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Abstract. Bipolar Disorder (BP) is a mental disorder that affects 1 ∼
2% of the population. Early diagnosis and targeted treatment can benefit
from associated biological markers. The existing methods typically uti-
lize biomarkers from anatomical MRI or functional BOLD imaging, but
lack the ability of revealing the relationship between integrated modal-
ities and disease. In this paper, we developed an Edge-weighted Graph
Attention Network (EGAT) with Dense Hierarchical Pooling (DHP), to
better understand the underlying roots of the disorder from the view of
structure-function integration. For the input, the underlying graphs are
constructed from functional connectivity matrices and the nodal features
consist of both the anatomical features and the statistics of the connec-
tivity. We investigated the potential benefits of using EGAT to clas-
sify BP vs. Healthy Control (HC). Compared with traditional machine
learning classifiers, our proposed EGAT embedding increased improved
10 ∼ 20% in the accuracy and F1-score, compared with alternative clas-
sifiers. More specifically, by examining the attention map and gradient
sensitivity of nodal features, we indicated that associated with the abnor-
mality of anatomical geometric properties, multiple interactive patterns
among Default Mode, Fronto-parietal and Cingulo-opercular networks
contribute to identifying BP.

1 Introduction

Bipolar disorder (BP), formerly called manic depression, is a mental health con-
dition that causes extreme mood swings that include emotional highs (mania or
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hypomania) and lows (depression) [1]. Despite decades of research, the patho-
physiology of BP is still not well understood. Some of the most commonly pre-
scribed presentation for patients with BP have also been associated with struc-
tural or functional brain differences. For example, [8] found adults with BP had
widespread bilateral patterns of reduced cortical thickness in the frontal, tem-
poral and parietal regions. Some studies have also shown evidence of reductions
in functional connectivity within the cortical control networks [2,22].

Many brain imaging techniques including functional MRI (fMRI), structural
MRI (sMRI), EEG/MEG and diffusion tensor imaging (DTI) provide informa-
tion on different aspects of the brain. Although functional and structural brain
studies have identified quantitative differences between BP and Health Control
(HC) groups, most models favor only one data type or do not combine data
from different imaging modalities effectively, thus missing potentially important
differences which are only partially detected by single modality [4,3]. Combining
modalities may thus uncover previously hidden relationships that can unify dis-
parate findings in neuroimaging. To the best of our knowledge, no previous work
has been done to combine structural and functional connectivity data to analyze
BP. We hold the hypothesis that with joint information, the better representa-
tion can be learned to describe BPs’ characteristics, and validate this hypothesis
in our experiment. A main challenge in multimodal data fusion comes from the
dissimilarity of the data types being fused and result interpretation. Traditional
multi-modality studies on neuroimaging mainly use principal component analy-
sis (PCA), independent component analysis (ICA), canonical correlation analysis
(CCA), and partial least squares (PLS) [19]. However, the model’s intrinsic de-
pendence on the shape and scale of the data distribution causes ambiguity in
components discovery and harms the easiness of interpretation.

Graph-based approach for multi-modality is a powerful technique to char-
acterize the architecture of human brain networks using graph metrics and has
achieved great success in explaining the functional abnormality from the network
mechanism[18]. However, this family of methods lack accuracy in the prediction
task due to the model-driven methodology. Graph attention networks (GAT)
[21], are novel neural network architectures that have been successfully applied
to tackle problems such as graph embedding and classification. Different from
CNN-based neurodisorders interpretation [11], one of the benefits of attention
mechanisms is that they allow for dealing with variable-sized inputs, focusing on
the most relevant parts of the input to make decisions, which can then be used for
interpreting the salient input features. Motivated by this, we propose an innova-
tive Edge-weighted Graph Attention Network (EGAT) with Dense Hierarchical
Pooling (DHP), where the underling graphs are constructed from the functional
connectivity matrices and the node features consist of both the anatomical fea-
tures and the statistics of the nodal connectivity. Our contribution is summarized
as follows:

•We propose a novel multi-modality analysis framework combining the sMRI
and fMRI imaging in a graph classification task with workable settings.
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Fig. 1: Schemata of EGAT-DHP classification network

• Our model outperforms the existing methods with an 10 ∼ 20% improve-
ment, showing the necessity of multi-modality and attention infrastructures.
• We provide an interpretable visualization to understand the co-activation

pattern of sMRI and fMRI from their activation maps.

2 Methodology

2.1 Construction of Graphs

On a labeled graph set C = {(G1, y1), (G2, y2), ...}, the general graph classifica-
tion problem is to learn a classifier that maps Gi to its label yi. In practise, the
Gi is usually given as a triple G = (V,E,X) where V = {v1, . . . vN} is the set of
N nodes, E = {eij}N×N is the set of edges with eij denoting the edge weight,
and X ∈ RN×F is the set of node features.

In our BP vs. HC binary classification setting, the nodes are defined by the
region of interest (ROI) from some given atlas. For the edges, we utilize the
densely connected graph rather than setting a threshold that dismisses the weak
connectivity. The edge weight is then defined as the correlation-induced similar-
ity given by eij = 1 −

√
(1− rij)/2, where rij is the Pearson’s correlation be-

tween the region-averaged BOLD time-series for region i and j. For each node,
we construct a dim-11 feature vector combining the structural and functional
MRI. The seven anatomical features are Number of Vertices (NumVert), Surface
Area (SurfArea), Gray Matter Volume (GrayVol), Average Thickness (Thick-
Avg), Thickness Standard Deviation (ThickStd), Integrated Rectified Mean Cur-
vature (MeanCurv) and Integrated Rectified Gaussian Curvature (GausCurv) [7],
which provide the geometric information of brain surface. The four functional
features are from connectivity statistics: mean, standard deviation, kurtosis and
skewness of the node’s connectivity vector to all the other nodes, which summa-
rize the moments of the regional time-series.

2.2 Graph Neural Network (GNN) Classifier

The architecture of our proposed GNN network is shown in Figure 1. Each
graph G is first fed to a 5-heads EGAT layer, followed by two pooling layers
that coarsens 129 nodes to 32/16 then to 4 for graph feature embedding. The
extracted features are then fed to 2 fully-connected layers for classification.
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Edge-weighted Graph Attention Layer (EGAT) The Graph Attention
Layer takes a set of node features X = {x1,x2...xN}, xi ∈ RF as input, and
maps them to Z = {z1, z2...zN}, zi ∈ RF ′

. The idea is to compute an embedded
representation of each node v ∈ V , by aggregating its 1-hop neighborhood nodes
{xj ,∀j ∈ N (xi)} following a self-attention mechanism Att: RF ′×RF ′ → R [21].
Different from the original [21], we leverage the edge weights of the underlying
graph. The modified attention map α ∈ RN×N×P can be expressed as a single
feed-forward layer of xi and xj with edge weight eij :

αp
ij = Att(W pxi,W

pxj) = LeakyReLU((ap)T [W pxi‖W pxj ])eij , (1)

where αp is the attention weight for the p-th attention head and αp
ij indicates the

importance of node j’s features to node i in head p. It allows every node to attend
all the other nodes on the graph based on their node features, weighted by the un-
derlying connectivity. The W p ∈ RF ′×F is a learnable linear transformation that
maps each node’s feature vector from dimension F to the embedded dimension
F ′. With P attention heads, attention mechanism Att is implemented by a nodal
attributes learning vector ap ∈ R2F ′

and LeakyRelu with input slope = 0.2.

Then, the aggregation operation is defined as zi =
∣∣∣∣P
p=1

∑
j∈N (xi)

αp
ijW

pxj ,

symbol ‖ represents the concatenation operation.

Dense Hierarchical Pooling (DHP) To aggregate the information across
nodes for graph level classification, we incorporate Dense hierarchical Pooling
(DHP [23]) to reduce the number of nodes passing to the next layer. At the last
level, the graph nodes are reduced to a few and features are flatten to a single
vector, which is then passed to MLPs to generate graph label. The pooling
procedure is performed by an assignment matrix S ∈ RN×N ′

that coarsens both
the node and edge information: zout = STzin,Eout = STEinS to a graph of
N ′ nodes. The assignment S is learned through another EGAT layer with the
regularization loss Lreg = ‖E,SST ‖F , where ‖ ·‖F denotes the Frobenius norm.

Neurological Motivation of Network Designing Compared to the GCNs
[10] with spectral convolution, our proposed GNN architecture allows for bet-
ter description of local integration of node features, which is more biologically
consistent with the findings of community structure of brain networks [14]. Sec-
ondly, the efficiency of hierarchical pooling lays on the implicit assumption that
the underlined graph possesses the inferred structure. Thus, considering the typ-
ical numbers of communities discovered in previous literature [16] and the fact
that the brain consists of four lobes, we add two pooling layers in our network
where the first one pools the node set into 16/32 clusters and the second one
pools the node set into 4 clusters. In addition, considering the heterogeneity of
the brain networks in local signal processing, multiple heads are employed in the
first layer of EGAT convolution.
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2.3 Interpretation From Attention Map

Characterizing BP from anatomical MRI and task-fMRI and interpreting the
brain features captured by the proposed model can help neuroscientists better
understand BP. The attention map α in the EGAT layer learns salient cere-
bral cortex functional connectivity to identify BP by stacking layers in which
nodes are able to attend over their neighborhoods’ features. By exploring the

gradient sensitivity spij =
∂((ap)T [Wpxi‖Wpxj ])

∂[xi,xj ]
∈ RF×2, we can disentangle

the relationship among node features (from different modalities) in identifying
BP by examining the co-activation.

3 Experiment And Results

3.1 Image acquisition and processing

Data for this study consisted of 106 subjects (59 patients, 47 health controls)
with 2 paired scans over 6 months. Both structural T1 MR (sMRI, dimension
192× 256× 256, voxel size 1× 1× 1mm3, fov= 192mm) and the functional MR
(BOLD, dimension 64× 64× 30× 244, voxel size 4× 4× 5mm3, fov 256, TR=3
s) scan were acquired on a GE 3-T scanner. During the fMRI scans, subjects
performed ”N-back” task in a block design manner (30 s/block, 11 blocks in
total). We ended in 150 sMRI and fMRI pairs (75 patients, 75 health controls)
after removing high-motion data (≥ 0.2 relative mean). Data was split into 5
folds based on subjects for cross-validation.

FreeSurfer [7] version 6.0 was employed in the image preprocessing for sMRI
and the extraction of anatomical statistics. Image preprocessing for fMRI was
done using FEAT pipeline of FSL [9] version 6.0, including steps of motion
correction, spatial smoothing (FWHM 5), and registration to standard NMI
space. A 0.01Hz high-pass filter was applied. We extracted regional mean BOLD
time series with the N = 129 region in Lausanne atlas [5] and calculated the edge
weights, connectivity matrices and functional features as described in Section
2.1. The functional connectivity matrices was then used as the underlined graph
for EGAT. We also normalized each node feature separately by z-scores manner
considering the heterogeneity for different measurements.

3.2 BP v.s. Healthy Control Classification

We investigated the best EGAT architecture by tuning the number of kernels.
The experiment was run on 8 GTX Titan Xp (batch size=8) with Adam opti-
mizer(learning rate=0.0001, betas=(0.9, 0.999), eps=1e-8). The optimal solution
was achieved when the first pooling layer output 32 communities and the fully
connected layer consisted of 32 nodes (see Table 1). The accuracy varied yet not
too much when we changed the community size to 16 and the number of nodes
in the FC-layer.

To illustrate the importance of integrating multi-modality data, we com-
pared the performance of using single modality. The results were shown in Table
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Table 1: Classification performance of different models (mean(std)%)

model accuracy f1-score precision recall

EGAT DiffPool(32-4) 32FC (*) 82.00(3.80) 82.76(3.80) 79.46(4.45) 86.67(6.67)
EGAT DiffPool(16-4) 32FC 81.33(5.05) 80.84(5.95) 82.38(4.26) 80.00(10.54)
EGAT DiffPool(32-4) 64FC 80.67(2.79) 81.39(2.67) 80.27(11.61) 85.33(12.82)
EGAT DiffPool(32-4) 16FC 80.00(4.71) 79.67(5.79) 80.31(4.22) 80.00(11.15)
GraphSAGE DiffPool(32-4) 32FC 69.33(7.96) 66.43(14.46) 70.74(4.56) 66.67(25.39)
MLP 32FC 72.66(1.49) 73.11(3.50) 73.19(7.68) 76.00(3.13)
Random Forest 62.00(5.81) 61.62(5.43) 63.19(7.26) 61.33(8.84)
Linear SVM 58.67(8.84) 59.84(7.55) 60.20(10.13) 62.67(16.11)
Our Model * (only fMRI) 70.67(2.79) 71.05(5.16) 70.08(3.58) 73.73(13.03)
MLP 32FC (only sMRI) 68.04(5.66) 67.71(12.24) 68.35(7.74) 73.21(23.42)

1. First, to show the necessity of including anatomical features, we replaced the
anatomical features as dummy variable ones (namely fMRI only) and performed
the task with the same infrastructure as EGAT. The accuracy and F1-score de-
creased to 70.67±2.29% and 71.05±5.16% correspondingly. The results suggested
that the anatomical features provided additional information. For the necessity
of functional connectivity, we adopted a 2-layer MLP to classify the two groups
based on the vectorized anatomical features of all regions (namely sMRI only).
The accuracy and F1-score decreased to 68.04± 5.66% and 67.71± 12.24% cor-
respondingly. The decreased performance showed the advantage of combining
functional data in our proposed model.

To prove that our model better embedded both structural and functional
features, we compared the accuracy and F1-score of our model versus Random
Forest, SVM with Linear kernel and GraphSAGE (best parameters chosen by
grid search). See Table 1, our model improved 10 ∼ 20% in the accuracy and F1-
score, comparing with the three alternative models. The improvement may come
from two causes. First, due to intrinsic complexity of sMRI and fMRI, complex
models with more parameters is desired, which also explained why the MLP
performed better than the other two. Second, as explained above, our model
utilized the specific topology of the community structure in the brain network
thus potentially modeled the local integration more effectively. We reached the
conclusion that, not only the integration of multi-modality was necessary for
imaging-based classification, but the proper modeling of the cross-modality also
made a difference in disentangling the underlined complexity.

3.3 Biomarkers Discovery from Structural and Functional Features

One obstacle of applying complex models in diagnosis is the lack of interpre-
tation. Here we utilize activation map and gradient sensitivity to show that
our method can provide interpretable visualization of effective features on both
group and individual levels in addition to the better prediction accuracy shown
above. First of all, in panel a) of Figure 2, we showed the reordered attention
map of each head averaged on all subjects. The chord diagram displayed the
location and weight of edge-attention. We assigned colors to different brain re-
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Fig. 2: a) Activation maps and b) node feature gradient sensitivity of the five
attention heads

gions and labeled their name at the bottom of panel a) of Figure 2. Second,
in panel b) of Figure 2, we presented the gradient sensitivity of different node
features. The gradient sensitivity on the node feature displayed two modes, one
having weights on the source and target nodes with opposite signs and the other
with same signs. We can see that the activation patterns are spatially selective,
suggesting that the abnormality of biomarkers happened in a heterogeneous way
on the brain network, except for Attention 4 that gave a quantification of the
overall effect.

Attention 1 and 3 placed strong weight on the connectivity statistics in the
node features with opposite modes. This indicated that these two attentions
emphasized the heterogeneity of functional connectivity in two modes, mean of
variance for Attention 3 and variance of variance for Attention 1. Combined with
the spatial preference on the default mode network (DMN), fronto-parietal (FP)
and cingulo-opercular (CO) networks, this supports the previous finding on the
increase of regional homogeneity in the BD patients [13] and suggests potential
sub-types in this deficit. While the focus on DMN in Attention 1 suggested that
the integration and segregation of DMN could play a central role in psychiatry
[15], the strong co-activation of connectivity and anatomical measurements sug-
gested that the abnormality for DMN, FP and CO in functional networks could
be associated with the deficit of anatomical properties [12,20].

For Attention 2 and Attention 5, the highest node weight was on the Gaussian
curvature and complemented each other on the sign. Gray matter volume and
thickness were also emphasized in these two attentions. While previous literature
found widespread of gray matter deficit [12,20] but not atrophy in the white
matter, our results here suggest that the white matter abnormality might be
better represented by the curvature information [6]. Also, the spatial highlight
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on the cingulo-opercular (CO) besides the DMN supports the hypothesis that
the deficit of CO integrity could be a reason of the deficit of cognition [17].

4 Conclusion

In this work, we proposed a novel graph-attention based method for cerebral
cortex analysis that integrates sMRI and fMRI using GNN to classify BP v.s. HC.
It helps to identify the unique and shared variance associated with each imaging
modality that underlies cognitive functioning in healthy controls and impairment
in BP. Thus, our model shows an superiority over alternative graph learning
and machine learning classification models by 10 ∼ 20% in the accuracy and
F1-score. In addition, by investigating the attention mechanism, we show that
the proposed method not only provides spatial information supporting previous
findings in the network-based analyses but also suggested a potential association
of anatomical deficit and the abnormality of the functional network. This method
can be generalized on multi-modality learning on neuroimaging.
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