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Abstract   27 

The "dark transcriptome" can be considered the multitude of sequences that are 28 

transcribed but not annotated as genes.  We evaluated expression of 6,692 annotated genes and 29 

29,354 unannotated ORFs in the Saccharomyces cerevisiae genome across diverse 30 

environmental, genetic and developmental conditions (3,457 RNA-Seq samples).  Over 48% of 31 

the transcribed ORFs have translation evidence. Phylostratigraphic analysis infers most of these 32 

transcribed ORFs would encode species-specific proteins ("orphan-ORFs"); hundreds have mean 33 

expression comparable to annotated genes. These data reveal unannotated ORFs most likely to 34 

be protein-coding genes. We partitioned a co-expression matrix by Markov Chain Clustering; the 35 

resultant clusters contain 2,468 orphan-ORFs. We provide the aggregated RNA-Seq yeast data 36 

with extensive metadata as a project in MetaOmGraph, a tool designed for interactive analysis 37 

and visualization. This approach enables reuse of public RNA-Seq data for exploratory 38 

discovery, providing a rich context for experimentalists to make novel, experimentally-testable 39 

hypotheses about candidate genes. 40 
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Introduction 43 

Pervasive transcription of unannotated genome sequence in eukaryotic species is evidenced 44 

in multiple RNA-Seq studies. [1–5].  Indeed, transcription and translation has been described for 45 

non-genic regions of genomes in diverse species [6–15]. Many studies have dismissed this 46 

expression as transcriptional "noise" [4, 16–18]. However, several functional genes have been 47 

identified from the so-called ”noise” [19, 20].  This mass of unannotated transcripts, often ignored 48 

and little understood, we refer to as the “dark transcriptome” (Figure 1.A).    49 

Each organism contains species-specific genes (denoted here as "orphan genes"). The 50 

challenge of distinguishing orphan genes in genomes and predicting their functions is immense, 51 

resulting in an under-appreciation of their importance.  The emergence of novel protein coding 52 

genes specific to a single species (orphans) is a vital mechanism that allows organisms to survive 53 

a changing environment [21, 7, 22–25]. Over generations, those orphan genes that continue to 54 

provide a survival advantage will be maintained. Orphan genes can be identified from within a 55 

list of genes by phylostratigraphy, the classification of each gene according to its inferred age of 56 

emergence [21, 22]. Two general mechanisms enable orphan gene emergence:1) de novo 57 

evolution and 2) divergence. 58 

Orphan genes can evolve de novo from non-coding sequence in regions of the genome 59 

lacking genes entirely or as new reading frames within existing genes [11, 22, 26, 27]. Indeed,  60 

transcriptional and translational "noise" has been suggested as a mechanism that facilitates novel 61 

gene emergence [28–33].  This hypothesis is borne out by in vitro and in vivo synthetic biology 62 

research demonstrating that novel peptides are often able to bind small molecules (e.g., ATP, and 63 

metals) [34] and induce beneficial phenotypes when expressed [34, 35]. If information on the 64 

expression of the dark transcriptome was more easily accessible, the potential roles of expressed 65 

transcripts could be better considered. 66 

Orphan genes can also evolve from existing proteins by divergence of protein coding 67 

sequences (CDSs) beyond recognition [22, 28, 29, 31, 33, 36–39]. We estimate from the 68 

phylostratigraphic data on yeast genes that this process would require ultra-rapid sequence 69 

divergence relative to that of the average protein. Evolution of orphan genes from existing protein-70 

coding genes has been estimated to account for about 18% (human), 25% (Drosophila), and 45% 71 

(yeast) of annotated taxonomically-restricted genes [39]. (This estimate considers only the ~50% 72 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2020. ; https://doi.org/10.1101/671263doi: bioRxiv preprint 

https://doi.org/10.1101/671263
http://creativecommons.org/licenses/by/4.0/


 4 

of yeast genes that can be compared across species, i.e., those that are located within syntenic 73 

intervals of related genomes [40].) 74 

A systematic analysis of current computational methods for genome annotation indicates 75 

many orphan genes may be missed in annotation projects [41]. This is because genes are often 76 

identified from sequenced genomes by combining evidence based on homology with other species 77 

[42, 43] with ab initio machine-learning predictions by detecting canonical sequence motifs (e.g., 78 

splice junctions) [44, 45]. However, homology and ab initio approaches can be problematic in 79 

predicting orphan genes. First, orphan genes cannot be identified by homology to genes of other 80 

species, since they have none. Secondly, to the extent that an orphan has not yet evolved canonical 81 

motifs, ab initio prediction may be ineffective. For example, compared to the gold-standard 82 

annotations in the curated TAIR community database [46], the popular ab initio pipeline MAKER 83 

[44] predicted as few as 11% of the annotated Arabidopsis orphan genes, depending on the RNA-84 

Seq evidence supplied [41].  85 

Enhancing ab initio pipelines by other sequence-based information (e.g., motif/domain 86 

information, cellular location predictions, predicted isoelectric point (pI), genomics context) can 87 

improve gene predictions [47–49]. However, because it is not a given that newly evolved genes 88 

have canonical features, direct alignment of transcriptomic and/or proteomic data to the genome 89 

is critical for annotating orphan genes, as well as non-coding transcripts (lncRNAs, etc.) [3, 5, 7, 90 

10, 32, 41, 48, 50].  91 

Here, we reuse and re-mine aggregated RNA-Seq data to discover new potential gene 92 

candidates. The study comprehensively evaluates transcription and ribosomal binding of all open 93 

reading frames (ORFs) in the yeast genome over a wide variety of conditions, in the context of 94 

annotated genes. The research extends the results of previous studies, in that it globally represents 95 

ORFs in the S. cerevisiae genome across thousands of samples. Furthermore, we provide these 96 

data and extensive metadata via a biologist-friendly platform, MetaOmGraph (MOG [51], 97 

https://github.com/urmi-21/MetaOmGraph), which provides interactive, exploratory analysis [52] 98 

and visualization of expression levels, expression conditions, and co-expressed genes for the ORF-99 

containing transcripts.  This approach enables experimentalists to prioritize ORFs for functional 100 

characterization, and to logically define experimental parameters for these characterizations [51]. 101 

 102 
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Results 103 

Identifying potential cryptic orphan genes in S. cerevisiae 104 

S. cerevisiae has the most extensively sequenced and annotated genome within the 105 

Saccharomyces genus, or perhaps across eukaryotes. However, despite the large body of research 106 

on S. cerevisiae, this genome expresses many transcripts not annotated as genes [3, 7, 9, 50, 53, 107 

54], some of de novo origin [7, 26, 27, 39, 55], some supported with translational evidence [27, 108 

50]. Our overall goal was to generate a comprehensive overview of expression of ORFs, and make 109 

this available in a format that can be readily explored.  For this study, we classified all unannotated 110 

ORFs (>150 nt) and Saccharomyces genome database (SGD)-annotated genes in the S. cerevisiae 111 

genome according to phylostrata, transcription and translation evidence, and genomic context. We 112 

also included yeast ORFs < 150nt with transcription and/or translation evidence that had been 113 

characterized in two previous publications: smORFs [7] and txORFs  [3]. Figure 1.B defines our 114 

terminology and lists the numbers of genes and ORFs in each category.  115 

We inferred the oldest phylostratum (PS [56]) to which each S. cerevisiae protein (or 116 

candidate protein) could be traced, using the customizable phylostratr package [40] (Figure S1).  117 

Similarity to proteins of cellular organisms (i.e., proteins tracing back to prokaryotes) was 118 

designated as PS=1; no similarity to any protein outside of S. cerevisiae was designated as PS=15. 119 

(See supplementary file, S.cerevisiae_RNA-seq_3457_27.mog for full PS assignments by 120 

transcript). This analysis infers that fewer than 4% of SGD-annotated genes are orphans. In 121 

contrast, 54% of unannotated ORFs are orphans ("orphan-ORFs”), 40% are genus-specific 122 

(PS=10-14), and only 6% are more highly conserved (PS=1-9) (Figure 1.B).   123 

In fungi, plants, and animals, the mean lengths of CDSs of annotated genes increase during 124 

evolution, with CDSs of orphan genes being the shortest [23, 27, 40, 57, 58] (Figure S2.A). The 125 

ORFs of yeast also follow a similar trend: average lengths of orphan-ORFs are shorter and average 126 

length of ORFs increases with increasing phylostrata (Figure S2).  Consistent with the finding of 127 

Basile [59], the mean GC content for SGD-annotated orphan genes in S. cerevisiae is slightly lower 128 

(though not statistically significant) than that of more conserved genes. Like the SGD-annotated 129 

orphan genes, the Q3-transcribed orphan-ORFs (ORFs in top quartile of mean expression,  see 130 

Figure 1.B) have a slightly lower mean GC content than ORFs of other phylostratum levels (Figure 131 
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S2.B).  Vakirlis [55] reported a higher mean GC content among those orphan genes that have a 132 

confirmed de novo origin. 133 

Transcriptional landscape of genes and ORFs 134 

 Expression of many annotated orphan genes is developmentally localized, up-regulated 135 

under environmental stress, or associated with species-specific traits [23, 60–63]. For example, 136 

more yeast orphans are ribosomally-bound under starvation conditions than control conditions [6, 137 

7]. We anticipated that sparse-expression would be a characteristic of many of those orphan-ORFs 138 

that are actually orphan genes that have escaped annotation. To capture expression of these orphan-139 

ORFs, we deemed it essential to use RNA-Seq samples comprising diverse developmental, 140 

genetic, and environmental conditions.  141 

RNA-Seq samples drawn from a wide range of conditions have an added benefit. Because 142 

orphans have no homologs in other species, and no recognizable functional domains, these 143 

characteristics cannot be used to provide a clue as to function [23], rendering functional inference 144 

a particular challenge. The assumption that genes with similar patterns of expression are likely to 145 

encode proteins involved in a common process provides a powerful approach to infer 146 

experimentally-testable functions for genes of unknown function. Therefore, using datasets 147 

incorporating the diverse conditions in which orphans-ORFs or orphan genes might be expressed 148 

is key to functional inference and to determine the conditions that induce their expression. 149 

To gather RNA-Seq data from diverse conditions, we collected raw sequence reads and 150 

metadata of 3,457 RNA-Seq samples from 177 studies in The National Center for Biotechnology 151 

Information-Sequence Read Archive (NCBI-SRA). (See S.cerevisiae_RNA-seq_3457_27.mog for 152 

metadata and counts). The experimental variables across these samples include a wide variety of 153 

mutants, chemical treatments, stresses, nutrition deprivations, and growth stages. We quantified 154 

the expression of all 29,354 ORFs and 6,692 SGD-annotated genes of S. cerevisiae across the 155 

3,457 RNA-Seq samples. 156 

Figure 2 shows a heatmap for expression of SGD-annotated genes, smORFs (sequences 157 

encoding small orphan proteins with ribosomal evidence of translation [7]), and transcribed 158 

orphan-ORFs (> 150 nt) across the 3,457 RNA-Seq samples. (See Figure S3 for expression plot of 159 

all genes and ORFs). The mean expression across all samples for SGD-annotated genes is 38 cpm, 160 

whereas the mean expression for the Q3-transcribed ORFs is 18 cpm (Table S1). Many SGD-161 
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annotated genes are expressed in most of the samples. In contrast, as we anticipated based on the 162 

erratic pattern of expression of annotated orphan genes, most of the orphan-ORFs show very low 163 

expression in most RNA-Seq samples, but accumulate highly in a few samples. This sporadic 164 

expression contributes significantly to the observed lower mean expression of the orphans. It also 165 

demonstrates how many transcribed sequences might be missed if smaller, less diverse datasets 166 

are analysed. 167 

Ninety-nine percent of the 3,457 RNA-Seq samples have transcription evidence for at least 168 

one of the Q3-transcribed ORFs (Figure 3). Some samples are particularly rich in Q3-transcribed 169 

ORFs.  For example, 50 samples have transcription evidence for >1,200 of the Q3-transcribed 170 

ORFs; 47 of these samples are from wild type strains, many grown under conditions of nutritional 171 

or chemical stress.  172 

The conserved SGD-annotated genes have higher mean expression than either the orphan 173 

SGD-annotated genes, the Q3-transcribed orphan-ORFs, or the Q3-transcribed conserved-ORFs 174 

(Kolmogorov-Smirnov Test, p-values < 0.001; Figure 4).  However, over 600 orphan-ORFs have 175 

a higher mean expression than 10% of conserved SGD-annotated genes, 289 orphan-ORFs have a 176 

mean expression higher than 25% of the conserved SGD-annotated genes, and 36 orphan-ORFs 177 

have a mean expression higher than 90% of conserved SGD-annotated genes (Figure 4 and Table 178 

S1. A).  179 

Genomic context of the ORFs. 180 

We surveyed the genomic location of each ORF relative to the nearest SGD-annotated gene 181 

(Figure S6). A recent study using on two experimental conditions [50] reported that a high 182 

proportion of expressed but unannotated transcripts in yeast overlap known CDSs but are 183 

transcribed from the opposite strand. Consistent with [50], 30% of the transcribed ORFs overlap 184 

CDSs and are transcribed from the opposite strand (reverse orientation) in our study. Furthermore, 185 

regardless of orientation (same versus reverse), ORFs that overlap an annotated CDS have a 186 

median of mean expression 5-fold higher than ORFs located within or outside a CDS (Wilcoxon 187 

rank-sum test, p-value < 0.001, Figure S6).  We have no explanation for this phenomenon. The 188 

orientation in which overlapping ORFs are transcribed relative to the associated CDSs does not 189 

significantly alter the mean expression level of the ORFs (Figure S6).   190 
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Of the 289 orphan-ORFs with the highest transcription (Figure 4), 49% overlap an 191 

annotated CDS, rather than being within an annotated CDS or outside an annotated CDS (Figure 192 

S7).  This is significantly higher (Fisher’s exact test, p-value< 0.001) than the proportion among 193 

all ORFs (15%) and all orphan-ORFs (14%) that overlap CDS (Figures S6, S7). Most of the 289 194 

orphan-ORFs that overlap a CDS have a reverse orientation (convergent or divergent) relative to 195 

the SGD-annotated gene they overlap (Figure S7).  196 

Many RNAs in fungi and humans that have been annotated as “lncRNAs” are associated 197 

with ribosomes, and/or have proteomics evidence, indicating some of them may function as 198 

protein-coding genes [2, 6, 11, 32, 64]. To examine translation evidence in our study, we globally 199 

evaluated translation evidence, mapping raw reads from 302 ribosomal profiling RNA-Seq (Ribo-200 

Seq) samples in SRA to the unannotated ORFs and SGD-annotated genes of S. cerevisiae. (See 201 

supplementary file Ribo-Seq_counts.csv and Ribo-Seq_metadata.xlsx for raw counts and 202 

metadata). About 61% of Q3-transcribed conserved-ORFs, 40% of genus-specific-ORFs, and 51% 203 

of orphan-ORFs have translational evidence among these Ribo-Seq samples (Figure 1.B).  This 204 

compares to 97% of the conserved SGD-annotated genes, 45% of genus-specific SGD-annotated 205 

genes, and 38% of orphan SGD-annotated genes. The mean Ribo-Seq raw counts were 206 

significantly different (t-test p-value < 0.001) among classes of transcripts, depending on whether 207 

they were orphan, genus-specific, or conserved (Figure 5.A). The mean Ribo-Seq raw counts for 208 

the low-transcribed ORFs are significantly lower than for the Q3-transcribed ORFs, and the mean 209 

Ribo-Seq raw counts for the ORFs with no transcription evidence are 0 or near 0 (Figure S8).  210 

The proportions of Q3-transcribed ORFs with translation evidence located within, 211 

overlapping, or between annotated CDSs are significantly different among orphan-ORFs, genus-212 

specific-ORFs, and conserved-ORFs (Chi-square test, p-value < 0.001) (Figure 5.B). Notably, 213 

54% of Q3-transcribed orphan-ORFs with translation evidence are located in the intervals between 214 

annotated CDSs, compared to only 12% of the genus-specific ORFs and 9% of the conserved ORFs 215 

(Figure 5.B).  216 

Since yeast was the first model eukaryotic genome [65], and has been reannotated over 217 

time, it would be expected that most conserved genes are already annotated. However, some genus-218 

specific-genes might have been missed because homology is a major criterion used for genome 219 

annotation.  Orphan genes, which have no homologs in other species, sparser expression, and likely 220 
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fewer canonical features [41], are yet less likely to have been annotated.  In total, 1,477 Q3-221 

transcribed genus-specific-ORFs and 1,850 Q3-transcribed orphan-ORFs have ribosomal binding 222 

evidence. These transcribed, translated ORFs are candidates as protein-coding genes. 223 

Five hundred and thirty of the 858 Q3-transcribed conserved-ORFs also have translation 224 

evidence. There are several possible explanations for why a transcript with homologs in other 225 

species are not annotated as genes. Some of these conserved-ORFs may be pseudogenes that retain 226 

some homology and expression, but have lost functional capacity. Other conserved-ORFs might 227 

encode active proteins, by because they are expressed only under limited conditions they might 228 

not have been sampled when SGD annotations were made.  Other conserved-ORFs may have been 229 

ignored because their ORF codes for a shorter protein than the canonical gene family member. (On 230 

average, a Q3-transcribed conserved-ORF is significantly shorter than the homologous SGD-231 

annotated gene (t-test, p-value < 0.001)).  However, it not a given that because an ORF encodes a 232 

shorter protein it is non-functional. Shorter homologs of proteins with known function may play a 233 

biological role in regulating signal transduction, modulating enzyme activity, and/or affecting 234 

protein complexes, potentially competing with their “full-length” homolog [66, 67]. Translation 235 

of a short conserved-ORF also might be regulatory, in that it limits translation of a nearby active 236 

protein [68].  237 

Network inference and co-expression analysis 238 

To analyse the expression patterns of the ORFs in the context of annotated genes, we 239 

optimized correlation and network parameters for the RNA-Seq expression data (see Methods, 240 

Figures S10, S11, and Table S3), and focused our subsequent interactive co-expression analysis 241 

and visualization on a dataset ("SGD+ORF" dataset) composed of 14,885 transcripts (all SGD-242 

annotated genes; the 7,054 Q3-transcribed ORFs; and all 1139 smORFs) across 3,457 RNA-Seq 243 

samples. 244 

We then computed the Pearson pairwise correlation (PCC) matrix for the SGD+ORF 245 

dataset, and partitioned the resultant PCC matrix by Markov chain graph clustering (MCL) [69] 246 

into 544 clusters (Table S4 for overview; genes and ORFs with cluster designations at 247 

supplementary file S.cerevisiae_RNA-seq.mog). Forty-six percent of the 273 SGD-annotated 248 

orphan genes and 59% of the 3,899 Q3-transcribed orphan-ORFs are members of clusters 249 
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containing more than five genes and include genes of known function, thus providing potential for 250 

functional inference. 251 

It was possible that ORF expression might be correlated with that of adjacent or 252 

overlapping SGD-annotated genes, i.e., that ORFs are expressed due to a physical proximity to 253 

transcribed SGD-annotated genes. We used two approaches to evaluate the extent to which such 254 

"piggybacking" might occur. In the first approach, we focused on the 390 ORFs that are located 255 

completely within UTRs of SGD-annotated genes (88% are orphan-ORFs). About 80% of these 256 

ORFs have a PCC less than 0.6 (0.6 is the correlation cut-off we used for MCL) with the 257 

encompassing SGD-annotated genes, however, about 2% (eight) ORFs have a correlation higher 258 

than 0.9. In the second approach, we calculated how many ORFs are in the same cluster as nearby 259 

annotated genes. To do this, we randomly selected 366 ORFs that were members of clusters, and 260 

made test clusters of the same sizes, each cluster containing randomly-selected SGD-annotated 261 

genes and the identical ORFs as in the experimental data. Then, we calculated the distance of each 262 

ORF to each SGD-annotated gene in the randomly-created and the experimental clusters. The 263 

distances were not statistically different in the experimental versus the random clusters (p-264 

value=0.16 in a t-test for difference). These tests indicate that the expression of ORFs is not 265 

generally associated with the ORFs being within or near to an SGD-annotated gene, and co-266 

expressed with it. However, there is strong support for such a relationship in specific cases (e.g., 267 

Figure 9, and as reported in [55]).  268 

About 65% of the Q3-transcribed ORFs are assigned to clusters in the co-expression 269 

matrix. Regardless of whether they are protein-coding, they could play a biological role. The 270 

highly transcribed ORFs with translational activity provide an evidence-based cadre of candidate 271 

protein-coding genes that could be experimentally tested. 272 

GO enrichment analysis for co-expressed clusters 273 

In order to evaluate the significance of the clustering results, we compared the extent of 274 

enrichment of Gene Ontology (GO) terms in the set of clusters obtained from MCL-partitioning 275 

experimental data to that of 100 randomly-generated sets of clusters. For each randomly-generated 276 

set, the number of clusters and the number of genes per cluster were held the same as the set of 277 

clusters from the experimental data; however, the genes assigned to each cluster were changed by 278 

random permutation. The best adjusted p-value for enriched GO terms was recorded for each 279 
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cluster and averaged across all clusters to obtain a mean best p-value [70] (Figure 6). Distribution 280 

of the p-values for GO terms in the 100 sets of randomized clusters was compared to that of the 281 

experimental data (red arrows in Figure 6). For each GO ontology category (Biological Process 282 

(BP), Cellular Component (CC), and Molecular Function (MF)), the best mean p-values for the 283 

experimental data are 0.019, 0.023, and 0.027, respectively. These values are significantly better 284 

than those of any of the randomly-obtained cluster sets, indicating that the MCL gene clusters 285 

derived from the experimental data is not random. Co-expressed genes are implicated as being 286 

involved in a similar process [71, 72]. That this study is based on over 3,000 biological conditions 287 

further strengthens the likelihood that genes in each cluster might share a related biological 288 

process. 289 

Exploring Gene Function: Case study, Cluster 112  290 

The co-expression clusters are often composed of genes and ORFs distributed across 291 

spatially diverse regions of the genome (For a list of all genes and ORFs as partitioned into clusters 292 

by MCL, see supplementary file S.cerevisiae_RNA-seq_3457_27.mog).  For example, MCL 293 

Cluster 112 (Figure 7) contains 20 SGD-annotated genes and 21 unannotated ORFs dispersed on 294 

14 chromosomes. Twelve of the genes are in the seripauperin (PAU) family. The molecular 295 

function of the PAU genes is not known.  However, PAU-rich co-expressed gene clusters have 296 

been identified in independent microarray studies [73, 74]. Many PAUs are induced by low 297 

temperature and anaerobic conditions, and repressed by heme (Rachidi, Martinez, Barre & 298 

Blondin, 2000) and individual PAU proteins confer resistances to biotic and abiotic stresses [76]. 299 

YER011W and YJR150C, also in Cluster 112, are localized to the same cellular compartments as 300 

PAUs and are also induced under anaerobic conditions [77–80]. The other SGD-annotated genes 301 

in this cluster have no functional description. GO enrichment analysis identified eight GO terms 302 

as significantly-over-represented in Cluster 112 (Table 1). Figure 8 represents a case study of an 303 

approach to develop a meaningful hypothesis. The example shows the expression of the genes and 304 

ORFs in Cluster 112 across all 3545 samples of the RNA-Seq SGD+ORF dataset, and highlights 305 

the two studies that evaluate oxygen content as an experimental variable. Study SRP067275 306 

compares four growth stages of the stress-tolerant yeast strain GLBRCY22-3 grown in YPDX and 307 

ACSH media, with and without oxygen [81]  (Figure 8, top left); the expression of the genes and 308 

ORFs in Cluster 112 is higher under anaerobic conditions, irrespective of media or growth stage. 309 

Study SRP098655 compares OLE1-repressible strains growing under anaerobic and aerobic 310 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2020. ; https://doi.org/10.1101/671263doi: bioRxiv preprint 

https://doi.org/10.1101/671263
http://creativecommons.org/licenses/by/4.0/


 12 

conditions [82] (Figure 8, top right); expression of genes and ORFs in Cluster 112 is induced in 311 

cells grown under anaerobic conditions. These expression patterns indicate the genes and the ORFs 312 

in this cluster might be sensitive to anoxia, or might play a role in cellular response to this stress. 313 

Exploring Gene Function: Case study, smORF247301 314 

Though rare, some transcribed ORFs that are located near or in an existing gene share a 315 

similar transcription pattern. An example is smORF247301, one of the most highly expressed 316 

smORFs, which is 77 nt upstream of YPL223C (Figure 9). MOG analysis indicates smORF247301 317 

and the SGD-annotated gene YPL223C have a PCC of 0.95 across the 3,457 RNA-Seq samples. 318 

smORF247301 is located on the "+" strand of chromosome 16, while YPL223C is on the "-" strand 319 

of the same chromosome. The CDS of YPL223C is 507 nt, while smORF247301 is 33 nt.  YPL223C 320 

is more highly expressed than smORF247301. YPL223C, a hydrophilin gene that is essential in 321 

surviving desiccation-rehydration, is regulated by the high-osmolarity glycerol (HOG) pathway 322 

[83], and induced by osmotic, ionic, oxidative, heat shock and heavy metals stresses. Analysis 323 

using MOG shows smORF247301 and YPL223C have increased expression in response to 324 

osmotic, heat, and desiccation stresses in three independent studies (Figure 9 B-D). smORF247301 325 

has translation evidence ([7] and this study).  326 

It is possible that the transcription and translation of smORF247301 is "noise" (Eling, 327 

Morgan & Marioni, 2019) associated with the expression of the nearby YPL223C. A second 328 

possibility is that smORF247301 is a young, not-yet-annotated gene.  It might be "piggybacking" 329 

on the expression apparatus of YPL223C.  However, smORF247301 and YPL223C are transcribed 330 

in a convergent orientation (-> <-, Figure 5B); thus, the process, described by [55], whereby two 331 

transcripts in divergent orientation (<- ->, Figure 5B) are co-expressed via a common bidirectional 332 

promoter would not apply in the case of smORF247301 and YPL223C.  A different “piggybacking” 333 

mechanism might apply: perhaps, due to its location in open chromatin, smORF247301 is provided 334 

with a ready-made exposure to transcription factors when gene YPL223C is transcribed. If a 335 

transcript (e.g., smORF247301) conferred a survival advantage under the same conditions as did 336 

its established neighbouring gene (e.g., YPL223C), it could emerge as a new, co-expressed, gene 337 

by this mechanism.  338 

Five hundred and thirty-seven orphan-ORFs with transcription and translation evidence are 339 

in physical proximity to an SGD-annotated gene and are transcribed in a divergent orientation (see 340 
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supplementary file, divergent_pairs.csv ). Of these pairs, 12 are co-expressed (PCC > 0.6); these 341 

12 ORFs are potentially co-expressed by a bidirectional promoter (e.g., as described by [55]) The 342 

525 orphan-ORFs that are not co-expressed, might still be controlled by a bidirectional promoter, 343 

because yeast ORFs can be transcribed by a bidirectional promoter, but not be correlated in 344 

expression because they are influenced by different transcription factors [85]. 345 

Future studies 346 

The SGD+ORF dataset we provide can be reanalysed by different approaches. Each 347 

combination of network inference and partitioning approaches can supply complementary 348 

information. For example, networks can be inferred by correlation, mutual information [86], or 349 

relatedness approaches [87].   Pearson correlation, used here, is highly sensitive at extracting genes 350 

whose expression is linearly correlated across multiple conditions, but misses non-linear co-351 

expression. Likewise, networks can be partitioned by several methods, e.g., MCL (as in this study), 352 

Modularity [88], or a promising new approach, Reduced Network Extreme Ensemble Learning 353 

(RenEEL) [89]. There has been little investigation into the strengths and weaknesses of the various 354 

inference and partitioning methods for extracting different types of biological information.   355 

Moreover, we focus here on protein-coding transcripts; similar investigations using diverse 356 

RNA-Seq data could center on non-coding RNAs or transcript-encoding very small proteins.  357 

The information resulting from such studies can easily be incorporated into a new MOG 358 

project to enable interactive analysis and visualization.  359 

 360 

Conclusion 361 

In this study we have globally assessed the accumulation of transcripts representing 36,046 362 

annotated genes and unannotated ORFs of S. cerevisiae across 3,457 public RNA-Seq samples 363 

derived from diverse biological conditions. Ninety-five per cent of the transcribed ORFs are 364 

orphans or genus-specific. Despite a strong tendency to be transcribed only under restricted 365 

conditions, 269 orphan-ORFs had mean levels of transcription greater than 25% of SGD-annotated 366 

genes. Over 2,000 transcribed ORFs with translation evidence are members of co-expression 367 

clusters, providing additional clues as to a potential function.   368 
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 The proportion of transcribed and translated ORFs that are functional is completely 369 

unknown. The SGD+ORF dataset assembled herein represents expression of SGD-annotated 370 

genes and unannotated ORFs under multiple conditions; it is delivered in a readily explorable, 371 

user-friendly format via the MOG platform.  Combining this network-informed view of aggregate 372 

RNA-Seq data with text-mining of sample and gene metadata creates a powerful approach to 373 

develop novel, experimentally-testable hypotheses on the potential functions of as-yet-374 

unannotated transcripts.  375 

 376 

Materials and methods 377 

Extracting ORFs and delineating orphan-ORFs in S. cerevisiae 378 

ORFs (>150 nt) that were not annotated in SGD as CDS, were extracted from the yeast 379 

genome (version: R64-1-1) by bedtools2 [90], and translated by emboss [91], yielding 24,912 380 

ORFs. To these ORFs we added two sets of ORFs <150 nt identified in other studies: the 1,139 381 

small translated sequences (smORFs) identified by ribosome profiling [7] and the 3,303 of ORFs 382 

identified by TIF-Seq (txCDS) [3] that were less than 150 nt (thus, not included in the bedtools2 383 

extraction). These 29,354 ORFs, together with the 6,692 protein-coding genes annotated in SGD, 384 

were subjected to phylostratigraphic analysis. 385 

We inferred the phylostratum for 29,354 ORFs and 6,692 SGD-annotated protein-coding 386 

genes via the R package, phylostratr [40]. The analysis compared the proteins predicted from the 387 

S. cerevisiae ORFs to proteins of 123 target species distributed across phylostrata: 117 species 388 

identified by the phylostratr algorithm, supplemented with six manually-selected species in the 389 

Saccharomyces genus (S. paradoxus, S. mikatae, S. kudriavzevii, S. arboricola, S. eubayanus, and 390 

S. uvarum). To minimize false positives when identifying orphan ORFs and CDS from S. 391 

cerevisiae, we took advantage of the customization capabilities of phylostratr and included the 392 

predicted translation products from all ORFs (>150 nt) from each of the six Saccharomyces 393 

genomes, in addition to all SGD-annotated proteins of these species. (See 394 

Supplementary_Material.pdf, Figure S1 for workflow, Section 13 for full species list, and 395 

phylostratr_heatmap.pdf for gene by gene (and ORF by ORF) heatmap). Each gene was assigned 396 

to the most evolutionarily-distant phylostratum that contains an inferred homolog. A gene or ORF 397 

is inferred to be an orphan if its encoded protein is assigned the phylostratum level S. cerevisiae. 398 
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A BLASTP for each ORF and CDS in S. cerevisiae against Saccharomyces spp ORFs and CDS 399 

gave identical results to those of phylostratr in identifying the orphan genes and ORFs. 400 

Raw read processing and network optimization 401 

Our RNA-Seq data analysis pipeline is shown in Figure S9. We selected all samples with 402 

S. cerevisiae taxon ID 4932, Illumina platform, and paired layout from NCBI-SRA and then 403 

filtered out samples with miRNA-Seq, ncRNA-Seq, or RIP-Seq library strategies. In total, we 404 

collected raw reads data (FASTQ format) and metadata from 3,457 RNA-Seq samples (177 405 

studies). A transcriptome was created from SGD-annotated cDNA and unannotated ORFs, and 406 

then expression levels of annotated genes and ORFs over the 3,457 RNA-Seq samples were 407 

quantified by kallisto [92] (See supplementary file S.cerevisiae_RNA-seq.mog for RNA-Seq 408 

metadata and normalized cpm data; all data including raw counts is accessible at DataHub 409 

(https://datahub.io/lijing28101/yeast_supplementary)). 410 

We evaluated the performance of two diverse normalization methods for the raw count 411 

data (Section 8 in Supplementary_Material.pdf). We normalized raw counts by edgeR [93] based 412 

on the evaluation of [94]. We also normalized the same data by a single cell RNA-Seq 413 

normalization approach SCnorm [95]. This method examines sequence information from 414 

individual cells with the aim to provide a higher resolution of cellular differences. We tested this 415 

method because two features of single cell RNA-Seq data are similar to the orphan-ORF-focused 416 

multi-study data assembled for our study: 1) raw counts contain an abundance of zero-expression 417 

values, 2) technical variability among samples is high. After normalization, only ORFs with mean 418 

expression values in the upper quantile of mean expression (Q3-transcribed) were retained. We 419 

generated two datasets: 1) all SGD-annotated genes (SGD dataset); and 2) all Q3-transcribed 420 

ORFs, smORFs, and SGD-annotated genes (SGD+ORF dataset).  For each normalization approach 421 

and dataset, we calculated pairwise Pearson correlation matrices among all 3,457 RNA-Seq 422 

samples.  423 

Three PCC cutoffs (0.6, 0.7 and 0.8) were used to create networks of different densities 424 

from the matrices (Section 7 in Supplementary_Material.pdf).  We then applied MCL to partition 425 

each network using our in-house Java Spark implementation (GitHub: 426 

https://github.com/lijing28101/SPARK_MCL) designed to optimize efficiency. All data analysis 427 
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in this work, except for MCL clustering and RNA-Seq expression visualization, were performed 428 

in R software. 429 

Cluster evaluation by GO term enrichment analysis 430 

Clusters resulting from each of the eight MCL analyses obtained from the different 431 

normalization methods and PCCs were evaluated by GO enrichment analysis using clusterProfiler 432 

[96]; in this evaluation, only clusters with over five genes were considered (Section 7 in 433 

Supplementary_Material.pdf). The GO term enrichment of each experimental result was compared 434 

to that of 100 random sets of clusters, which were obtained by permuting gene IDs. For these 435 

permutations, the same number of clusters of the same size as those from the experimental result 436 

were assigned to each random set using the method of [70]. The best adjusted p-value (pmin, 437 

smallest adjusted p-value) was recorded for the enriched GO terms in each cluster. Each random 438 

cluster set was assigned a score Si, which is the average pmin across all clusters in the set. 439 

 
𝑆𝑆𝑖𝑖 =

∑ 𝑝𝑝min𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
 

(1) 

where n indicates the number of clusters. The distribution of S values for GO classes, Biological 440 

Process, Cellular Component, and Molecular Function, for random sets were compared to the 441 

respective values for the real experimental data. In each ontology, the experimental score was less 442 

than any of the random scores, indicating that experimental data have biological significance 443 

(permutation test, p-value=0). Based on the GO enrichment results we chose edgeR normalization 444 

(Section 8 in Supplementary_Material.pdf) and a PCC of 0.6 (Section 7 in 445 

Supplementary_Material.pdf) for future analyses. 446 

Ribo-Seq analysis 447 

To investigate the translational activity of unannotated ORFs, we analysed 302 samples 448 

(23 studies) of yeast Ribo-Seq data; this represented about half of the available Ribo-Seq in the 449 

SRA database. Raw reads (SRA-formatted) were downloaded, and the SRA toolkit was used to 450 

convert the raw reads to a FASTQ format. BBDuk was used to find and remove adapter sequences 451 

from the 3’ end of reads, and rRNA reads were identified and removed using BBMap [97]. The 452 

cleaned Ribo-Seq reads were aligned to the reference genome by HISAT2 [98]. The actively 453 

translating ORFs were detected and quantified by Ribotricer, which considers the periodicity of 454 

ORF profiles and provides multiple options for customization (we used the recommended 455 
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parameters for yeast) [15]. The gene/ORF with mean counts across 302 Ribo-Seq samples higher 456 

than 0.3 was consider to have translation evidence. 457 

Visualization and gene function exploration 458 

As proof-of-concept for the utility of these data, we used the MOG platform [51] to provide 459 

examples of co-expression and functional inference. We first created a MOG project that 460 

combined: 1) the levels of expression of each gene and ORF in the SGD+ORF dataset across 3,457 461 

conditions, 2) gene and ORF metadata, and 3) sample metadata. The gene and ORF metadata 462 

includes: functional annotations (from SGD); MCL cluster memberships with GO enrichment 463 

analysis; mean expression levels for RNA-Seq and ribosomal profiling; ribosomal binding 464 

evidence; genome location relative to UTRs and CDSs; GC content; length; genomic positional 465 

coordinates, orientation; and phylostratal assignment. We then added metadata to the MOG project 466 

about each sample and study from NCBI-SRA, including: study ID, title, summary, reference, 467 

design description, library construction protocol, sequencing apparatus; sample title, experimental 468 

attributes, number of replicates; replicate name, sequencing depth, base coverage. 469 
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Figure legends 725 

Figure 1  Quantification of SGD annotated genes and dark transcriptome. 726 

A. Definition of Dark transcriptome. Pervasive transcription of unannotated sequences has 727 

been found in many species. Some of these might be protein coding genes that have escaped 728 

annotation. Most of these unannotated coding genes are orphan (species-specific) genes, which 729 

have no homolog to other species, and are hard to predict using current gene prediction tools. 730 

These orphan genes could emerge by rapid divergence from ancient genes or could evolve de novo. 731 

Other transcribed but unannotated sequences might be non-coding genes. Although many studies 732 

have explored the function and classification of the non-coding transcripts, many transcribed 733 

sequences are still unclassified. 734 

B. Classification and numbers of expressed transcripts for SGD-annotated genes (green 735 

boxes) and ORFS (yellow boxes). Orphan-ORFs, unique to Saccharomyces cerevisiae (phylostrata 736 

(PS)=15); genus-specific-ORFs, unique to Saccharomyces spp. (PS=10-14); conserved-ORFs, 737 

homologs in older species (PS=1-9).  Q3-transcribed, ORFs with mean transcription across the 738 

3,457 samples ranking in the upper (Q3) quantile of the unannotated transcripts. Low-transcribed 739 

ORFs, ORFs with mean transcription across the 3,457 samples ranking in the lower 75% of the 740 

unannotated transcripts. Non-transcribed orphan-ORFs (Figure S8). Red font, number of 741 

genes/ORFs with translation evidence according to Ribo-Seq analysis. (For full PS designations 742 

and transcription expression, see supplementary file, S. cerevisiae_RNA-seq_3457_27.mog; for 743 

translation per transcript, see supplementary file, Ribo-Seq_rawcounts.csv.) 744 

Figure 2  RNA-Seq expression heatmap across 3,457 samples for orphan-ORFs and 745 

SGD- annotated genes. 746 

Top panel, SGD-annotated genes (6,692); middle panel, smORFs (Carvones et al., 2012) 747 

(1,139); bottom panel, orphan-ORFs (15,805). (See Figure S3 for all transcript classes). Each row 748 

represents a transcript.  Within a panel, each transcript is ordered by its mean cpm. Within each 749 

row, the 3,457 samples are sorted independently by highest expression of the transcript. The 750 

restricted conditions of expression of many orphan-ORFs is visually apparent. 751 

Figure 3  Counts of highly-transcribed (Q3) ORFs in each RNA-Seq sample 752 
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The black bars show distribution of the counts of the 8193 Q3-transcribed ORFs. X-axis, 753 

3,457 RNA-Seq samples, sorted by counts. The grey bar inset details the 50 RNA-Seq samples 754 

with the largest number of Q3-transcribed ORFs; each of these samples contains over 1200 Q3-755 

transcribed ORFs.  756 

Figure 4  Density plot of mean expression level of transcripts across 3,457 samples for 757 

SGD-annotated genes and Q3-transcribed ORFs 758 

X-axis, edgeR-normalized mean expression of genes and ORFs. Y-axis, number of 759 

transcripts. The area under the curve of the density function represents the probability of a range 760 

of mean cpm. The bimodal curve of all orphan-ORFs is attributable to the low mean expression of 761 

the smORFs (see Figure S4, S5). About half of the Q3-transcribed orphan-ORFs have higher mean 762 

expression than orphan SGD-annotated genes.  Over 600 orphan-ORFs have a higher mean 763 

expression than 10% of conserved SGD-annotated genes; 289 orphan-ORFs (gray hatched area) 764 

have a higher mean expression than 25% of conserved SGD-annotated genes; and, 36 orphan-765 

ORFs have a mean expression higher than 90% of conserved SGD-annotated genes (See also Table 766 

S2)    767 

Figure 5  Mean expression and numbers of genes and ORFs with translational 768 

evidence, partitioned by phylostrata and genomic context. 769 

Ribo-Seq data were analysed for genes and ORFs across 302 samples using ribotricer [15]. 770 

A. Mean raw Ribo-Seq counts/transcript for all genes and ORFs. X-axis, genes and ORFs as 771 

classified by phylostrata. Y-axis, mean raw counts. The letters above each bar indicate significance 772 

in each group according to a t-test (p-value cutoff is 0.01). Similar to mean RNA-Seq counts, the 773 

conserved genes and conserved-ORFs have more total mean Ribo-Seq counts.  B. The 3,857 Q3-774 

transcribed ORFs that had Ribo-Seq translation evidence were divided into groups according to 775 

their relationship to annotated CDS (see also Figure S6), and the numbers of genes and ORFs with 776 

translational evidence was determined. The gene/ORF with mean counts across 302 Ribo-Seq 777 

samples higher than 0.3 was consider to have translation evidence. X-axis, groups of genes and 778 

ORFs, classified by phylostrata. Y-axis, number of ORFs in each group. The proportions of ORFs 779 

are significantly different among three groups according to a chi-square test (p-value<0.001). Over 780 

half the orphan-ORFs with translation evidence are located between CDSs.  781 

 782 
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 Figure 6  GO enrichment analysis of experimental data and random test distribution 783 

A Pearson correlation matrix of the SGD+ORF dataset was partitioned into clusters by 784 

MCL. Best p-values (mean of the lowest adjusted p-values for GO terms) were determined across 785 

all clusters of the experimental data and all clusters of random permutations, similar to [70] 786 

(Section 7 in Supplementary_Material.pdf). Red arrow, experimental data. Black bars, best p-value 787 

of 100 randomly-obtained permutations with size and number of clusters identical to experimental 788 

data. BP, biological process; CC, cellular component; MF, molecular function. The clustering 789 

result is significantly better for experimental data than any random permutation.  790 

Figure 7  Network view of genes and ORFs in Cluster 112 791 

A Pearson correlation matrix of the SGD+ORF dataset was partitioned into clusters by 792 

MCL. Cluster 112 is an example of a cluster containing SGD-annotated genes and ORFs, including 793 

orphans. Edge colors, Pearson correlations of 0.6 to 1.0.  Visualization by igraph in R [99]. 794 

Figure 8  The 41 genes and ORFs in Cluster 112 respond to anoxia 795 

A Pearson correlation matrix of the SGD+ORF dataset was partitioned into clusters by 796 

MCL. The 41 genes and ORFs in Cluster 112 are co-expressed across multiple conditions. X-axis, 797 

3,457-samples, sorted by study. Y-axis, expression values. Each line represents the expression 798 

pattern of a single gene or ORF. Top left inset, zoom-in to visualize Study SRP067275. RNA-Seq 799 

samples sorted by: aerobic or anaerobic condition, ACSH or YPDX media, and growth phase. 800 

ACSH, Ammonia Fiber Expansion-(AFEX-) pretreated corn stover hydrolysate.  YPDX, YP 801 

media containing 60 g/L and 30 g/L xylose. Top right inset, zoom-in to visualize Study 802 

SRP098655. The genes and ORFs are up-regulated in response to anoxia, regardless of changes in 803 

growth media. No ORF in Cluster 112 is located near an SGD-annotated gene in Cluster 112. 804 

Visualizations and co-expression calculations by MOG (Singh et al., 2020). 805 

Figure 9  Expression patterns of smORF247301 and YPL223C 806 

smORF247301 and YPL223C are located on adjacent regions of chromosome 16 and are 807 

transcribed in convergent orientation. A. Expression patterns are similar (Pearson correlation, 808 

0.95) across 3,457 samples. B-D. Expression patterns for smORF247301, YPL223C in three 809 

studies. X-axis, 3 samples per treatment. Purple bar on right side of panels, mean expression level 810 

of all SGD-annotated genes; Green bar on right side of panels, mean expression level of all SGD-811 
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annotated genes plus ORFs. Visualizations and co-expression calculations produced by MOG 812 

(Singh et al., 2020). 813 

 814 

Tables  815 

Table 1  Significantly-enriched GO terms in Cluster 112 816 

Based on the GO terms assigned to the gene members of known function, Cluster 112 is 817 

enriched in the GO terms shown in Table 1. The results indicate a possible role in stress response 818 

related to the cell wall for the ORF members of Cluster 112. (See S. cerevisiae_RNA- 819 

seq_3457_27.mog for complete clustering and ontology results). 820 

 821 

Ontology GO name Adjust p-value 

MF structural constituent of cell wall 1.90E-27 

BP response to stress 3.51E-27 

CC fungal-type cell wall 1.62E-20 

BP fungal-type cell wall organization 1.34E-19 

CC fungal-type vacuole 3.60E-05 

CC cell wall 1.99E-03 

CC extracellular region 6.18E-03 

CC anchored component of membrane 1.87E-02 

 822 

 Supplementary material 823 

 Supplementary Materials.pdf: include all supplementary figures, tables and description. 824 

All supplementary data (including MOG files, raw count data, cluster information, UTR 825 

results, phylostratr heatmap, Ribo-Seq metadata and results) are available at 826 

https://datahub.io/lijing28101/yeast_supplementary  827 

MOG file of S. cerevisiae RNA-Seq expression (S.cerevisiae_RNA-seq_3457_27.mog): 828 

http://metnetweb.gdcb.iastate.edu/MetNet_MetaOmGraph.htm 829 

MetaOmGraph software: https://github.com/urmi-21/MetaOmGraph 830 
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Data processing code: https://github.com/lijing28101/yeast_supplementary 831 

 832 
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