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ABSTRACT 

 

The weighted ensemble (WE) path sampling strategy is highly efficient in generating pathways 

and rate constants for rare events using atomistic molecular dynamics simulations. Here we 

extensively evaluated the impact of several advances to the WE strategy on the efficiency of 

computing association and dissociation rate constants (kon, koff) as well as binding affinities (KD) 

for a set of benchmark systems, listed in order of increasing timescales of molecular 

association/dissociation processes: methane/methane, Na
+
/Cl

-
, and K

+
/18-crown-6 ether. In 

particular, we assessed the advantages of carrying out (i) a large set of “light-weight” WE 

simulations that each consist of a small number of trajectories vs. a single “heavy-weight” WE 

simulation that consists of a relatively large number of trajectories, (ii) equilibrium vs. steady-

state WE simulations, (iii) history augmented Markov State Model (haMSM) post-simulation 

analysis of equilibrium sets of trajectories, and (iv) tracking of trajectory history (the state last 

visited) during the dynamics propagation of equilibrium WE simulations. Provided that state 

definitions are known in advance, our results reveal that heavy-weight, steady-state WE 

simulations are the most efficient protocol for calculating kon, koff, and KD values. If states are 

not strictly defined in advance, heavy-weight, equilibrium WE simulations are the most efficient 

protocol. This efficiency can be further improved with the inclusion of trajectory history during 

dynamics propagation. In addition, applying the haMSM post-simulation analysis enhances the 

efficiency of both steady-state and equilibrium WE simulations. Recommendations of 

appropriate WE protocols are made according to the goals of the simulations (e.g. to efficiently 

calculate rate constants and/or generate a diverse set of pathways).  

 

 

1. INTRODUCTION 

 

The WE strategy
1-2

 has been demonstrated to be highly efficient relative to standard “brute-

force” simulations in generating pathways and rate constants for host-guest association,
3
 

protein-small molecule dissociation,
4-5

 and protein-peptide association
6
 using atomistic 

molecular dynamics (MD) simulations. While these applications demonstrate the power of the 

WE strategy, the development of the most efficient WE protocol has typically been done by 

trial-and-error given that no systematic comparison of efficiencies in calculating observables of 

interest has been completed – until now.  

 

To aid users in identifying the most efficient WE protocols for their simulation goals, we 

evaluated several advances to the WE strategy in terms of their impacts on the efficiency of the 

WE strategy in calculating kon, koff, and KD values for the following benchmark systems, listed in 

order of increasing structural complexity and free energy barrier for the molecular 

association/dissociation process: methane/methane (CH4/CH4), Na
+
/Cl

-
, and K

+
/18-crown-6 

ether (K
+
/CE) (Fig. 1).  In particular, we assessed the advantages of carrying out the following in 

conjunction with explicit-solvent MD simulations: (i) equilibrium vs. steady-state WE 

simulations, (ii) a large set of “light-weight” WE simulations that each consist of a small number 

of trajectories vs. a single “heavy-weight” WE simulation that consists of a relatively large 

number of trajectories, (iii) haMSM post-simulation analysis, and (iv) tracking of the “history”, 
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or state last visited by each trajectory, during dynamics propagation in equilibrium WE 

simulations. The ultimate goal of our evaluation was to determine the most efficient WE 

simulation protocol for calculating the kon, koff, and KD values for receptor-ligand 

association/dissociation processes that are much slower than the microsecond timescale and 

therefore inaccessible to brute force simulations. Such observables have been of great interest 

to a variety of research areas in chemistry and biology, including host-guest interactions, 

protein engineering, and drug discovery. Furthermore, the generation of complete pathways 

for such processes at the atomic level can be highly valuable for aiding efforts to improve the 

kinetics of receptor-ligand interactions by providing structures of transient states. 

 

 

 
 

 

2. THEORY 

 

The essence of the weighted ensemble (WE) path sampling strategy is to carry out many 

trajectories in parallel, with each trajectory assigned a weight to properly represent the 

ensemble. To control the trajectory distribution, configurational space is divided into bins along 

a progress coordinate for tracking trajectory progress towards the target state.  Trajectories are 

FIG. 1. Benchmark systems of study. Systems are immersed in explicit water and displayed in 

order of increasing structural complexity and barrier to the molecular 

association/dissociation process, as estimated by probability distributions as a function of 

the relevant progress coordinate (see Methods) from brute force simulations. Dashed lines 

indicate boundaries used for definitions of unbound and bound states. 
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examined at fixed time intervals τ and evaluated for replication or pruning to ensure even 

coverage of configurational space with a target number of trajectories/bin. During this 

resampling procedure, trajectory weights are adjusted according to rigorous statistical rules 

such that no bias is introduced into the dynamics. The result of the procedure is a “statistical 

ratcheting” effect that enhances the efficiency of generating continuous pathways and rate 

constants for the rare event of interest. Features of the original WE strategy along with recent 

advances that are evaluated in this study are presented below. 

 

2.1 Equilibrium vs. steady-state WE simulations. WE simulations can be carried out under 

steady-state or equilibrium conditions.  In the original WE strategy by Huber and Kim
1
, steady-

state conditions are maintained by “recycling” trajectories that have reached the target state, 

i.e. starting new trajectories, with the same weights from the initial state.  Recent advances to 

the strategy
2
 have enabled WE simulations to be run under equilibrium conditions, which does 

not require recycling trajectories once they reach the target state. Thus, a significant advantage 

of such equilibrium WE simulations is that states do not need to be strictly defined in advance, 

but can instead be approximately defined during dynamics propagation and refined after the 

completion of the simulation.  In addition to providing equilibrium observables (e.g. state 

populations), equilibrium WE simulations can be divided into two steady state ensembles of 

trajectories based on the “history”’ label, or state last visited, to enable the direct calculation of 

rate constants corresponding to each steady state.
3 

 

 

2.2 History augmented Markov State Model (haMSM) post-simulation analysis. To enable the 

calculation of long-timescale observables from shorter simulations under equilibrium 

conditions, the history augmented Markov State Model (haMSM; also referred to previously as 

non-Markovian analysis) post-simulation analysis can be applied after generating a set of 

equilibrium trajectories
7
 either via equilibrium WE simulation or the combination of steady-

state WE simulations in opposite directions (association and dissociation directions). In this 

procedure, the resulting equilibrium set of trajectories is first decomposed into subsets of 

trajectories that correspond to each of the two steady states. Next, a rate matrix (or transition 

probability matrix) is constructed from history-labeled transition probabilities ���
��

 between bins 

(� and �) for trajectories initially in the � subensemble which transition to the � subensemble, 

where � and � are either of the two steady states � and �. This labeled rate matrix is then used 

to solve the set of standard steady-state equations to yield the populations of each bin � 

corresponding to the two steady states � and � (��
�and ��

�
) and ultimately, the equilibrium 

population of bin � (��
��

), which is the sum of the two steady-state populations in that bin 

(��
��

	 ��
� 
 ��

�
). The haMSM analysis procedure enables the calculation of equilibrium as well 

as non-equilibrium observables from an equilibrium set of trajectories without a Markovian 

assumption. Furthermore, the haMSM procedure can be carried out using any arbitrary set of 

bins and history labels and is therefore not restricted to those used during dynamics 

propagation. Thus, for each benchmark system in the present study, we tested the use of the 

minimal set of bins (i.e. three bins for delineating the initial state, transition region, and target 

state; see Fig. 1) as well as larger sets of bins.  
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2.3 Tracking the state last visited (“history”) during dynamics propagation.  To ensure that 

pathways are generated in both directions (molecular association and disassociation) in an 

equilibrium WE simulation, the trajectory history (state last visited) can be included as a 

dimension of the progress coordinate.  A potential issue with equilibrium WE simulations is that 

a bin may contain trajectories corresponding to each of the two steady state ensembles, and 

trajectories that correspond to one of the steady states may be pruned.  Tracking the history of 

each trajectory as a dimension of the progress coordinate separates the trajectories into the 

corresponding steady-state ensembles during the dynamics propagation and avoids over-

pruning trajectories in one steady state. 

 

2.4 Light-weight vs. heavy-weight WE simulations. Two alternate strategies for carrying out 

WE simulations are (i) running a single “heavy-weight” simulation that consists of a large target 

number of trajectories/bin (50 in the present study), and (ii) running a large set (50 in the 

present study) of “light-weight” simulations that each consist of a relatively small number of 

target trajectories/bin (2 or 4 in the present study).  While the statistical ratcheting effect 

would be expected to be greater for heavy-weight vs. light-weight simulations due to the larger 

number of target trajectories/bin, many of the successful pathways that are generated by 

heavy-weight simulations will be correlated in history, i.e. sharing common trajectory 

segments, which can degrade the statistical quality of the data. An advantage to carrying out a 

large set of light-weight simulations over a single heavy-weight simulation is that the set of 

light-weight simulations may yield a greater diversity of pathways that do not share trajectory 

history and are independent, which enables more straightforward calculation of error in the 

observables of interest. 

 

3. METHODS 

 

To extensively evaluate the advances to the WE strategy mentioned above, we carried out 10 

simulation protocols for each of the three benchmark systems (Table 1), yielding a total of 304 

WE simulations of molecular dissociation and/or association processes for each system with an 

aggregate simulation time of 5.67, 47.8, and 29.7 μs for the CH4/CH4, Na
+
/Cl

-
, and K

+
/CE 

systems, respectively. In all of our comparisons of the various WE protocols, the number of 

target trajectories/bin for each steady-state set of trajectories was chosen to be approximately 

equal to maintain a similar level of statistical ratcheting. For example, single equilibrium, heavy-

weight simulations with 50 target trajectories/bin were compared with pairs of steady-state, 

heavy-weight simulations with 50 target trajectories/bin. For each benchmark system, an 

unprecedented amount of sampling of molecular association/dissociation events was achieved 

using 912 WE simulations and an aggregate simulation time of 83.17 μs within one month using 

288 Intel 2.6 GHz CPU cores at a time. 
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Table 1: WE simulation protocols tested in this study. For each of the three benchmark 

systems, the 10 simulation protocols listed below were tested, comparing (i) simulations under 

steady state vs. equilibrium conditions, and (ii) the use of a single heavy-weight simulation vs. a 

set of 50 light-weight simulations. Steady-state WE simulations were started from both bound 

and unbound states while equilibrium WE simulations were started only from bound states. In 

addition, we assessed the effects of tracking the trajectory history during dynamics propagation 

on the efficiency of equilibrium WE simulations in calculating observables of interest.  

 

steady-state/ 

equilibrium 

heavy-weight/ 

light-weight 

# WE 

simulations 

# target 

trajectories/bin 

initial 

state 

history  

tracking? 

steady state heavy-weight 3 50 bound  -- 

  3 50 unbound  -- 

 light-weight 50 2 bound  -- 

  50 2 unbound -- 

  50 4 bound  -- 

  50 4 unbound  -- 

equilibrium heavy-weight 3 50 bound  Y 

  1 100 bound  N 

 light-weight 50 2 bound  Y 

  50 4 bound  Y 

 

 

3.2 WE simulations. All WE simulations were carried out using the open-source, highly scalable 

WESTPA software package.
8
 To ensure that the starting structures for our WE simulations were 

representative of the corresponding state (bound or unbound states), we sampled the initial 

state under equilibrium conditions (Table S1 in supporting information). The resulting 

ensembles served as a pool of starting structures that could be selected according to their 

statistical weights for running separate WE simulations of the molecular dissociation or 

association processes.  All equilibrium WE simulations were started from a pre-equilibrated 

ensemble of bound-state structures, whereas steady-state WE simulations were started from a 

pre-equilibrated ensemble of either the unbound- or bound-state structures to generate 

molecular association or dissociation pathways, respectively.  

 

For each benchmark system, the same progress coordinates as those used in a previous WE 

study 
3
 were used for the WE simulations: i) for CH4/CH4, the distance between the carbon 

atoms of the two CH4 molecules, (ii) for Na
+
/Cl

-
, the distance between the two ions, and (iii) for 

K
+
/CE, the distance between the K

+
 ion and the center-of-mass of the crown ether oxygens. 
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While the focus of this study was not to systematically examine bin choices, a few refinements 
were made to the previously defined bins (Table S3 in Supporting Information). First, bin 
positions were adjusted along with the inclusion of additional bins to further enhance the 
sampling of the dissociation processes. Second, state definitions, particularly those of the 
unbound state, were refined for both the CH4/CH4 and K+/CE systems to be more stringent in 
order to emcompass only the region of the basin thereby yielding more consistent rate 
constants among a set of independent WE simulations. For the Na+/Cl- system, the same state 
definitions as those in the previous WE study3 were used. Finally, the history of each trajectory 
(state last visited) was tracked during dynamics propagation for a subset of the equilibrium WE 
simulations by including history as a second dimension of the progress coordinate, using the 
same state definitions.  
 
3.2 Dynamics propagation. As done previously,3 dynamics were propagated for the CH4/CH4 

and Na+/Cl- systems using the GROMOS 45A3 force field9 and SPC/E water model,10 and for the 
K+/CE system, using the OPLS-AA/L force field11 and TIP3P water model.12 All of our simulations 
included a minimum 12-Å clearance between the solutes in their unbound states and the box 
walls. 
 
3.3 Standard “brute-force” simulations. Extensive standard “brute force” simulations of the 
molecular association/dissociation processes of the CH4/CH4, Na+/Cl-, and K+/CE systems were 
generated on the μs-timescale by our previous study.3 
 

3.4 Evaluation of simulation convergence. A WE simulation was considered converged if the 
instantaneous mean of the observable of interest at the final iteration of the simulation was (i) 
within the 95% confidence interval of the mean values at prior iterations, and (ii) within the 
95% confidence interval of the mean values from other simulation protocols (Figs. S1 and S2). 
According to these criteria, all of our simulations were sufficiently long to achieve convergence. 
 
3.5 Application of the haMSM post-simulation analysis. For each benchmark system, the 
haMSM post-simulation analysis7 was applied to a set of equilibrium trajectories using five sets 
of bins: the minimal set of 3 bins representing the unbound state, transition region, and bound 
state (Table S2 in Supporting Information), and four additional sets of 4, 6, 10, and 18 bins,  as 
generated by successively halving the bins in the transition region. For each set of bins and each 
WE iteration, a history-labeled transition probability matrix was constructed from a running 
average of bin-to-bin fluxes and bin populations for the same iteration of each set of 
equilibrium trajectories (equilibrium WE simulations or combinations of steady-state WE 
simulations in opposite directions), and then solved to obtain steady-state fluxes fij from states i 
to j and steady-state populations of the unbound and bound states. As mentioned in section 
2.2, equilibrium state populations were estimated as the sum of each steady-state population 
in the corresponding bins. 
 
3.6 Calculation of rate constants. The same strategy was used to calculate rate constants for 
both WE and brute force simulations. The rate constant kij for transitions from bin i to j was 
calculated using the following ratio of averages:7 
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��� � �����
���� #�1
  

 
 

where ����� is the running average of the flux from bin i to j of the steady-state set of 

trajectories in the direction of interest (e.g., bound to unbound) and ���� is the running average 
of the steady-state population of the initial state � across all iterations t with a fixed length �. 
Note that for steady-state WE simulations  and equilibrium WE simulations with very few 
events in the reverse direction, pi is unity.6 For equilibrium WE simulations with a significant 
number of events in the reverse direction, kij is calculated by normalizing the average fij by the 
average pi thereby focusing the calculation only on the unidirectional flux that corresponds to 
the steady state of interest.  
 
3.7 Calculation of binding affinities (KD values). Binding affinities (KD values) were calculated 
using two different approaches.  In the first approach, equation (2), we calculated KD values 
from the kinetic observables, i.e. the koff and kon: 
 


� � �������

 #�2
  

 
In the second approach, equation (3), we calculated KD values from equilibrium observables, i.e. 
equilibrium state populations of the unbound state (��
 and bound state (��
: 
 


� � ��	�� #�3
  

 
Equilibrium state populations were calculated as the steady-state population of that state by 
applying the haMSM post-simulation analysis to both brute force and WE simulations. 
Uncertainties were calculated using error propagation from the 95% confidence intervals of the 
rate constants or state populations. 
 
3.8 Estimation of WE efficiency in computing rate constants and binding affinities. The 
efficiency �
  of a given WE protocol in computing the rate constant of interest (kon or koff) was 
estimated using the following equation:1 
 

�
 � ���
�����
��� �∆���
��
	

∆���
���
	

� #�4
  

 
where ���
� �
��⁄ �  is the aggregate simulation time for the reference or test simulation, 

respectively, and ∆���
� �
��⁄ � is the relative error in the rate constants (uncertainty of the rate 

constant relative to the rate constant where the uncertainty represents the 95% confidence 
interval) for the corresponding simulations. Thus, the efficiency of a test simulation in 
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calculating the rate constant is determined by taking the ratio of aggregate times for the test 
and reference simulations that would be required to estimate the rate constant with the same 
relative error, assuming that the square of the width of the 95% confidence interval on the rate 
constant is inversely proportional to the simulation time.1 
 
Similarly, the efficiency �
  of computing the KD was estimated using the following equation 
(equation (6)): 
 

�� � ���
�����
��� �∆
��
��
	

∆
��
���
	

� #�5
  

 
 

where ∆
��
� �
��⁄ � is the relative error in KD. In cases where the KD was calculated from the 

ratio of rate constants, the corresponding �
  is also a metric of how efficient a simulation is in 
computing the rate constants in both directions.   
 
For both WE and brute force simulations, the relative errors of the observables of interest were 
calculated using the same error estimation strategy. In particular, a Monte Carlo bootstrap 
procedure13 was applied to estimate the running average and uncertainties of rate constants 
and state populations from each simulation set.  These uncertainties were then propagated to 
estimate the relative errors in the in the KD values using either equations (2) or (3). Complete 
details of the bootstrap procedure, including differences in its application to direct calculation 
vs. haMSM post-analysis of the rate constants and state populations are summarized in Table 2. 
For each WE protocol, estimates of the efficiency �
  were based on the final iterations. As 
mentioned in section 3.4, all WE simulations were sufficiently long to satisfy the convergence 
criteria.  
 
3.9 Estimation of sampling variance for simulation protocols.  To assess how a simulation 
protocol affects the efficiency of calculating rate constants, a novel (to our knowledge) network 
analysis was conducted. In particular, Sampling Error Networks (SEN) were constructed to 
visualize the precision in sampling bin to bin transitions.  Transition matrices, generated from 
each simulation replicate, were used to estimate the variance in sampling a given bin to bin 
transition as the error in the simulation observables is ultimately related to the variance in the 
transition matrices. Each node in the SEN represents a bin used during the simulation, and the 
log of the inverse of the percent error was used as the weight for the edges connecting nodes.  
A force directed layout algorithm in Gephi, ForceAtlas2, was used to generate the layout.  A bin 
to bin transition was sampled if two bins are connected, and their distance is positively 
correlated to the sampling variance. 
 
4. RESULTS AND DISCUSSION 

 
We extensively evaluated the impact of several advances in the WE strategy on the efficiency of 
calculating the kon, koff, and KD for the molecular association and dissociation processes of the 
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following benchmark systems, listed in order of increasing timescales of the 
association/dissociation processes: methane/methane (CH4/CH4), Na+/Cl-, and K+/18-crown-6 
ether (K+/CE). In particular, we determined the impact of the following advances on the 
efficiencies of the WE strategy in calculating the observables of interest: (i) a single heavy-
weight simulation vs. a large set of light-weight simulations, (ii) steady-state vs. equilibrium WE 
simulations, (iii) tracking of trajectory history of during the dynamics propagation of equilibrium 
WE simulations, and (iv) history augmented Markov State Model (haMSM) post-simulation 
analysis7 of an equilibrium set of trajectories, generated by a single equilibrium WE simulations 
or pairs of steady state WE simulations. In the present study, equilibrium observables (i.e. the 
KD from the ratio of state populations) were only calculated using the application of the haMSM 
analysis to an equilibrium set of trajectories (generated using a single equilibrium WE 
simulation or pair of steady state WE simulations) as the relevant equilibrium state populations 
did not otherwise converge.  
 
4.1 Steady-State WE: Heavy-weight vs. Light-weight 
 
We begin by comparing the efficiencies of carrying out WE simulations under steady-state 
conditions using a single heavy-weight simulation with a target number of 50 trajectories/bin 
vs. a set of 50 light-weight simulations using a target number of either 2 or 4 trajectories/bin. 
As mentioned above, equilibrium observables (i.e. the KD from equilibrium state populations) 
can be calculated by combining trajectories from steady-state WE simulations in opposite 
directions to generate an equilibrium set of trajectories.  
 
As shown in Fig. 2, the efficiency in calculating the kon, koff, and KD (both from rate constants 
and equilibrium state populations) for all of the benchmark systems increased with the number 
of target trajectories/bin, with single heavy-weight simulations being the most efficient. This 
increase in efficiency is likely due to the greater extent of statistical ratcheting that would be 
expected to result from a greater number of chances to advance toward the target state 
(unbound or bound state). It is worth noting that the minimal number of target trajectories/bin 
(i.e. 2 trajectories/bin) is less efficient than brute force simulations in computing the kon and KD 

from the ratio of rate constants for the CH4/CH4 and Na+/Cl- systems, and that a minimum of 4 
target trajectories/bin is required to achieve greater efficiency than brute force simulations in 
computing these observables. Consistent with previous WE studies,3, 14-17 the efficiency of each 
type of WE simulation in calculating all of the observables increases with the height of the 
relevant free energy barrier, e.g.  relative to brute force simulations, the efficiencies of single 
heavy-weight simulations in calculating the koff are 2-  to 5-fold for the CH4/CH4 system, 5- to 
13-fold for the Na+/Cl- system, and 36- to 170-fold for the K+/CE system.  
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4.2 Equilibrium WE: Heavy-weight vs. Light-weight 

 

Next, we compared the efficiencies of carrying out WE simulations under equilibrium conditions 
using a single heavy-weight simulation vs. 50 light-weight simulations with either 2 or 4 target 
trajectories/bin). As mentioned above, equilibrium WE simulations can be decomposed into 
two subsets of steady state trajectories for the molecular association and dissociation 
directions, and can therefore yield kon and koff as well as KD values. As shown in Fig. 3, the 
efficiencies of such simulations in calculating the kon, koff, and KD generally increased with the 
number of target trajectories/bin, as found above for the steady state WE simulations. An 
exception to this trend was the calculation of the kon for the Na+/Cl- system for which a single 
heavy-weight simulation was less efficient than 50 light-weight simulations with 4 
trajectories/bin, but more efficient than 50 light-weight simulations with 2 trajectories/bin. 
Nonetheless, our results indicate that in general, heavy-weight simulations under both steady-
state and equilibrium conditions are the most efficient simulation protocol for calculating rate 
constants and binding affinities. 
 

FIG. 2. Efficiency of steady-state WE simulations relative to brute force simulations in 
calculating the kon, koff, and KD for each benchmark system. The kon and koff values were 
calculated using steady-state WE simulations started from the unbound and bound states, 
respectively. The KD values were calculated using pairs of steady-state WE simulations in 
opposite directions; the KD was evaluated using both the rate constants (koff/kon) and 
equilibrium populations for the unbound state (pU) and bound state (pB); the haMSM post-
simulation analysis was applied in the latter case. Data is shown for (i) sets of 50 light-weight 
simulations with 2 and 4 target trajectories/bin, and (ii) a single heavy-weight simulation 
with 50 target trajectories/bin. The horizontal gray line indicates equal efficiency relative to 
brute force simulations. 
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4.3 Equilibrium vs. Steady-State WE 
 
We then compared the efficiency of carrying out steady-state WE simulations vs. equilibrium 
WE simulations in calculating the kon, koff, and KD for each of the benchmark systems. To 
calculate the KD values, pairs of steady-state WE simulations in opposite directions were 
compared with single equilibrium WE simulations. In calculating the kon and koff, it is not 
surprising that equilibrium WE simulations are less efficient than steady state WE simulations 
with the appropriate target state (bound or unbound states, respectively) since the former 
involve the use of additional computational effort to generate pathways in the opposite 
direction from the target state (Fig. 4). Furthermore, despite the advantage of being able to 
simultaneously sample trajectories in opposite directions, a single equilibrium WE simulation is 
generally less efficient in calculating KD values than a pair of steady-state WE simulations in 
opposite directions. The exception is the most complicated system, K+/CE, for which single 
equilibrium WE simulations are more efficient than pairs of steady-state WE simulations in 
calculating the KD when a heavy-weight protocol is used in both cases (50 target 
trajectories/bin).  
 

FIG. 3. Efficiency of equilibrium WE simulations relative to brute force simulations in 
calculating the kon, koff, and KD for each benchmark system. The KD values were calculated 
using both the rate constants (koff/kon) and equilibrium populations for the unbound state 
(pU) and bound state (pB). The latter involved application of the haMSM post-simulation 
analysis. Data is shown for (i) sets of 50 light-weight simulations with 2 and 4 target 
trajectories/bin, and (ii) a single heavy-weight simulation with 50 target trajectories/bin. The 
horizontal gray line indicates equal efficiency relative to brute force simulations. 
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To determine the reason for the lower than expected sampling efficiencies for CH4/CH4 and 
Na+/Cl- in the heavyweight steady state case, the simulation data was used to construct a series 
of sampling error network plots (Fig. 5).  A SEN with tightly packed clusters and nodes 
corresponds to a simulation protocol that has less variance in sampling transitions than a 
simulation protocol with a SEN occupying more space. 
 

FIG. 4. Efficiency of equilibrium WE simulations relative to the relevant steady state WE 
simulations in calculating the kon, koff, and KD for each benchmark system. Relevant steady 
state WE simulations have the same number of WE simulations and target number of 
trajectories/bin (e.g. the efficiency of heavy-weight equilibrium simulations in calculating the 
KD is determined relative to pairs of heavy-weight steady-state simulations in opposite 
directions). The horizontal gray line indicates equal efficiency relative to the relevant steady 
state WE simulations. 
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The sampling error networks (SEN) suggest that the lower-than-expected efficiencies for

calculating rate constants with the steady-state simulation protocol for Na
+
/Cl

-
 and CH4/CH4

may be due to simulation time spent working on reverse trajectories (i.e., binding trajectories in

an unbinding simulation).  The light-weight steady-state SENs for Na+/Cl- and CH4/CH4 are

unconnected across the binding/unbinding threshold, showing that trajectories which reach

their target state were successfully recycled.  The heavy-weight steady-state SENs, however,

are connected, showing that the reverse trajectory was sampled within those simulations

Reverse trajectories add to the aggregate molecular time spent simulating and do not

contribute to lowering error in estimating rate constants, reducing sampling efficiency.  A lower

tau value, or fewer walkers per bin, would likely improve the efficiency of these simulations

 
FIG. 5. Sampling error networks (SEN) of simulation protocols.  Each network contains 3 

separate simulation protocols: heavyweight WE, lightweight WE with 2 trajectories/bin, 

and lightweight WE with 4 trajectories/bin (COLORS).  Each node represents a bin used 

during dynamics, and the edges connecting the nodes have a strength equal to the 

inverse of the percent error in sampling the bin to bin transition corresponding to that 

node.  Complete ‘lobes’ indicate that a complete binding/unbinding cycle was sampled 

with that simulation protocol; broken lobes are indicative of less successful sampling.  

Columns A & B are based on the same steady state simulation data, with different 

visualization schemes applied.  In column A, the colors refer to the type of simulation, 

and the node sizes are equal.  In column B, the color intensity is the progress coordinate 

distance (with red showing bins in the unbinding ensemble, and blue in the binding), and 

the node size is the sum of the weighted degree of the node.  Columns C & D are the 

same as A & B, except they are for simulations run under equilibrium conditions.  As the 

edge weights are the log of the inverse error, small changes in node size correspond to 

large differences in sampling variance. 
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Overall, the sampling error networks mirror the efficiency trends seen in Fig. 3 and 4, where 
equilibrium, heavy-weight WE networks have clusters which are more densely packed than 
those in either light-weight WE networks. 
 
It may also be beneficial to reduce sampling in regions just beyond steep landscapes, as most of 
the simulation protocols show less variance in sampling transitions in and out of regions just 
before and after steep regions in the energy landscape.  Columns B & D in Fig. 5, where the 
node radius is proportional to the weighted degree, show the largest nodes in regions just 
beyond steep climbs, suggesting that the variance in sampling transitions into and out of these 
regions is low.  As these regions show lower variance in sampling transitions, some of that 
computation time may be better spent on the more difficult regions.  In addition, K+/CE shows 
the largest nodes at a separation distance of 10 A, which is within the diffusive region.  This 
suggests that sampling diffusive type mechanisms is straightforward for WE, and that the 
number of walkers in the diffusive region can be safely reduced. 
 
4.4 Effects of haMSM post-simulation analysis 
 

We then tested whether a haMSM post-simulation analysis of the same equilibrium sets of 
trajectories generated above would further increase the efficiency of calculating the kon, koff, 
and KD for each benchmark system. As mentioned above, converged state populations and 
thereby converged KD values (from the state populations) were attainable only after the 
application of the haMSM analysis procedure. Importantly, KD values calculated from rate 
constants are within error of those calculated from state populations using the haMSM 
procedure.  
 
Our results reveal that the effects of applying the haMSM procedure on the efficiencies of the 
heavy-weight versions of steady-state and equilibrium WE simulations in calculating all the 
observables of interest varied considerably depending on the number of bins used for the 
procedure (Fig. 6). The use of the minimal set of 3 bins resulted in similar efficiencies to those 
from direct calculation of the observables. While in some cases increasing the number of bins 
increased the efficiency of the haMSM procedure (e.g., in calculating koff for the CH4/CH4 
system under equilibrium conditions), in other cases, increasing the number of bins reduced 
the efficiency (e.g. in calculating koff for the K+/CE system under steady-state conditions). Such 
reductions may be due to a smaller number of observed bin-to-bin transitions between 
successive WE iterations, resulting in large variations in the transition rate matrix and 
ultimately, greater uncertainty in the rate constants (Figs. S3 and S4). The same conclusions 
apply to the light-weight versions of both steady-state and equilibrium WE simulations (Figs. S5 
and S6). 
 
For the minimal set of bins, provided that the target states are known in advance, the 
calculation of KD values from either rate constants or state populations was more efficient using 
pairs of steady-state WE simulations rather than single equilibrium WE simulations (Fig. 4). 
Interestingly, the efficiencies of using either steady-state or equilibrium WE simulations in 
calculating KD values from rate constants vs. state populations are similar for all of the 
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benchmark systems except for the CH4/CH4 system. For example, pairs of steady-state WE 
simulations of the CH4/CH4 system were 3-fold more efficient than brute force simulations in 
calculating the KD from the directly calculated rate constants, whereas after application of the 
haMSM post-simulation analysis to both the brute force and steady-state WE simulations 
calculating the KD from the state populations is 124-fold more efficient (Figs. 2 and 3). This 46-
fold difference in efficiency may be due to an insufficient number of observed transitions in the 
brute force simulations thereby resulting in a large uncertainty in the KD based on state 
populations (Figs. S1 and S2). 
 
 

 

 

FIG. 6. Effect of applying the history augmented Markov State Model [haMSM; previously 
referred to as non-Markovian (NM) reweighting] post-reweighting procedure on the 
efficiency of calculating the kon, koff, and KD for each benchmark system. Data shown is from 
heavy-weight simulations, both as single equilibrium WE simulations (red) and pairs of 
steady state WE simulations (blue). Different sets of bins were tested in the application of 
the haMSM procedure, ranging from a minimal set (3 bins) to 18 bins. The horizontal gray 
line indicates equal efficiency relative to directly calculating the simulation observables. 
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4.5 Tracking of trajectory history during equilibrium WE simulations 
 

Finally, we tested whether including the “history” of each trajectory (i.e. state last visited) as a 
separate dimension of the progress coordinate during dynamics propagation would enhance 
the efficiency of calculating the kon, koff, and KD using equilibrium WE simulations. As shown in 
Fig. 7, history tracking during dynamics propagation substantially increased the efficiency of 
calculating the observables of interest for all of the benchmark systems, with the exception of 
kon for the Na+/Cl- system. The largest efficiency increases were observed for the K+/CE system, 
with 22-,  7-, and 89-fold gains in the efficiencies of calculating the koff, kon, and KD, respectively, 
relative to brute force simulations. For the CH4/CH4 and Na+/Cl- systems, the efficiencies in 
calculating the KD, both from rate constants and state populations, were either equal to or 
greater than that of brute force simulations.  The target number of trajectories/bin was the 
same for each history-tracked bin, and as such the simulation spent roughly equal time in both 
association and dissociation ensembles.  Therefore, the efficiency reductions in calculating the 
kon for both the CH4/CH4 and Na+/Cl- systems may have allowed for the koff to be calculated 
more efficiently. 
 

 
 
 
 

 
 
FIG. 7. Effect of including trajectory history as part of the progress coordinate during 
dynamics propagation on the efficiency of equilibrium WE simulations in calculating the kon, 
koff, KD for each benchmark system. Only heavy-weight simulations were used in this 
comparison. The horizontal gray line indicates equal efficiency relative to the same 
simulations without the inclusion of trajectory history as part of the progress coordinate. 
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4.6 Which WE protocol should you use for your simulation of interest? 

 

As illustrated in Fig. 8, the appropriate WE protocol depends on the goals of the simulations 
involving the rare event of interest. Furthermore, although some of the advances to the WE 
strategy were found to reduce the efficiency of calculating certain observables relative to the 
original WE strategy,1 each advance provides appealing features. Our specific recommendations 
for the most common simulation goals are presented below.  
 
 

  
 
If the target state of the rare event is well-defined a priori, steady state WE simulations are 
recommended over equilibrium WE simulations for calculating both non-equilibrium and 
equilibrium observables (e.g. rate constants and equilibrium state populations, respectively). In 
particular, we have demonstrated that rate constants for both the forward and reverse 
directions of a rare event, as well as the KD values resulting from the ratio of the rare constants, 
are more efficiently calculated using a pair of steady-state WE simulations in opposite 
directions rather than a single equilibrium WE simulation. Furthermore, we have demonstrated 

 
FIG. 8. Flowchart for determining a suitable WE 

simulation protocol for an application of interest. 

 

Equilibrium WE with 
NM post-reweighting
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for the first time that the application of the haMSM post-simulation analysis can enhance the 
efficiency of the KD from equilibrium state populations. While the target state must be defined 
in advance for steady state WE simulations, we note that such simulations can be run using a 
particularly strict (yet still attainable definition) of the target state for the recycling of 
trajectories, and that this state definition can then be refined to less strict definitions after the 
completion of the simulations.  
 
If the target state of the rare event is not strictly defined in advance, only equilibrium WE 
simulations can be carried out since it is not possible to recycle trajectories at the target state 
to maintain steady state conditions. Although equilibrium WE simulations are not as efficient as 
steady state WE simulations in calculating rate constants and binding affinities, equilibrium WE 
simulations are still more efficient than brute force simulations for systems with sufficiently 
high free energy barriers (e.g. K+/CE) and provide the maximum flexibility in refining state 
definitions after the completion of simulations. As mentioned above, the efficiency of 
equilibrium WE simulations in calculating the observables of interest can be further enhanced 
by including the trajectory history (state last visited) as a dimension of the progress coordinate 
during dynamics propagation in equilibrium WE simulations. This tracking of trajectory history 
not only ensures the survival of pathways in the opposite direction from the target state, but 
can increase the diversity of pathways in both directions.  
 
If the primary goal is to calculate rate constants and equilibrium observables (e.g. state 
populations) along with the generation of continuous pathways for the rare event of interest, 
the use of single heavy-weight simulations is recommended over a large set of light-weight 
simulations, regardless of whether the simulations are run under steady state or equilibrium 
conditions. Our results demonstrate that steady-state, heavy-weight simulations are the most 
efficient strategy for calculating rate constants, particularly for challenging, complex processes 
such as protein-ligand unbinding where the timescale of the process is far beyond what is 
accessible to brute force simulations. To calculate equilibrium observables, we recommend 
applying the haMSM post-simulation analysis to either single equilibrium WE simulations or 
pairs of steady-state WE simulations in opposite directions. 
 
Notably, we have demonstrated for the first time that the application of the haMSM analysis 
procedure can enhance the efficiency of computing binding affinities from state populations, 
provided that the stable states are carefully defined such that the surface of state A from which 
A-type trajectories are initiated is the same surface at which B-type trajectories end, and vice 
versa.18  We note that the minimal set of bins with the haMSM procedure results in similar 
efficiencies in the calculation of rate constants as direct calculations and that the use of a 
greater number of bins may increase this efficiency. However, binning too finely may reduce 
the efficiency of the calculation. We therefore recommend that different numbers of bins be 
tested in the application of the haMSM procedure – ranging from the minimal set to the 
maximum, affordable number of bins – to determine the set of bins that yields the best 
efficiency in calculating the observable of interest (e.g., generating plots similar to those in Fig. 
6).   
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If the goal is to generate a diverse ensemble of pathways for the rare event of interest, a large 
set of light-weight simulations may be preferable to a single heavy-weight simulation, provided 
that the light-weight simulations are carried out using a minimum of 4 target trajectories/bin. 
This minimum number of target trajectories/bin is required to calculate the observables of 
interest with greater efficiency than brute force simulations and may vary with the complexity 
and timescale of the rare event. In principle, single heavy-weight simulations could be 
combined with improved schemes for the replication and pruning of trajectories to increase the 
diversity of pathways while leveraging the greater statistical ratcheting that results from the 
large target number of trajectories/bin. Thus, it is likely that WE protocols will be available in 
the near future for generating the desired diversity of pathways without sacrificing efficiency in 
computing both rate constants and equilibrium observables of interest.  
 
Finally, consistent with a previous WE study,18 we have found that the calculation of rate 
constants from a WE simulation can be sensitive to state definitions. For example, equilibrium 
WE simulations of the K+/CE system yield computed kon values that are inconsistent with those 
from brute force simulations when the unbound state was defined to have a distance of 11.6 Å 
or 25 Å between the K+ ion and center-of-mass of the crown ether oxygens; these distances 
were chosen from the probability distribution shown in Fig. 1 and correspond to the entrance 
(inflection point) and bottom of the unfolded state basin, respectively. On the other hand, if a 
distance of 24 Å is used to define the unbound state, the computed kon values are not only 
within error of those from brute force simulations, but achieve steady values more quickly than 
rate constants computed using the other two unbound state definitions. The development of 
schemes to identify robust state definitions is beyond the scope of this work and would be a 
valuable future direction for WE strategies. In the meantime, for any given WE simulation, we 
recommend testing the sensitivity of rate calculations to the state definitions. 
 
 
5. CONCLUSION 

 

We evaluated the impacts of several advances in WE path sampling strategies on the 
efficiencies of calculating the kon, koff, and KD for three benchmark systems, listed in order of 
timescales for association/dissociation: CH4/CH4, Na+/Cl-, and K+/CE.  In particular, we 
quantitatively assessed the following advances: (i) carrying out a large set of light-weight 
simulations vs. a single heavy-weight simulation, (ii) the use of equilibrium vs. steady-state WE 
simulations, (iii) tracking the trajectory history during the dynamics propagation of equilibrium 
WE simulations, and (iv) history augmented Markov State Model (haMSM) post-simulation 
analysis of an equilibrium set of trajectories.7 It is worth noting that it is just as valuable to 
determine what does not work as what does work in enhancing the efficiency of calculating the 
observables of interest. We report the following novel findings. 
 
First, we have demonstrated that the application of the haMSM post-simulation analysis to 
pairs of steady-state WE simulations in opposite directions can efficiently yield equilibrium 
observables, i.e. KD values.  On the other hand, if the target state is not well-defined in advance 
thereby making it impossible to run steady-state WE simulations, heavy-weight, equilibrium WE 
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simulations with the application of the haMSM analysis procedure are still more efficient than 
brute force simulations. The application of the haMSM procedure was particularly effective in 
increasing the efficiency of calculating equilibrium state populations thereby increasing the 
efficiency of calculating the KD from the state populations. Depending on the number of bins 
used in the haMSM post-simulation analysis, the analysis could also increase the efficiency of 
calculating the rate constants, particularly the koff for the most challenging system, K+/CE. 
 
Second, our results reveal that a set of 50 light-weight simulations is less effective than a single 
heavy-weight simulation with 50 target trajectories/bin in calculating the kon, koff, and KD due to 
a smaller extent of statistical ratcheting, which is a hallmark of WE strategies. However, light-
weight simulations may be preferable for increasing the diversity of pathways by generating a 
larger number of pathways that are not correlated in history, i.e. sharing no common trajectory 
segments. Alternatively, it may be possible to combine the use of single heavy-weight 
simulations with improved schemes for replication and pruning of trajectories to both increase 
the diversity of pathways while maintaining the efficiency associated with heavy-weight 
simulations in calculating the observables of interest.  
 
Third, we have tested for the first time the incorporation of trajectory history as a dimension of 
the progress coordinate during dynamics propagation to ensure the generation of trajectories 
in both the dissociation and association directions. Our results reveal that history tracking can 
in general, increase the efficiency of calculating the kon, koff, and KD for the benchmark systems.  
We note that the incorporation of trajectory history requires definitions of the initial and target 
states before carrying out the simulation. In cases where states are well-defined in advance, a 
more efficient simulation protocol than the use of equilibrium WE simulations with history 
tracking is to run two sets of steady-state WE simulations in opposite directions such that the 
simulations can be combined to yield an equilibrium set of trajectories to compute both 
equilibrium and non-equilibrium observables. As the probability of pruning reverse trajectories 
is determined by the scheme for replicating and pruning trajectories, modifications of this 
scheme may improve the efficiency of calculating the observables of interest while ensuring the 
survival of trajectories in the direction that is opposite from the target states. 
 
Among all of the WE protocols tested, steady-state, heavy-weight simulations were found to be 
the most efficient in calculating the kon, koff, and KD for the most challenging benchmark system, 
K+/CE. Consistent with this finding is the fact that our previous WE simulations of protein-
peptide association involved a heavy-weight protocol under essentially steady-state conditions 
since pathways were generated primarily for the association process rather than both 
association and dissociation processes.6 For long-timescale processes (microseconds or beyond) 
for which the target state is well-defined in advance of the simulation, we therefore 
recommend carrying out heavy-weight, steady-state WE simulations to compute rate constants 
as well as equilibrium observables (via the combination of steady-state simulations in opposite 
directions). 
 
Given the unprecedented amount of simulation that was completed for each of the benchmark 
systems (83.17 μs of aggregate simulation time), the resulting set of simulations provide a 
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valuable reference data set for evaluating future advances to enhanced sampling strategies that 
maintain rigorous kinetics, including WE strategies with advances that may enhance the 
diversity of pathways without reducing the efficiency of computing observables of interest.  
 
SUPPLEMENTARY MATERIAL 

WE parameters and conformational sampling simulation details for benchmark systems.  
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