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Abstract. Dimensionality reduction techniques, such as t-SNE, can con-
struct informative visualizations of high-dimensional data. When work-
ing with multiple data sets, a straightforward application of these meth-
ods often fails; instead of revealing underlying classes, the resulting vi-
sualizations expose data set-specific clusters. To circumvent these batch
effects, we propose an embedding procedure that takes a t-SNE visual-
ization constructed on a reference data set and uses it as a scaffold for
embedding new data. The new, secondary data is embedded one data-
point at the time. This prevents any interactions between instances in the
secondary data and implicitly mitigates batch effects. We demonstrate
the utility of this approach with an analysis of six recently published
single-cell gene expression data sets containing up to tens of thousands
of cells and thousands of genes. In these data sets, the batch effects are
particularly strong as the data comes from different institutions and was
obtained using different experimental protocols. The visualizations con-
structed by our proposed approach are cleared of batch effects, and the
cells from secondary data sets correctly co-cluster with cells from the
primary data sharing the same cell type.

Keywords: Batch effects · Embedding · t-SNE · Visualisation · Single-
Cell Transcriptomics · Data Integration · Domain Adaptation.

1 Introduction

Two-dimensional embeddings and their visualizations may assist in the analy-
sis and interpretation of high-dimensional data. Intuitively, two data instances
should be co-located in the resulting visualization if their multi-dimensional
profiles are similar. For this task, non-linear embedding techniques such as
t-distributed stochastic neighbor embedding (t-SNE) [1] or uniform manifold
approximation and projection [2] have recently complemented traditional data
transformation and embedding approaches such as principal component analy-
sis (PCA) and multi-dimensional scaling [3, 4]. While useful for visualizing data
from a single coherent source, these methods may encounter problems if the
data comes from multiple sources. Here, when performing dimensionality re-
duction on a merged data set, the resulting visualizations would typically reveal
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source-specific clusters instead of grouping data instances of the same class-type,
regardless of data sources. This source-specific confounding is often referred to
as domain shift [5], covariate shift [6] or dataset shift [7]. In bioinformatics, the
domain-specific differences are more commonly referred to as batch effects [8–10].

Massive, multi-variate biological data sets often suffer from these source-
specific biases. Consider an example from single-cell genomics, the domain we will
focus on in this manuscript and that was — besides current scientific challenges
— selected also due to the availability and abundance of recently published data.
Single-cell RNA sequencing (scRNA-seq) data sets are the result of isolating
RNA molecules from individual cells, which serve as an estimate of the expression
of cell’s genes. Single-cell studies, which can exceed thousands of cells and tens
of thousands of genes, typically start with the analysis of cell types. Here, it
is generally expected that cells of the same type would cluster together in two-
dimensional data visualisation [10]. For instance, Fig. 1.a shows t-SNE embedded
data from mouse brain cells originating from the visual cortex [11] and the
hypothalamus [12]. The figure reveals distinct clusters but also separates the
data from the two brain regions. These two regions share the same cell types
and — contrary to the depiction in Fig. 1.a — we would expect the data points
from the two studies to overlap. Batch effects similarly prohibit the utility of t-
SNE in the exploration of pancreatic cells in Fig. 1.b, which renders the data from
a pancreatic cell atlas [13] and similarly-typed cells from diabetic patients [14].
Just like with data from brain cells, pancreatic cells cluster primarily by data
source, again resulting in an uninformative visualization driven by batch effect.

Current solutions to embedding the data from various data sources address
the batch effect problems up-front. The data is typically preprocessed and trans-
formed such that the batch effects are explicitly removed. Recently proposed
procedures for batch effect removal include canonical correlation analysis [8]
and mutual nearest-neighbors [9, 10]. In these works, batch effects are deemed
removed when cells from different sources exhibit good mixing in a t-SNE visu-
alization. The elimination of batch effects may require aggressive data prepro-
cessing which may blur the boundaries between cell types. Another problem is
also the inclusion of any new data, for which the entire data analysis pipeline
must be rerun, usually resulting in a different layout and clusters that have little
resemblance to original visualization and thus require reinterpretation.

We propose a direct solution of rendering t-SNE visualizations that addresses
batch effects. Our approach treats one of the data sets as a reference and aims to
embed the cells from another, secondary data set to a common low-dimensional
space. We construct a t-SNE embedding using the reference data set, and then
use it as a scaffold for the embedding of data points from the secondary data.
The key idea underpinning our approach is that the embedding is performed
one data point at a time. Independence of each new embedded data instance
from the secondary data set causes the clustering landscape to depend only
on the reference scaffold, thus removing data source-driven variation. In other
words, when including new data, the scaffold inferred from the reference data
set is kept unchanged and defines a “gravitational field”, independently driving
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Batch effect: Brain

Hrvatin 2018 Chen 2017

a b Batch effect: Pancreas

Baron 2016 Xin 2016

Fig. 1. Batch effects are a driving factor of variation between the data sets. Depicted
is a t-SNE visualisation of two pairs of data sets. In each pair, the data sets share cell
types, so it would be expected that the cells from the reference data (blue) would mix
with the cells in a secondary data sets (orange). Instead, t-SNE visualisation clusters
data according to the data source.

the embedding of each new instance. For example, in Fig. 2, the cells from the
visual cortex define the scaffold (Fig. 2.a) into which we embed the cells from
the hypothalamus (Fig. 2.b). Unlike in their joint t-SNE visualization (Fig. 1.a),
the hypothalamic cells are dispersed across the entire embedding space and their
cell type correctly matches the prevailing type in reference clusters.

The proposed solution is implemented using a mapping of new data to an
existing t-SNE visualization. While the utility of such an algorithm was al-
ready hinted at in recent publication [15], here we provide its practical and
theoretically-grounded implementation. Considering the abundance of recent
publications on batch effect removal, we present surprising evidence that a com-
putationally more direct and principled embedding procedure solves the batch ef-
fects problem when constructing interpretable visualizations from different data
sources.

2 Methods

We describe an end-to-end pipeline that uses fixed t-SNE coordinates as a scaf-
fold for embedding new (secondary) data, enabling joint visualisation of multi-
ple data sources while mitigating batch effects. Our proposed approach starts
by using t-SNE to embed a reference data set, with the aim of constructing a
two-dimensional visualisation to facilitate interpretation and cluster classifica-
tion. Then, the placement of each new sample is optimized independently via
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Reference embedding

Neuron
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a b Transformed samples

Fig. 2. A two-dimensional embedding of a reference containing brain cells (a) and the
corresponding mapping of secondary data containing hypothalamic cells (b). Notice
that the majority of hypothalamic cells were mapped to their corresponding reference
cluster. For instance, astrocyte cells marked with red on the right were mapped to an
oval cluster of same-typed cells denoted with the same color in the visualization on the
left.

the t-SNE loss function. Independent treatment of each data instance from a
secondary data set disregards any interactions present in that data set, and pre-
vents the formation of clusters that would be specific to the secondary data.
Below, we start with a summary of t-SNE and its extensions (Sec. 2.1, introduc-
ing the relevant notation, upon which we base our secondary data embedding
approach (Sec. 2.2).

2.1 Data embedding by t-SNE and its extensions

t-SNE is a local, non-linear dimensionality reduction method, tailored to the
visualisation of high-dimensional data sets. Given a multi-dimensional data set
X = {x1,x2, . . . ,xN} ∈ RD where N is the number of samples in the reference
data set, t-SNE aims to find a low dimensional embedding Y = {y1,y2, . . . ,yN}
∈ Rd where d � D, such that if points xi and xj are close in the multi-
dimensional space, their corresponding embeddings yi and yj are also close.
Since t-SNE is primarily used as a visualization tool, d is typically set to two.
The similarity between two data points in t-SNE is defined as:
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where D is a distance measure. This is then symmetrized to

pij =
pj|i + pi|j

2N
. (2)

The bandwidth of each Gaussian kernel σi is selected such that the perplexity
of the distribution matches a user-specified parameter value

Perplexity = 2H(Pi) (3)

where H(Pi) is the Shannon entropy of Pi,

H(Pi) = −
∑
i

pj|i log2(pj|i). (4)

Different bandwidths σi enable t-SNE to adapt to the varying density of the
data in the multi-dimensional space.

The similarity between points yi and yj in the embedding space is defined
using the t-distribution with one degree of freedom

qij =

(
1 + ||yi − yj ||2

)−1∑
k 6=l (1 + ||yk − yl||2)

−1 , qii = 0. (5)

The t-SNE method finds an embedding Y that minimizes the Kullback-
Leibler (KL) divergence between P and Q,

C = KL(P || Q) =
∑
ij

pij log
pij
qij
. (6)

The time complexity needed to evaluate the similarities in Eq. 5 is O(N2),
making the application of the algorithm impractical for any reasonably-sized
data. To address larger data sets, we adopt a recent approach for low-rank ap-
proximation of gradients based on polynomial interpolation which reduces the
time complexity of t-SNE to O(N). This approximation enables the visualization
of massive data sets, possibly containing millions of data points [16].

The resulting embeddings substantially depend on the value of the perplexity
parameter. Perplexity can be interpreted as the number of neighbors for which
the distances in the embedding space are preserved. Small values of perplexity
result in tightly-packed clusters of points and effectively ignore the long-range
interactions between clusters. Larger values may result in a more globally consis-
tent visualisations, preserving distances on a large scale and organizing clusters
in a more meaningful way. Larger values of perplexity can lead to merging of
multiple small clusters, thus obscuring local aspects of the data [15].

The trade-off between the local organization and global consistency may be
achieved by replacing the Gaussian kernels in Eq. 1 with a mixture of Gaussians
of varying bandwidths [17]. Multi-scale kernels are defined as
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2
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2
i,l

)
, pi|i = 0 (7)

where L is the number of mixture components. The bandwidths σi,l are selected
in the same manner as in Eq. 1, but with a different value of perplexity for each
l. In our experiments, we used a mixture of two Gaussian kernels with perplexity
values of 50 and 500. We note that a similar formulation of multi-scale kernels
was proposed in [15], and we found the resulting embeddings are visually very
similar to those obtained with the approach described above (not shown for
brevity).

2.2 Adding new data points to reference embedding

Our algorithm, which embeds new data points to a reference embedding, consists
of estimating similarities between each new point and the reference data and
optimizing the position of each new data point in the embedding space. Unlike
parametric models such as principal component analysis or autoencoders, t-SNE
does not define an explicit mapping to the embedding space, and embeddings
need to be found through loss function optimization.

The position of a new data point in embedding space is initialized to the
median reference embedding position of its k nearest neighbors. While we found
the algorithm to be robust to choices of k, we use k = 10 in our experiments.

We adapt the standard t-SNE formulation from Eqs. 1 and 5 with

pj|i =
exp

(
− 1

2D(xi,vj)/σ
2
i

)∑
i exp

(
− 1

2d(xi,vj)/σ2
i

) , (8)

qj|i =

(
1 + ||yi −wj ||2

)−1∑
i (1 + ||yi −wj ||2)

−1 , (9)

where V = {v1,v2, . . . ,vM} ∈ RD where M is the number of samples in the
new data set and W = {w1,w2, . . . ,wM} ∈ Rd. Additionally, we omit the
symmetrization step in Eq. 2. This enables new points to be inserted into the
embedding independently of one another. The gradients of wj with respect to
the loss (Eq. 6) are:

∂C

∂wj
= 2

∑
i

(
pj|i − qj|i

)
(yi −wj)

(
1 + ||yi −wj ||2

)−1
(10)

In the optimization step, we refine point positions using batch gradient de-
scent. We use an adaptive learning rate scheme with momentum to speed up
the convergence, as proposed by Jacobs [18, 19]. We run gradient descent with
momentum α set to 0.8 for 250 iterations, where the optimization converged in
all our experiments. The time complexity needed to evaluate the gradients in
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Eq. 10 is O(N ·M), however, by adapting the same polynomial interpolation
based approximation, this is reduced to O(N).

Special care must be taken to reduce the learning rate η as the default value
in most implementations (η = 200) may cause points to “shoot off” from the
reference embedding. This phenomenon is caused due to the embedding to a
previously defined t-SNE space, where the distances between data points and
corresponding gradients of the optimization function may be quite large. When
running standard t-SNE, points are initialized and scaled to have variance 0.0001.
The resulting gradients tend to be very small during the initial phase, resulting
in stable convergence. When embedding new samples, the span of the embed-
ding is much larger, resulting in substantially larger gradients, and the default
learning rate causes points to move very far from the reference embedding. In
our experiments, we found that decreasing the learning rate to η ∼ 0.1 produces
stable solutions. This is especially important when using the interpolation-based
approximation, which places a grid of interpolation points over the embedding
space, where the number of grid points is determined by the span of the em-
bedding. Clearly, if even one point “shoots off” far from the embedding, the
number of required grid points may grow dramatically, increasing the runtime
substantially. The reduced learning rate suppresses this issue, and does not slow
the convergence because of the adaptive learning rate scheme, provided the op-
timization is run for a sufficient number of steps.

3 Experiments and Discussion

We apply the proposed approach to t-SNE visualizations of single-cell data.
Data in this realm include a variety of cells from specific tissues, and characterize
them through gene expression. In our experiments, we considered several recently
published data sets where cells were annotated with the cell type. Our aim
was to construct t-SNE visualizations where similarly-typed cells would cluster
together, despite systematic differences between data sources. Below, we list the
data sets, describe single-cell specific data preprocessing procedures, and display
the resulting data visualizations. Finally, we discuss the success of the proposed
approach in alleviating the batch effects.

3.1 Data

We use three pairs of reference and secondary single-cell data sets originating
from different organisms and tissues. The data in each pair were chosen so that
the majority of cell types from the secondary data set were included in the
reference set (Table 1).

The cells in the data sets originates from the following three tissues:

Mouse brain. The data set from Hrvatin et al. [11] contains cells from the
visual cortex exploring transcriptional changes after exposure to light. This
was used as a reference for the data from Chen et al. [12], containing various
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Study Organism/Tissue Protocol Cells Cell Types Sparsity (%)

Hrvatin et al.
mouse brain

inDrop 48,266 9 94
Chen et al. Drop-seq 14,437 6 93

Baron et al.
human pancreas

inDrop 8,569 9 91
Xin et al. SMARTer 1,492 4 86

Macosko et al.
mouse retina

Drop-seq 44,808 12 97
Shekhar et al. Drop-seq 27,499 5 96

Table 1. Data sets used in our experiments. In each pair, the first data set (Hrvatin
et al., Baron et al., and Macoscko et al.) was used as a reference. In all cases, we relied
on the quality control and annotations from the original publication. To facilitate
comparisons, the cell annotations were harmonized using cell type annotations from
the cell ontology [20]. Notice that different RNA sequencing protocols were used to
estimate gene expressions. We report the number of cell types from each data set
retained after preprocessing. Single-cell data is sparse, typically containing less than
10% expressed genes per cell.

cells from the mouse hypothalamus and their reaction to food deprivation.
From the secondary data, we removed cells with no corresponding types in
the reference, namely ependymal cells, epithelial cells, tanycytes, and unla-
belled cells.

Human pancreas. The data set from Baron et al. [13] was created as an atlas
of pancreatic cell types. We used this set as a reference for data from Xin et
al. [14], who examined transcriptional differences between healthy and type
2 diabetic patients.

Mouse retina. The data set from Macosko et al. [21] was created as an atlas
of mouse retinal cell types. We used this as a reference for the data from
Shekhar et al. [22], who built an atlas for different types of retinal bipolar
cells.

3.2 Single-cell data preprocessing pipeline

Due to the specific nature of single-cell data, additional steps must be taken
to properly apply t-SNE. We use a standard single-cell preprocessing pipeline,
consisting of the selection of 3,000 representative genes (see Sec. 3.3), library
size normalization, log-transformation, standardization, and PCA-based repre-
sentation that retains 50 principal components [10, 23]. To obtain the reference
embedding, we apply multi-scale t-SNE using PCA initialization [15]. Due to
high-dimensionality of the preprocessed input data we use cosine distance to
estimate similarities between reference data points [24]. When adding new data
points from the secondary data set to the reference embedding, we select 1,000
genes present in both data sets and use these to estimate the similarities be-
tween the secondary data item and reference data points. The similarities are
estimated using cosine similarity. We note that similarities are computed using
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the raw count matrices. The preprocessing stages are detailed in accompanying
Python notebooks (Sec. 3.5).

3.3 Gene selection

Single-cell data sets suffer from high levels of technical noise and low capture
efficiency, resulting in sparse expression matrices [25]. To address this problem,
we use a specialized feature-selection method, which exploits the mean-dropout
relationship of expression counts as recently proposed by Kobak and Berens [15].
Here, genes with higher than expected dropout rate are regarded as potential
markers for cell subpopulations and are retained in the data.

Given an expression matrix X ∈ RN×G where N is the number of samples
and G is the number of genes in the data set, we compute the fraction of cells
where a gene g was not expressed

dg =
1

N

∑
i

I (Xig = 0) (11)

The mean log2 expression of the genes is computed from all the cells where gene
was expressed:

mg = 〈 log2Xig | Xig > 0 〉 . (12)

All genes expressed in less than ten cells are discarded. In order to select a
specific number of Ĝ genes, we use a binary search to find a value b such that∑

g

I (dg > exp [−(mg − b)] + 0.02) = Ĝ. (13)

3.4 Results and Discussion

Figs. 2, 3, and 4 show the embeddings of the reference data sets and their corres-
ponding embeddings of the secondary data sets. In all the figures, the cells from
the secondary data sets were positioned in the cluster of same-typed reference
cells, providing strong evidence of the success of the proposed approach. There
are some deviations to these observations; for instance, in Fig. 2 several oligoden-
drocyte precursor cells (OPCs) were mapped to oligodendrocytes. This may be
due to differences in annotation criteria by different authors, or due to inherent
similarities of these types of cells. Examples of such erroneous placements can
be found in other figures as well, but they are not common and constitute less
then 5% of the cells (less than 5% in brain, %1 in pancreas and %2 in retina
secondary data sets).

Notice that we could simulate the split between reference and secondary data
sets using one data set only and perform cross-validation, however this type of
experiment would not incorporate batch effects. We want to remind the reader
that handling batch effects were central to our endeavour and that the disregard
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of this effect could lead to overly-optimistic results and data visualizations strik-
ingly different from ours. For example, compare the visualisations from Fig. 1.a
and Fig. 2.b, or Figs. 1.b and 3.b.

Reference embedding

Beta cells
Alpha cells

Delta cells
PP cells

Ductal cells
Acinar cells

PaSC
Endothelial cell

Other

a b Transformed samples

Fig. 3. Embedding of pancreatic cells from Baron et al. [13] and cells from the same
tissue from Xin et al.. [14]. Just like in Fig. 2 the vast majority of the cells from the
secondary data set were correctly mapped to the same-typed cluster of reference cells.

There are additional modifications that we use in the embedding of the sec-
ondary data set that were recently proposed and enhance the original t-SNE
visualization. One important extension is the use of multi-scale similarities that,
besides local ordering of the data points, includes global optimization of cluster
placement. For illustration, consider visualizations with standard and multi-scale
t-SNE in Fig. 5. Notice, for instance, that in multi-scale t-SNE (Fig. 5.b) the
clusters with neuronal cells are clumped together, while their placement in stan-
dard t-SNE is arbitrary (Fig. 5.a).

We also observed the important role of gene selection in crafting the refer-
ence embedding spaces. We found that when selecting an insufficient number of
genes, the resulting visualizations display overly-fragmented clusters. When the
selection is too broad and includes lowly expressed genes, the subclusters tend
to overlap. These effects can all be attributed to sparseness of the data sets and
may be intrinsic to single-cell data. In our studies, we found that selection of
3,000 genes yields most informative visualizations (Fig. 6).

In principle, our theoretically-grounded embedding of secondary data into the
scaffold defined by the reference embedding could be simplified with the applica-
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Reference embedding

Amacrine cells
Astrocytes
Bipolar cells

Cones
Fibroblasts
Horizontal cells

Microglia
Muller glia

Pericytes
Retinal ganglion cells

Rods
Vascular endothelium

a b Transformed samples

Fig. 4. An embedding of a large reference of retinal cells from Macosco et al. [21] (a)
and mapping of cells from a smaller study that focuses on bipolar cells from Shekhar
et al. [22] (b). We use colors consistent with the study by Macosko et al..

tion of the nearest neighbors-based procedure. For example, while describing a
set of tricks for t-SNE, Kobak and Berens [15] proposed positioning new points
into a known embedding by placing them in the median position of their 10
nearest neighbors, where the neighborhood was estimated in the original data
space. Notice that we use this approach as well, but only for the initialization
of positions of new data instances that are subject to further optimization. In
Fig. 7 we demonstrate that nearest neighbor-based positioning is insufficient and
may yield clumped visualizations where the optimal positioning using the t-SNE
loss function is much more dispersed and rightfully shows a more considerable
variation in the secondary data. Some data points may also fall into the empty
regions between different clusters, while after optimization they typically move
closer to same-typed groups.

The proposed method assumes that all cell types from the secondary data
set are present in the reference. The proposed method would fail to reveal novel
cell types in the secondary data set, possibly positioning them arbitrarily close
to unrelated clusters. Procedures such as scmap were recently proposed to cope
with such cases and identify the cells whose type is new and not included in the
reference [26]. Our procedure does not address such cases, and for scaling-up to
a wider collection of cell types relies on emerging availability of large collections
of the reference data such as those managed by Human Cell Atlas initiative [27].
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Standard t-SNEa b Multiscale t-SNE

Neuron
Microglia

Oligodendrocyte
Astrocyte

Endothelial cell
OPC

Pericyte
Muscle cell

Macrophage

Fig. 5. A comparison of standard and multi-scale t-SNE on data from the mouse
visual cortex [11]. (a) Standard t-SNE places clusters arbitrarily. (b) Augmenting
t-SNE with multi-scale similarities and using proper initialization provides a more
meaningful layout of the clusters. Neuronal types occupy one region of the space.
Oligodendrocyte precursor cells (OPCs) are mainly progenitors to oligodendrocytes,
but may also differentiate into neurons or astrocytes.

250 genes 3,000 genesa b c 20,394 genes

Neuron
Microglia

Oligodendrocyte
Astrocyte

Endothelial cell
OPC

Pericyte
Muscle cell

Macrophage

Fig. 6. Gene selection plays an important role when constructing the reference embed-
ding. (a) Using too few genes results in fragmented clusters. (b) Using an intermediate
number of genes reveals clustering mostly consistent with cell annotations. (c) Includ-
ing all the genes may lead to under-clustering of the more specialized cell types.
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Median initializationa b Transformed samples

Fig. 7. Comparison of data placement using the nearest neighbors approach from
Kobak and Berens [15] and the optimized placement using our algorithm. (a) Data
points are placed to the median position of their 10 nearest neighbors in the reference
set. (b) Point positions are optimized, revealing a different, more dispersed placement
that better reflects the variety of cells in the secondary data set.

3.5 Implementation

The procedures described in this paper are provided as Python notebooks that
are, together with the data, available in an open repository 3. All experiments
were run using openTSNE 4, our open and extensible t-SNE library for Python.

4 Conclusion

Almost all recent publications of single-cell studies begin with a two-dimensional
visualization of the data that reveals the cellular diversity containing many dif-
ferent cell-types from the study. While any dimensionality reduction technique
can be used to render such a visualization, different variants of t-SNE are most
often used. Due to the ability to explore biological mechanisms at the individual
cell level, single-cell studies are increasingly widespread, and their publications
in the past couple of years are abundant. One of the central tasks in single-cell
studies is the classification of new cells based on findings from previous studies.
Such transfer of knowledge is often difficult due to batch effects present in data
from different sources. Addressing batch effects by adapting and extending t-
SNE, the prevailing method used to present single-cell data in two-dimensional
visualization motivated the research presented in this paper.

3 https://github.com/biolab/tsne-embedding
4 https://github.com/pavlin-policar/openTSNE
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Our proposed approach uses a t-SNE embedding as a scaffold for the po-
sitioning of new cells within the visualization, and possibly for aiding in their
classification. The three case studies incorporating pairs of data sets from dif-
ferent domains but with similar classifications demonstrate that our proposed
procedure can effectively deal with batch effects to construct visualizations that
correctly map secondary data sets onto a reference data set from an indepen-
dent study that possibly uses different experimental protocol. While we focused
here on reference visualizations constructed using t-SNE, this approach can be
applied using any existing two-dimensional visualization.
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