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The exploration-exploitation dilemma is a fundamental but in-
tractable problem in the learning and decision sciences. Here we
challenge the basic form of the dilemma by defining independent
mathematical objectives for exploration and exploitation, rather than
having them share the typical objective of maximizing reward. To
create value during exploration we derive a new set of axioms that
let us measure the value of any information. Using these axioms and
our reformulation we show how a simple, deterministic, and greedy
algorithm can optimally maximize exploration and exploitation.

The exploration-exploitation dilemma is a fundamental but
intractable problem in the learning and decision sciences (1–7).
For example, if a bee goes a familiar direction to gather nectar
it is exploiting past knowledge. If it goes in an unknown
direction, it is exploring. It can’t know if this exploration
will lead to more nectar or less and so faces an exploration-
exploitation dilemma. This general dilemma is faced routinely
by agents of all kinds, including by foraging bees, humans,
and computer algorithms.

In formal version of the dilemma, the actions taken by an
agent are based on a set of learned values (3, 8). Exploitation
is defined as choosing the most valuable action. Exploration
is defined as simply making any other choice. When only one
action can be taken a time there must be a trade-off between
exploitation and exploration. This basic trade-off however is
not a dilemma.

To become a dilemma, and a fundamental problem, it must
satisfy two more conditions. The first is a shared objective.
For example, in reinforcement learning exploration and ex-
ploitation both attempt to maximizes rewards, like nectar
(3, 9). The second is partial observability. For example, the
bee in our example can’t know the if exploration will lead
to finding more or less nectar. Making choices about a com-
mon objective but with limited knowledge is what defines the
dilemma. It also makes a direct mathematical solution to the
problem intractable (4–7).

But is this dilemma really fundamental? Do exploration
and exploitation need to share an objective?

In the natural world exploration can have two different ex-
planations. If there is no reason to expect a reward, exploration
is described theoretically as a search for novel or maximum
information (10–15). For example, when mouse is placed in
a maze it has never visited before it will explore extensively
even if no tangible rewards are present (10). On the other
hand, if reward is expected exploration gets re-interpreted as
a reinforcement learning problem (3).

Here we conjecture that all exploration needs only a single
explanation based on maximum information. This simple
conjecture lets us define independent mathematical objectives
for exploration and exploitation. Unlike the dilemma, solving
these independent objectives is quite tractable.

Our contribution is threefold. We first offer five axioms that
serve as a completely general basis to estimate the value of
any information. Next we prove the computer science method
of dynamic programming (3, 16) provides an optimal way
to maximize this information value. Finally, we describe a
simple greedy scheduling algorithm (8) that can maximize
both information value and reward value.

Results

Information is not a reward. In principle there is no need for
exploration and exploitation to share a common objective; we
know that exploration happens without reward to motivate it
(1, 2, 10, 11, 15).

In practice reward and information contain at least two
fundamentally distinct ideas. First, rewards are a conserved
resource. Information is not. For example, if a mouse shares
a potato chip with a cage-mate, she must break the chip up
leaving less food for herself. Second, reward value is constant
during learning while the value of information must decline∗.
For example, if a mouse learns where a bag of potato chips is
she will generally keep going back and eating more. Whereas
if a student learns the capital of the United States, there is
no value to the student in being told again that the capital of
the United States is Washington DC.

A definition of information value. To make our eventual so-
lution to the exploration-exploitation trade-off general, we
separate reward value from information axiomatically.

To form a basis for our axioms, we reasoned that the value
of any observation s made by an agent depends entirely on
what the agent learns by making that observation. In other
words, how it changes the agent’s memory. A memory in our
definition consists of only an invertible encoder, a decoder,
and the mathematical idea of a set.

We let time t denote an index t = (1, 2, 3, . . . ,∞). We let
M be a finite set, whose maximum size is N (denoted MN ).
This memory M learns by making observations s from a finite
state space s ∈ SN . Learning in M happens by an invertible
encoder f , such thatMt+1 = f(Mt, s) andMt = f−1(Mt+1, s).
Memories z are recovered from M by a decoder g, such that
z = g(M, s). For simplicity the initial memoryM0 is an empty
set, M0 = ∅.

This definition of memory is extremely general, covering all
modes of working or episodic memory (17, 18), probabilistic
memory (19–21), and even memories based on compression or
latent-states (22, 23). Of course, we could have used state pre-
diction (11, 15, 24), information theory (25, 26), or Bayesian
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learning (19–21) to estimate the value of information. Each of
these though requires strong assumptions that may not hold
up. For example if it turns out that animals are not in fact
general Bayesian reasoning systems.

Our goal is to describe behavior across the natural world,
as well as to model the behavior of artificial agents. This
lead us to work at a high level of mathematical abstraction,
to develop our general notion of memory, and to work from
simple axioms. As a result of these choices, the theory we
develop applies to all of these more standard approaches.

Axiomatic information value (E)

Axiom 1 (Axiom of Now). E is a distance ∆M between Mt+1
and Mt.
That is, the value of an observation s depends only on how
much s changes M .
Axiom 2 (Axiom of Novelty). E = 0 if and only if ∆M = 0.

An observation that doesn’t change the memory has no value.
Axiom 3 (Axiom of Scholarship). E ≥ 0.
In principle all new information is valuable, even if the conse-
quences later on are negative.
Axiom 4 (Axiom of Specificity). E is monotonic with the
compactness C of ∆M (Eq. 6).
More specific information is more valuable than less specific
information. (We use the mathematical idea of compactness
to formalize specificity.)

Axiom 5 (Axiom of Equilibrium). ∆2M
∆t2 < 0

The environment must be learnable by M (in the sense of
Valiant’s definition (27)).

Exploration as a dynamic programming problem. A useful so-
lution to maximize information value would be a dynamic
programming solution. Dynamic programming guarantees to-
tal cumulative value is maximized by a simple, deterministic,
and greedy algorithm.

In Theorem 1 we prove our definition of memory has one
critical property, optimal substructure, that is needed for
a dynamic programming solution (8, 16). The other two
properties, E ≥ 0 and the Markov property (8, 16), are fulfilled
by the Axioms 3 and 1 respectively.

To write down the Bellman solution for E as a dynamic
programming problem we need some new notation. Let a be an
action drawn from a finite action space AK . Let π denote any
policy function that maps a state s to an action a, π : s→ a,
such that ∀st ∈ S,∀at ∈ A. We use at ∼ π(s) as a shorthand
to denote an action at being drawn from this policy. Let δ be
a transition function which maps (st, at) to a new state st+1,
δ : (st, at)→ st+1 where, once again, ∀st ∈ S,∀at ∈ A.

For simplicity we redefine E as F (Mt, at), a “payoff func-
tion” in dynamic programming (Eq 1).

F (Mt, at) = E(Mt+1,Mt)
subject to the constraints

at ∼ π(st)
st+1 = δ(st, at),

Mt+1 = f(Mt, st)

[1]

The value function for F is Eq. 2. The Bellman solution to
recursively learn this function is found in Eq. 3.

VπE (M0) =
[

max
a∈A

∞∑
t=0

F (Mt, at)
∣∣∣ M, S, A

]
[2]

V ∗πE
(Mt) = F (Mt, at) + max

a∈A

[
F (Mt+1, at)

]
[3]

Eq. 3 implies the optimal action policy π∗E for E (and F ) is
a simple greedy policy. This greedy policy ensures exploration
of any finite space S is exhaustive (Theorems 2 and 3).

Axiom 5 requires that learning in M converge. Axiom 4
requires information value increases with surprise, re-scaled by
specificity. When combined with a greedy action policy like
πE , these axioms naturally lead to active learning (15, 28, 29)
and to adversarial curiosity (30).

Scheduling a way around the dilemma. A common objective
of reinforcement learning is to maximize reward value VR(s)
using an action policy πR (Eq. 4).

V πR
R (s) = E

[ ∞∑
k=0

Rt+k+1
∣∣s = st

]
[4]

Where E[.] denotes the expected value of a random variable
given that the agent follows policy πR.

To find an algorithm that maximizes both information
and reward value we imagine the policies for exploration and
exploitation acting as two possible “jobs” competing for con-
trol of a fixed behavioral resource. We know (by definition)
each of these “jobs” produces non-negative values which an
optimal job scheduler could use: E for information or R for
reward/reinforcement learning. We also know (by definition)
each of the “jobs” takes a constant amount of time and each
policy can only take one action a time. These two properties
are sufficient to find a solution.

The solution to scheduling problems that produce non-
negative values and have fixed run times is known to be a
simple greedy algorithm (8). We restate this solution as a
set of inequalities controlling the action policy, ππ given some
state s (Eq. 5).

ππ(s) =
{
π∗E(s) : Es − ε > Rs

πR(s) : Es − ε ≤ Rs
subject to the constraints

Rs ∈ {0, 1}
p(Rs) < 1

[5]

We designed Eq. 5 to be myopic (31). Es and Rs represent
the reward of information value for only the last time-point,
making them distinct from the cumulative value terms VR and
VE (Eq. 4 and 2). This choice simplifies both the analysis and
implementation of the algorithm.

By definition instantaneous (i.e., myopic) values must be
monotonic with total cumulative value. The inequalities in
Eq. 5 therefore ensure VR and VE are maximized (Theorem 4).

In stochastic environments, M may show small continual
fluctuations and never fully reach equilibrium. To allow Eq. 5
to achieve a stable solution we introduce ε, a boredom threshold
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for exploration. When Et < ε we say the policy is “bored”
with exploration. To be consistent with the value axioms,
ε > 0 and E + ε ≥ 0.

The initial value E0 for π∗E can also be arbitrary with the
limit E0 > 0. In theory E0 does not change π∗E ’s long term
behavior, but different values will change the algorithm’s short-
term dynamics and so might be quite important in practice.
By definition a pure greedy policy, like π∗E , cannot handle ties.
There is simply no mathematical way to rank equal values.
Theorems 3 and 2 ensure that any tie breaking strategy is
valid, however, like the choice of E0, tie breaking can strongly
affect the transient dynamics.

To ensure the default policy is reward maximization, Eq. 5
breaks ties between Rt and Et in favor of πR.

Algorithmic complexity. Computational complexity is an im-
portant concern for any learning algorithm (27). The worst
case run time for ππ is linear and additive in its policies. That
is, if in isolation it takes TE steps to earn ET =

∑
TE

E, and
TR steps to earn rT =

∑
TR

R, then the worst case training
time for ππ is TE + TR. This is only true though if neither
policy can learn from the other’s actions. There is, however, no
reason each policy can’t observe the transitions (st, at, R, st+1)
caused by the other. If this is allowed, worst case training
time improves to max(TE , TR).

Summary

The exploration-exploitation dilemma is only a dilemma if we
assume that both exploration and exploitation must have the
same objective, typically assumed to be maximizing rewards.
By fully recognizing that exploration can be formalized on its
own, we have found a way around the dilemma.

Exploration in our solution only tries to maximize infor-
mation value. This greedy policy allows an animal to learn a
general and reward-independent memory of the world. Gen-
eral learning like this is critical for long-term planning (3).
An important “side effect” of learning a general memory is
that reward or reinforcement learning performances must also
improve, to optimality.
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Mathematical Appendix.

Compactness. The compactness C of a hyper-cube has a sim-
ple formula, C = P2

A
where P is the cube’s perimeter and A is

its area. Therefore as Mt moves to Mt+1, the we can measure
the distances {di, di+1, di+2, . . . dN} for all O ≤ N observed
states Z, such that Z ⊆ S and treat them as if they formed
a O-dimensional hyper-cube. In measuring this imagined
cube we arrive at a geometric estimate for the compactness of
changes to memory (Eq. 6).

C =

(
2
∑O

i
di

)2

∏O

i
di

[6]

Information value as a dynamic programming problem. To use
theorems from dynamic programming (3, 8) we must prove
our memory M has optimal substructure. By optimal sub-
structure we mean that M can be partitioned into a small
number collection or series, each of which is an optimal dy-
namic programming solution. In general by proving we can
decompose some optimization problem into a set of smaller
problems whose optimal solution is easy to find or prove, it
is trivial to prove that we can also grow the series optimally,
which, in turn, allows for direct proofs by induction.

Theorem 1 (Optimal substructure). Assuming transition
function δ is deterministic, if V ∗πE

is the optimal information
value given by πE, a memory Mt+1 has optimal substructure if
the the last observation st can be removed from Mt, by Mt+1 =
f−1(Mt+1, st) where the resulting value V ∗t−1 = V ∗t −F (Mt, at)
is also optimal.

Proof. Given a known optimal value V ∗ given by πE we assume
for the sake of contradiction there also exists an alternative
policy π̂E 6= πE that gives a memory M̂t−1 6= Mt−1 and for
which V̂ ∗t−1 > V ∗t−1.

To recover the known optimal memory Mt we lift M̂t−1 to
Mt = f(M̂t−1, st). This implies V̂ ∗ > V ∗ which in turn con-
tradicts the purported original optimality of V ∗ and therefore
π̂E .

Bellman solution. To find the recursive Bellman solution we
decompose Eq. 2 into an initial value F0 and the remaining
series in the summation. When this decomposition is applied
recursively (Eq 3) we arrive at an iterative optimal and greedy
solution (Eq. 7).

V ∗πE
(M0) = max

a∈A

[ ∞∑
t=0

F (Mt, at)
]

= max
a∈A

[
F (M0, a0) +

∞∑
t=1

F (Mt+1, at+1)
]

= F (M0, a0) + max
a∈A

[ ∞∑
t=1

F (Mt+1, at+1)
]

= F (M0, a0) + V ∗πE
(Mt+1) + V ∗πE

(Mt+2), . . .

[7]

A greedy policy explores exhaustively. Our proofs for explo-
ration breadth are really sorting problems. If every state must
be visited (or revisited) until learned, then under a greedy

policy every state’s value must, at one time or another, be the
maximum value.

Let Z be the set of all visited states, where Z0 is the empty
set {} and Z is built iteratively over a path P , such that
Z = {s|s ∈ P and s 6∈ Z}.

Sorting requires ranking, so we define an algebraic notion
of inequality for any three numbers a, b, c ∈ R are defined in
Eq. 8.

a ≤ b⇔ ∃ c; b = a+ c [8]
a > b⇔ (a 6= b) ∧ (b ≤ a) [9]

Theorem 2 (State search: completeness and uniqueness). A
greedy policy π is the only deterministic policy which ensures
all states in S are visited, such that Z = S.

Proof. Let E = (E1, E2, ...) be ranked series of E values for
all states S, such that (E1 ≥ E2,≥ ...). To swap any pair of
values (Ei ≥ Ej) so (Ei ≤ Ej) by Eq. 8 Ei − c = Ej .

Therefore, again by Eq. 8, ∃
∫
δE(s)→ −c.

Recall: OLM < 0
However if we wished to instead swap (Ei ≤ Ej) so (Ei ≥

Ej) by definition 6 ∃c;Ei + c = Ej , as 6 ∃
∫
δ → c.

To complete the proof, assume that some policy π̂E 6= π∗E .
By definition policy π̂E can be any action but the maximum,
leaving k − 1 options. Eventually as t→ T the only possible
swap is between the max option and the kth, but as we have
already proven this is impossible as long as OLM < 0. There-
fore, the policy π̂E will leave at least 1 option unexplored and
S 6= Z.

Theorem 3 (State search: convergence). Assuming a deter-
ministic transition function Λ, a greedy policy πE will resample
S to convergence as t→ T , Et → 0.

Proof. Recall: OLM < 0.
Each time π∗E visits a state s, so M →M ′, F (M ′, at+1) <

F (M,at)
In Theorem 2 we proved only a deterministic greedy policy

will visit each state in S over T trials.
By induction, if π∗E will visit all s ∈ S in T trials, it will

revisit them in 2T , therefore as T →∞, E → 0.

Optimality of ππ .

Theorem 4 (Optimality of ππ). Assuming an infinite time
horizon, if πE is optimal and πR is optimal, then ππ is also
optimal in the same sense as πE and πR.

Proof. The optimality of ππ can be seen by direct inspection.
If p(R = 1) < 1 and we have an infinite horizon, then πE will
have a unbounded number of trials meaning the optimally
of P ∗ holds. Likewise,

∑
E < ε as T → ∞, ensuring piR

will dominate ππ therefore πR will asymptotically converge to
optimal behavior.

In proving the total optimality of ππ we limit the probability
of a positive reward to less than one, denoted by p(Rt = 1) < 1.
Without this constraint the reward policy πR would always
dominate ππ when rewards are certain. While this might be
useful in some circumstances, from the point of view πE it
is extremely suboptimal as the model would never explore.
Limiting p(Rt = 1) < 1 is reasonable constraint, as rewards
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in the real world are rarely certain. A more naturalistic but
complex way to handle this edge case might be to introduce
reward satiety, and have reward value decay with repeated
exposure.
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