

differences (Figure 4D-G). For comparison, the colors for 

each GO term in the common list (Figure 4C) were 

reproduced in each method-specific barplot and those not 

found in the common list are colored as gray. Again, 

several functional terms expected to be associated with 

microglia can be found among the method-specific lists. 

The BS plot (Figure 4G), for example, has an additional 

immune response term as well as several regulatory 

terms. The differences among these functional 

summaries exemplifies why the choice of algorithm is 

important for biological interpretation. However, there is 

no clear conclusion whether any of these is more 
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appropriate or correct according to the biology of mouse 

vs. human microglia. 

Optimized by-score method (BS2). Since the 

partitioning of reads into appropriate genome according 

to the best alignment score appears to be the most 

 

Figure 4. Gene expression differences between mouse and human microglia. Following clustering and cell type assignment, genes differing between mouse 
and human microglial clusters were obtained. (A) Overlap of all significantly different genes. (B) Overlap of high-stringency gene differences (p≤0.05 and a log2 
fold-change of 1 or greater). (C) The 121 high-stringency genes found in common to all methods were used to identify enriched gene ontology biological (GO-BP) 
process terms. The top 10 terms, by minimal p-value, are shown. (D-G) Top 10 GO-BP enriched terms for each method, with bars colored if they match a top 10 
term from the common gene analyses in panel C. 
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appropriate strategy, and since this method reveals a 

small number of barcode-tagged “cells” that likely 

represent mixtures of mouse and human cells, we 

concluded that the optimal strategy was BS with 

exclusion of overlapping barcodes. Therefore, we ran the 

BS algorithm but during the process of converting human 

to mouse identifiers, we also excluded 412 barcodes 

(columns in the tables) that were common to both the 

mouse and human datasets. The resulting human table 

included 9,337 gene symbols x 2,942 barcodes. The mouse 

table included 14,523 gene symbols x 27,825 barcodes. 

The combined Seurat object included 14,725 gene 

symbols x 30,767 barcodes. After scaling, dimension 

reduction, and clustering, a slightly clearer tSNE plot 

emerges (Figure 5A). The RMarkdown session for this 

procedure is found in Supplemental File 5. There are no 

overlapping barcodes (Figure 5B), as expected. This 

revised analysis produced a clear set of enriched gene 

 

Figure 5. Optimized method: Split by score excluding overlaps. The BP algorithm was run as before except that barcodes found in both species were excluded 
after gene translation but prior to merging species. (A) tSNE plot labeled by cell type. (B) Number of barcodes assigned to each genome, with no overlap by 
design. (C) Top 10 GO-BP terms from genes different between the human and mouse microglial clusters. (D) Top 10 GO-BP terms enriched in the human cluster. 
(E) Top 4 GO-BP terms enriched in the mouse cluster (only 4 terms passed the p-value threshold). Bar colors match terms shown in panel C. 
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ontology/biological process terms (Figure 5C), that were 

further split into the human-enriched terms (Figure 5D) 

and the mouse-enriched terms (Figure 5E). Here we find 

that immune system response is present in both species 

of microglia, but with different enriched sets of individual 

genes. Prominent human-selective terms include 

regulation of cytokine production, regulation of cell 

proliferation, cell death, and T cell activation. Mouse-

selective terms include regulation of cell motility and 

developmental processes.  

Conclusions 
The goal was to devise and compare several methods for 

partitioning scRNAseq data into two species. Analysis of 

the results guides reasonable choices for optimal 

strategies. Clearly, while mixed-species scRNAseq 

results may be initially evaluated by aligning with mixed 

genomes, this is not an appropriate way to perform final 

analyses since there is evidence of sequencing reads 

aligning with reasonable quality to both genomes. 

Alternatively, reads from a single barcode (assumed to be 

a single cell) may optimally align with two different 

species, and in some cases this may be due to droplets 

containing multiple cells (for example, Supplemental 

Figure 6). Many barcodes overlapping both species were 

identified with this characteristic, and the majority of 

these have better alignments to one of the species 

(Figure 3B [EG] and Supplemental Figures 4-6). The 

recommendation is, then, to use a pre-processing strategy 

for parsing FASTQ files of raw reads into the appropriate 

species before analyzing gene expression. 

We evaluated strategies to use initial, mixed-

genome clustering to split FASTQ files (ID) or to 

split by best alignment score (BS). As an extreme 

case for comparison, we aligned all reads to each 

genome independently (EG). The latter approach is 

clearly the most problematic, with the largest 

number of barcodes assigned to both species 

(Figure 3). However, splitting by ID incorporated 

mixed-species barcodes, as outlined above, and 

excluded 168 shared by BS and EG (Figure 3E) that 

clustered with human microglial cells (Figure 3F). 

EG also produced an unacceptable number of 

human-selected barcodes clustering with non-

microglial cells (Figure 3F). Neither EG nor ID was 

judged to be ideal. Similarly, DHT had slightly 

fewer barcodes assigned to human and there was 

concern that some genes might be undercounted or 

miscounted due to the presence of the alternate 

genome during alignment. This argues in favor of 

splitting the sequencing reads before final 

alignment with a single reference genome. 

Among methods tested for splitting sequencing 

reads by species, it was found that the optimal 

method was to split by alignment score. This 

produced the fewest number of barcodes that 

clustered with cells of the alternate species (Figure 

3F). However, since a small number of barcodes 

parsed to both genomes (147 barcodes in Figure 

3D), we extended the BS algorithm to exclude any 

overlapping barcodes. In this revised BS2 method, 

412 barcodes were deleted, likely leading to the 147 

from Figure 3D after filtering and scaling of the 

data. The BS2 approach produced distinct tSNE 

clusters (Figure 5A) with no overlap among 

barcodes (Figure 5B).  

Differential expression analysis contrasting human 

and mouse microglia were largely consistent by 

method (Figure 4). However, distinct biological 

process terms were enriched when analyzing each 

method individually (Figure 4D-G). This 

exemplifies that the choice of method impacts 

functional biological interpretation. The final, 

revised BS2 approach gave a list of top ten enriched 

biological processes (Figure 5C) that was quite 

similar to the BS method (Figure 4G). Ideally, the 

removal of barcodes overlapping by species should 

have had little effect on the expression difference 

list.  

We conclude that the optimal method for analyzing 

scRNAseq data from cells of multiple species is to 

pre-process the FASTQ files and split them by the 

best alignment score to each species. This requires 

scanning the BAM file produced from a mixed-

species alignment, since this contains alignment 

scores that can be associated with sequencing read 

identifiers. With lists of species-specific identifiers, 

the original FASTQ files can be split into two 

species-specific sets. The now species-specific 

FASTQ files are then aligned only with the 

appropriate species, eliminating the major source of 

crossreactivity. Finally, barcodes found to be 

matched to both genomes are likely to arise from 

multiple-cell droplets in the partitioning technique 

and these should be excluded. To directly compare 

gene expression patterns, a unique mouse-human 

translation table was constructed that allowed 

merging of the two species-specific expression tables 

prior to analysis. Results indicate that this optimal 

method produces clear clustering by cell type and 

species, as well as identifying species-specific gene 

expression patterns in the same cell type 

(microglia). This approach should be valuable for all 

multiple-species scRNAseq experiments. 
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Supplemental Materials 
Sequencing data used for this study are available from 

the NIH GEO archive under accession number 

GSE129178. All supporting files are found on the 

“Mousify” project GitHub repository: 

https://github.com/rhart604/mousify. Note that the 

GitHub tool to serve html files does not display the paged 

table results used in the RMarkdown sessions. To view 

the complete file, download the html file from the GitHub 

project and open it with a web browser.  
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Supplemental Figure Legends 
Supplemental Figure S1. Sample alignment score summaries for barcodes 
overlapping human and mouse in the BS method. A random sample of 15 
barcodes were selected from the 147 assigned to both human and mouse in 
Figure 3D by the BS method. Alignment scores were collected from the BS, EG, 
or ID methods for separated human (hg19) or mouse (mm10) genomes for 
sequencing reads with the selected barcodes. Alignment scores were 
summarized with a box and whiskers plot, with the central horizonal line 
representing the median, the top and bottom of the box as the interquartile range, 
and the whiskers showing the 95% confidence interval of the score distributions.  

Supplemental Figure S2. Sample numbers of sequencing reads for barcodes 
overlapping human and mouse in the BS method. From the same data depicted 
in Figure S1, the total numbers of sequencing reads per genome per method are 
plotted as bars.  

Supplemental Figure S3. Individual sequencing read alignment scores for 
barcodes overlapping human and mouse in the BS method. For each sequencing 
read (depicted as a dot), the alignment score is shown for the mouse genome (x 
axis, mm10) versus the human genome (y axis, hg19). Dots are only from the BS 
method.  

Supplemental Figure S4. Sample alignment score summaries for barcodes 
overlapping human and mouse in the EG method but not the BS method. A 
random sample of barcodes was chosen from the 1,001 shown in Figure 3B that 
were not found in the 147 overlapping barcode from Figure 3D. Alignment scores 
were collected from the BS, EG, or ID methods for separated human (hg19) or 
mouse (mm10) genomes for sequencing reads with the selected barcodes. 
Alignment scores were summarized with a box and whiskers plot, with the central 
horizonal line representing the median, the top and bottom of the box as the 
interquartile range, and the whiskers showing the 95% confidence interval of the 
score distributions. 

Supplemental Figure S5. Sample numbers of sequencing reads for barcodes 
overlapping human and mouse in the EG method but not the BS method. From 
the same data depicted in Figure S4, the total numbers of sequencing reads per 
genome per method are plotted as bars.  

Supplemental Figure S6. Individual sequencing read alignment scores for 
barcodes overlapping human and mouse in the EG method but not the BS 
method. For each sequencing read (depicted as a dot), the alignment score is 
shown for the mouse genome (x axis, mm10) versus the human genome (y axis, 
hg19). Dots are only from the EG method.  

References 
Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. 

(2018). Integrating single-cell transcriptomic data across 

different conditions, technologies, and species. Nat 

Biotechnol 36, 411-420. 

Galatro, T.F., Holtman, I.R., Lerario, A.M., Vainchtein, I.D., 

Brouwer, N., Sola, P.R., Veras, M.M., Pereira, T.F., Leite, 

R.E.P., Moller, T., Wes, P.D., Sogayar, M.C., Laman, J.D., 

den Dunnen, W., Pasqualucci, C.A., Oba-Shinjo, S.M., 

Boddeke, E., Marie, S.K.N., and Eggen, B.J.L. (2017). 

Transcriptomic analysis of purified human cortical 

microglia reveals age-associated changes. Nat Neurosci 20, 

1162-1171. 

Gosselin, D., Skola, D., Coufal, N.G., Holtman, I.R., 

Schlachetzki, J.C.M., Sajti, E., Jaeger, B.N., O'Connor, C., 

Fitzpatrick, C., Pasillas, M.P., Pena, M., Adair, A., Gonda, 

D.D., Levy, M.L., Ransohoff, R.M., Gage, F.H., and Glass, 

C.K. (2017). An environment-dependent transcriptional 

network specifies human microglia identity. Science 356. 

Hwang, B., Lee, J.H., and Bang, D. (2018). Single-cell RNA 

sequencing technologies and bioinformatics pipelines. 

Experimental & Molecular Medicine 50, 96. 

Jackson Labs (2019). MGI Data and Statistical Reports: Mouse 

Genetic Markers. Date Accessed: 

05/10/2019,http://www.informatics.jax.org/downloads/repor

ts/index.html#marker 

Johnson, T.S., Abrams, Z.B., Helm, B.R., Neidecker, P., 

Machiraju, R., Zhang, Y., Huang, K., and Zhang, J. (2019). 

Integration of Mouse and Human Single-cell RNA 

Sequencing Infers Spatial Cell-type Composition in Human 

Brains. bioRxiv, 527499. 

Macosko, E.Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., 

Goldman, M., Tirosh, I., Bialas, A.R., Kamitaki, N., 

Martersteck, E.M., Trombetta, J.J., Weitz, D.A., Sanes, J.R., 

Shalek, A.K., Regev, A., and McCarroll, S.A. (2015). Highly 

Parallel Genome-wide Expression Profiling of Individual 

Cells Using Nanoliter Droplets. Cell 161, 1202-1214. 

Reimand, J., Arak, T., Adler, P., Kolberg, L., Reisberg, S., 

Peterson, H., and Vilo, J. (2016). g:Profiler-a web server for 

functional interpretation of gene lists (2016 update). Nucleic 

Acids Res 44, W83-89. 

Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. 

(2015). Spatial reconstruction of single-cell gene expression 

data. Nat Biotechnol 33, 495-502. 

Xu, R., Boreland, A., Posyton, A., Kwan, K., Hart, R.P., and 

Jiang, P. (2019). Xenotransplantation of Human PSC-

derived Microglia Creates a Chimeric Mouse Brain Model 

that Recapitulates Features of Adult Human Microglia. 

bioRxiv, 594721. 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 14, 2019. ; https://doi.org/10.1101/671115doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129178
https://github.com/rhart604/mousify
http://www.informatics.jax.org/downloads/reports/index.html#marker
http://www.informatics.jax.org/downloads/reports/index.html#marker
https://doi.org/10.1101/671115
http://creativecommons.org/licenses/by-nc/4.0/

