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Summary	
 

Malfunctions of voltage-gated sodium and calcium channels (SCN and CACNA1 genes) have 

been associated with severe neurologic, psychiatric, cardiac and other diseases. Altered 

channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, 

respectively) which is not only corresponding to clinical disease manifestations, but also to 

differences in drug response. Experimental studies of channel function are therefore important, 

but laborious and usually focus only on a few variants at a time. Based on known gene-

disease-mechanisms, we here infer LOF (518 variants) and GOF (309 variants) of likely 

pathogenic variants from disease phenotypes of variant carriers. We show regional clustering 

of inferred GOF and LOF variants, respectively, across the alignment of the entire gene family, 

suggesting shared pathomechanisms in the SCN/CACNA1 genes. By training a machine 

learning model on sequence- and structure-based features we predict LOF- or GOF- 

associated disease phenotypes (ROC = 0.85) of likely pathogenic missense variants. We then 

successfully validate the GOF versus LOF prediction on 87 functionally tested variants in 

SCN1/2/8A and CACNA1I (ROC = 0.73) and in exome-wide data from > 100.000 cases and 

controls. Ultimately, functional prediction of missense variants in clinically relevant genes will 

facilitate precision medicine in clinical practice.  

 

Keywords: variant prediction, machine learning, electrophysiology, voltage-gated ion channels, 

missense variants 
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Introduction	
 

Voltage-gated sodium (Navs) and calcium channels (Cavs) play a critical role in initiating and 

propagating action potentials across a broad variety of excitable cells and physiological 

functions. Upon membrane depolarisation, Navs and Cavs are activated and inactivated 

within milliseconds, leading to a transient influx of sodium or calcium ions into the cell 

(Catterall, 1995). Genes encoding the channel protein (in humans, Navs’ channel proteins are 

encoded by 10 SCN and Cavs’ channel proteins are encoded by 10 CACNA1 genes) have 

been associated with multiple predominantly neurological and neurodevelopmental diseases. 

These diseases include developmental and epileptic encephalopathy (SCN1A, SCN2A, 

SCN8A, CACNA1E, CACNA1A), episodic ataxia (CACNA1A), migraine (CACNA1A, 

SCN1A), autism spectrum disorder (SCN2A, CACNA1C) and pain disorders (SCN9A, 

SCN10A, SCN11A). Disorders affecting cardiac (SCN5A CACNA1C) or skeletal muscle 

(SCN4A, CACNA1S), or the retina (CACNA1F) have also been associated with variants	 in 

these gene families (for references see Table 1). Pathogenic variants in these genes often 

contribute to severe early onset disorders which are less frequently passed on to the next 

generation. This selective pressure is captured by the depletion of functional variants in those 

genes in the general population (median loss-of-function observed/expected upper bound 

fraction of 0.29 (Karczewski et al., 2019). Beyond rare diseases and high-penetrance 

variants, common variants at CACNA1 or SCN loci have also been associated with highly 

related common disease endpoints. For example, GWAS have identified genome-wide 

significant SNP-associations at loci including CACNA1C and CACNA1I for schizophrenia 

(Ripke et al., 2014), SCN1A for epilepsy (ILAE et al., 2018) and SCN10A and SCN5A for 

atrial fibrillation (Roselli et al., 2018).  

 

Phylogenetic analyses have found that Navs and Cavs share a common ancestral gene (Yu 

and Catterall, 2004) and they have previously been defined as one gene family (Vilella et al., 

2009). Navs and Cavs accordingly share a similar structure composed of four very similar 

domains I, II, III and IV, each consisting of six membrane-spanning segments S1-S6 

(Catterall, 1995; Catterall and Swanson, 2015). These four domains come together, as a 

pseudo-heterotetramer, to form a functional channel. In the center of the structure is the pore 

domain which is composed of S5-S6 segments, surrounded by four voltage sensor domains 

(VSD) formed by S1-S4 segments. The general architecture of Navs’ and Cavs’ voltage-

sensing and pore modules is comparable (Catterall and Swanson, 2015) and their function 

and structure have been extensively studied. Protein domains are associated with specific 

functions and diseases across channels (Brunklaus et al., 2014; Catterall and Swanson, 
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2015; Huang et al., 2017). It has therefore previously been suggested that mutations in 

similar structural domains entail similar functional outcomes in Navs (Brunklaus et al., 2014), 

Cavs (Stockner and Koschak, 2013) and Navs and Cavs (Moreau et al., 2014). It has also 

been suggested that pathogenic variants in Navs and Cavs occur preferentially at functionally 

equivalent amino acids across the gene family alignment of Navs and Cavs (Walsh et al., 

2014). While functional differences between channels exist, particularly among calcium 

channels (Heyes et al., 2015), with only few amino acid (aa) changes a bacterial sodium 

channel was shown to be experimentally turned calcium-selective (Heinemann et al., 1992) 

thus illustrating the great degree of functional homology between Navs and Cavs. In addition, 

disease-associated missense variants are enriched at aa sites that are conserved across 

paralogs, i.e., gene family members, (Lal et al., 2017) including in sodium and calcium 

channels (Walsh et al., 2014; Ware et al., 2012). This further supports the hypothesis that 

similar biophysical pathomechanisms are involved across Navs and Cavs and analyzing them 

jointly should increase statistical power to identify disease-associated protein features. 

Disease-associated biological features such as protein structure and conservation metrics 

have been successfully used in predicting pathogenic versus neutral effects of aa changes 

(Adzhubei et al., 2013; Kircher et al., 2014). In voltage-gated potassium channels pathogenic 

variant prediction of only one gene, KCNQ1, (Li et al., 2017) or the Kv gene family (Stead et 

al., 2011) have been conducted with the aim of improving specificity of variant prediction in 

comparison to genome-wide scores. There have also been attempts to predict functional 

readouts using electrophysiology data in SCN5A, with limited success potentially due to 

sparse training data (Clerx et al., 2018).  

  

Genetic variants that inactivate protein-coding genes by nonsense mediated mRNA decay 

such as stop-gain, essential splice, or frameshift variants have by definition loss-of-function 

(LOF) effects. Missense variants, however, can alter protein function in different ways. These 

functional alterations can be pathogenic (i.e. disease-causing), neutral (e.g. effects are small 

or can be compensated), or rarely beneficial. Pathogenic missense variants in SCN/CACNA1 

genes can lead to disease through various changes in channel properties. These can for 

example affect the voltage dependence of steady-state activation or inactivation, the kinetics 

of the inactivation process or its recovery, ion selectivity, and other metrics that can be 

recorded in electrophysiological experiments (Yu and Catterall, 2004). In a simplified disease 

context, these variants are usually classified as having either gain- or loss-of-function (GOF 

or LOF) effects, depending on whether the net ion flow is increased or decreased. However, 

a variant may change more than one of the properties described above, with potential 

opposite functional effects, e.g. slowing down the inactivation process (causing GOF) on one 

hand and a low protein expression (causing LOF) on the other. In such cases, it may be 
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estimated which of the functional alterations dominates to define it either as a net GOF or 

LOF variant, but this may also be difficult to determine. Clear LOF or GOF effects in different 

genes are associated with specific channelopathies. For example, in SCN5A, LOF variants 

can cause Brugada syndrome, whereas GOF variants can lead to Long QT syndrome 

(Kroncke et al., 2018). (All known such gene-function-disease associations are displayed in 

Table 1). That a pathogenic variant has a LOF or GOF effect may therefore also be inferred 

from disease phenotypes. In multiple genes, however, including SCN2A (Sanders et al., 

2018) and SCN8A (Liu et al., 2019), phenotypic differences between LOF and GOF variants 

are not clear-cut or not always present at the time of diagnosis. Knowing an individual 

variant’s functional effect can improve prognosis, enable precision therapy (Chiron et al., 

2000; Jen et al., 2007; Larsen et al., 2015; Schoonjans et al., 2015; Wolff et al., 2017) and 

potentially avoid incorrect treatment that could have aggravating consequences (e.g. 

treatment with sodium channel blockers in individuals with loss-of-function variants in SCN2A 

(Wolff et al., 2017) or SCN1A (Brunklaus et al., 2012)). However, current variant prediction 

usually only focusses on whether a variant has a disease-causing or neutral effect. We 

therefore introduce here a machine learning- based statistical model that can classify 

variants in Navs and Cavs as LOF, GOF or neutral thus providing a valuable resource for 

clinical genetics, gene discovery as well as the experimental ion channel community.  
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Results	
 

Similar molecular mechanisms in different Navs/Cavs lead to LOF and GOF 

 

Genetic variants in different NaVs/CaVs lead to disease in diverse contexts. Comparing 

expression data (GTEx, 2015) and gene phenotype associations (Kohler et al., 2017), we 

show that tissue-specific gene expression was correlated with tissue-associated phenotypes  

(Figure S1) thus confirming longstanding hypotheses. For example, pathogenic variants in 

SCN5A contribute to heart diseases (Brugada Syndrome and Long QT syndrome), and the 

SCN5A encoded protein Nav1.5 is predominantly expressed in heart tissue. Expression in 

different tissues and cell types could thus explain the clinically diverse disease spectrum of 

Navs/Cavs, while allowing the possibility that similar alterations on protein structure cause 

heterogeneous diseases across different channels. 

We therefore gathered variants in SCN/CACNA1 genes in individuals with disease 

from different sources (Helbig et al., 2018; Heyne et al., 2019; Heyne et al., 2018; Landrum 

et al., 2016; Stenson et al., 2017; Wolff et al., 2017), Table S1. We filtered these to 1521 

likely pathogenic variants using ACMG-criteria (Richards et al., 2015) where possible (see 

Methods). Most diseases associated with Navs/Cavs are caused by either GOF or LOF 

effects. Thus, we infer whether a likely pathogenic variant has a GOF or LOF effect from 

disease phenotypes based on known gene-disease mechanisms. For example, in an 

individual with Brugada syndrome and a pathogenic variant in SCN5A, we assume that the 

variant has a LOF effect, as it has been previously described that most pathogenic SCN5A 

variants cause Brugada syndrome via a LOF mechanism (Chen et al., 1998; Kroncke et al., 

2018). We screened the literature for such known gene-disease-mechanisms (for an 

overview, see Table 1). Applying this knowledge, from the 1521 likely pathogenic variants, 

we were able to classify 518 variants as likely LOF and 309 variants as likely GOF in 12 

different genes across 19 diseases. 11 diseases had inferred LOF variants, 8 had inferred 

GOF variants. We set out to show that variants with inferred LOF or GOF effects were 

clustered at corresponding aa sites in Navs/Cavs as it would greatly boost our power to be 

able to jointly analyze LOF and GOF variants of different Navs/Cavs. In order to compare 

variant location of different Navs and Cavs, we mapped variants on a combined gene family 

alignment of all 20 Nav/Cav sequences (details see methods). We then correlated variant 

densities between all 19 diseases (method: Kendall correlation, Figure 1A). When variant 

densities of two diseases are significantly correlated, their variants are clustered at 

corresponding aa sites. We obtained 40 unique variant density correlations between 

diseases. 37 of the 40 significant correlations involved GOF variants of which 31 occurred 
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between two diseases that were both inferred to be caused by GOF variants. This suggests 

that GOF variants are clustered at similar aa sites in different channels. We performed a 

principal component analysis to summarize all disease-disease correlations as measured by 

Kendall’s tau. The first principal component (PC1) perfectly separated diseases with inferred 

LOF from those with inferred GOF variants (Figure 1B). This indicates regional clustering of 

LOF and GOF variants and thus shared mechanisms lead to LOF or GOF in different ion 

channels. We hence combined LOF and GOF variants of Navs and Cavs in further analyses 

(see variants of all Navs/Cavs mapped on SCN2A in Figure 2). 

Figure	1	
Clustering of inferred GOF or LOF variants in different genes. Inferred GOF and LOF 

variants were mapped on the gene family alignment of all SCN/CACNA1 genes and aa sites 

with gaps in the alignment removed. Variants were counted in a sliding window of 3aa. A) 

Correlation of variant densities (method: Kendall). Positive values of tau are blue, negatives 

are red (see legend). Correlations withstanding Bonferroni correction are marked with **, 

correlations with p-value < 0.01 are marked with *. Genes are sorted by the first principal 

component of the correlations (tau, see panel B). B) Principal component analysis of the 

correlations (tau). LOF variants are blue, GOF red. GOF variants in SCN9A are subdivided 

into the diseases erythromelalgia (“Ery”) and paroxysmal pain syndrome (“pain”). LOF variants 

in CACNA1A are subdivided into the diseases neurodevelopmental disorder (”NDD”) and 

episodic ataxia (”EA”).  
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Figure	2	

Missense variants in SCN (Navs) and CACNA1 genes (Cavs) are mapped on the linear 

protein structure of SCN2A (Sanders et al., 2018). Panel A shows inferred GOF (red) vs. 

LOF (blue) missense variants. Panel B shows likely pathogenic variants (orange) vs. neutral 

variants (purple). In both panels, upper plots show individual variants and lower plots show 

variant densities in a sliding window of 3aa. Navs and Cavs are composed of four similar 

domains I, II, III and IV that associate to form a channel. In each domain, transmembrane 

segments S1-6 are labelled with 1-6. S5-6 form the channel pore and S4 contains the voltage 

sensor which is labelled with “+” to illustrate the positive gating charges. The * at site 1151 

refers to a cluster of GOF variants in CACNA1C in individuals with LongQT syndrome, ** at 

site 1882 refers to a cluster of GOF variants in SCN2/8A (see discussion). Variants with MAF 

> 10-4 in gnomAD (non-neuro) (Karczewski et al., 2019) were selected as neutral variants. 

Variants were inferred to be LOF or GOF from disease phenotypes (see Table 1, methods). 	
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Machine learning method predicts LOF vs GOF variant effects  

 

We gathered 89 structure-based and sequence-based protein features putatively enriched for 

LOF versus GOF or neutral versus pathogenic effect variants. Structure-based annotations 

included protein secondary structure, protein’s accessible surface area and structural (e.g. 

cytoplasm) and functional (e.g. channel pore, selectivity filter) protein domains. Sequence-

based features included conservation metrics across the 20 genes (including our own 

ancestry conditional selection score, see Methods), physicochemical properties of aa and 

deleteriousness of aa changes like “missense badness” (Samocha et al., 2017). We tested 

all binary protein features (features that can only take the values true or false) for an 

enrichment of inferred LOF, GOF, pathogenic or neutral variants with Fisher’s Exact tests 

(Figure 3). 6 out of 9 structure-based features and 3 out of 12 sequence-based features were 

enriched for 518 LOF (e.g. pore, selectivity filter) or 309 GOF variants (e.g. S4-5 linker helix, 

cytoplasm). In Figure 2 and Figure S2 variants are mapped on the linear sequence of 

SCN2A, in Figure S3 they are mapped onto the 3D protein structure of SCN2A, Figure S4 

shows quantitative protein features of GOF, LOF and neutral variants.  

 

Figure	3	

GOF, LOF and neutral variants are enriched in multiple protein features. In this figure, we 

show which protein features contain significantly more GOF variants than LOF variants (first 

column) and significantly more pathogenic than neutral variants (second column), for SCN and 

CACNA1 combined. Associations that are significant after Bonferroni correction for 2 x 21 

tests (p-value < 0.001) are labelled red. We used Fisher’s exact tests to compare variant 

counts. Point estimates (log10 odds ratios) > 0 indicate a protein feature’s enrichment for GOF 

variants (first column) or pathogenic variants (second column). The features labelled with * are 

only present in Navs (inactivation gate, DEKA motif of the selectivity filter) or Cavs (gating 

break). The horizontal bars show the 95%-confidence intervals of the odds ratio point 

estimates that are log10-transformed and cut at -1.7 and 1.7 for clarity. Log10 odd’s ratios > 

1.7 or < -1.7 are shown as arrows. 
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We next sought to leverage these associations of protein features with variant effects to train 

a prediction tool that outputs the probability that a variant results in GOF or LOF. For this, we 

trained a machine learning model on all 89 protein features of all 518 LOF and 309 GOF 

variants (Table S1). We also separately predicted neutral versus pathogenic effects (see next 

section). To assess the performance of our model, we set aside a test data set of 82 

randomly chosen variants before the modelling process. We measured performance with the 

●
5 × 10−11

●
2 × 10−4

●
3 × 10−6

●
0.2

●
4 × 10−4

●
2 × 10−12

●
1 × 10−8

<0.2

●
0.7

●
2 × 10−7

●
0.002

●
0.001

●
0.7

●
0.1

●
1

●
3 × 10−4

●
0.2

●
0.9

●
0.06

●
0.006

●
0.2

●
3 × 10−4

●
8 × 10−166

●
2 × 10−48

●
2 × 10−31

●
4 × 10−21

●
7 × 10−27

●
7 × 10−23

●
3 × 10−4

●
6 × 10−4

●
6 × 10−10

●
1

●
0.04

●
2 × 10−27

●
4 × 10−26

●
0.5

●
2 × 10−4

●
3 × 10−8

●
0.001

●
0.01

●
0.4

●
4 × 10−6

LOF vs GOF neutral vs pathogenic

Extracellular (134)

Cytoplasm (297)

S4−S5 Linker helix (81)

S4 Voltage sensor, gating charges (54)

Inactivation gate (34)*

Pore (64)

Selectivity filter (45)

Selectivity filter, DEKA motif (5)*

Gating break (7)*

ref AA hydrophobic−side−chain:aliphatic (296)

ref AA special−amino−acid (133)

ref AA negatively−charged (71)

ref AA hydrophobic−side−chain:aromatic (68)

ref AA positively−charged (131)

ref AA polar−uncharged−side−chain (126)

alt AA hydrophobic−side−chain:aliphatic (210)

alt AA special−amino−acid (135)

alt AA negatively−charged (63)

alt AA hydrophobic−side−chain:aromatic (86)

alt AA positively−charged (155)

alt AA polar−uncharged−side−chain (176)

−1 0 1 −1 0 1
Enrichment of variant class

(log10 Odds Ratio)

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/671453doi: bioRxiv preprint 

https://doi.org/10.1101/671453
http://creativecommons.org/licenses/by/4.0/


10	
	

following metrics: balanced accuracy (BA), Cohen's kappa (kappa), Matthew’s Correlation 

Coefficient (MCC) and Receiver Operating characteristic (ROC). The aim is usually to 

maximize these or similar metrics during model training. BA, kappa and MCC are 

performance metrics aiming to summarize a 2x2 contingency table of true positive/negative 

and false positive/negative predictions with a single number (Baldi et al., 2000) (see 

methods). The ROC curve is created by plotting the true positive rate against the false 

positive rate at various probabilities (Figure 4A-D). Predicting the test data of 82 variants our 

model reached following performance: balanced accuracy (BA) 0.80, Cohen's kappa (kappa) 

0.57, Matthew’s Correlation Coefficient (MCC) 0.59, ROC 0.85 (for ROC curves see Figure 

4A-D, for performance during training see Figure S5B and C). These results indicate good 

predictive power when compared with other variant prediction methods (Adzhubei et al., 

2013; Kircher et al., 2014; Li et al., 2017). Using this model, we ranked the relative influence 

of the 89 features on the prediction of LOF versus GOF effects (Figure 4E). The top two 

features were GOF variant density features. The ten most important features also included 

three different aa hydrophobicity scores, three different conservation features and the 

Grantham score. Our tool named “FunNCion” (functional variant prediction in voltage-gated 

Na+/Ca2+ ion channels) with predictions of all possible single nucleotide missense variants in 

Navs/Cavs can be found at http://funNCion.broadinstitute.org. 

We then asked whether modeling variants in Navs + Cavs jointly actually improves 

variant prediction over modelling Navs and Cavs separately. When using only the 573 Nav 

variants during model training, prediction performance in Navs was comparable to model 

training with all Navs + Cavs variants (BA 0.79, ROC 0.80, MCC 0.55 vs BA 0.80, ROC 0.85, 

MCC 0.58). Predicting Cavs with a model only trained on 171 Cavs gave however worse 

results compared to predicting Cavs with a model trained on Navs + Cavs (BA 0.60, ROC 

0.61, MCC 0.20 vs BA 0.79, ROC 0.88, MCC 0.58). In fact, it was better to predict Cavs with 

a model just using Navs compared to just Cavs (BA 0.75, ROC 0.76, MCC 0.49). These 

results suggest that the increased power obtained by combining Navs and Cavs outweighs 

the differences between these channel types.  
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Figure	4	 
Variant prediction of LOF and GOF effects in Navs and Cavs. Our statistical model (method 

GBM) was trained on 746 variants whose functional effects were inferred from disease 

phenotypes. Here, we show how the model predicts LOF/GOF variant effects in two 

independent test data sets: 82 disease phenotypes, randomly picked from training data before 

model training (panels A and C) and 87 functionally tested variants, described in paragraph 

Validation of funNCion with functionally tested variants	(panels B and D). A) prediction of LOF 

disease phenotypes, sensitivity=0.76, specificity=0.83. B) prediction of LOF electrophysiology 

experiments, sensitivity=	 0.74, specificity=	 0.72. C) prediction of GOF disease phenotypes, 

sensitivity=0.83, specificity=0.76. D) prediction of GOF electrophysiology experiments, 

sensitivity=	0.72, specificity= 0.74. The area under the Receiver Operating Characteristic curve 

was 0.85 for phenotype based LOF/GOF prediction and 0.73 for electrophysiology-based 

LOF/GOF prediction. E) Feature importance for prediction of GOF versus LOF. The relative 

influence of features on the prediction normalized to sum to 100 is computed as described in 

(Friedman, 2001). Of 89 features that went into the prediction, only the 18 features are 

shown that have a relative influence > 0.05 on the prediction. 
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Machine learning method predicts pathogenic vs neutral variant effects  

 

We also set out to predict whether a variant has a ”neutral” or a potentially disease-causing 

(”pathogenic”) effect using the same features, the GBM method, and variants as in the 

functional variant prediction. We used the 1521 likely pathogenic variants described above 

including the 827 variants with LOF/GOF annotations plus 694 likely pathogenic variants for 

which we could not annotate with certainty whether they had LOF or GOF effects (see 

Methods). We used 2328 variants in gnomAD (Karczewski et al., 2019) in individuals who 

were ascertained to have no neuropsychiatric phenotypes as putative neutral effect variants. 

Before model training, we filtered neutral variants by frequency according to the level of genic 

constraint to remove rare potentially mildly deleterious variants from the neutral data set (see 

Methods). Similar to our functional variant prediction, we also randomly split our data set 

before modelling to retain 10% of variants for testing. Predicting the test data of 233 variants 

with our model, we obtained a BA 0.90, MCC 0.78, ROC 0.95 (for ROC curve see Figure 

S6A). As further validation, we predicted 89% of additional 1466 variants in genes in 

gnomAD that were not part of the modelling process as neutral. We predicted 466 variants in 

SCN genes with BA 0.86, MCC 0.64, ROC 0.93 and 1379 variants in CACNA1 genes with 

BA 0.93, mcc 0.32, ROC 0.97. The top 3 features with the largest relative influence on the 

prediction were part of a paralog-specific conservation metric “parsel” we developed for this 

project that estimates selection pressure while accounting for the shared evolutionary history 

of SCN/CACNA1 genes (see Methods). A further four conservation features were present in 

the top 10 features (see Figure S6B) in contrast to the LOF vs. GOF prediction dominated by 

variant density features (see Figure 4E). To test the performance of our model, we compared 

it to other popular variant pathogenicity prediction methods. To do this, we combined the two 

test datasets to a total of 1824 variants and removed 21 variants used in the training of 

PolyPhen-2. Our method performed comparably (ROC 0.95) to the three popular variant 

prediction tools CADD (Kircher et al., 2014) (ROC 0.79), PolyPhen-2 (Adzhubei et al., 2013) 

(ROC 0.85) and MPC (Samocha et al., 2017) (ROC 0.86, see Figure S6B). Pathogenicity 

predictions of all possible single nucleotide variants in Navs/Cavs can also be found at 

http://funNCion.broadinstitute.org. 

 

Validation of funNCion with functionally tested variants 

 

To validate our model, we curated 119 functionally tested variants (96 unique variants, some 

tested in multiple studies) in the genes SCN1A (Brunklaus et al., in preparation), SCN2A 

(Ben-Shalom et al., 2017; Lauxmann et al., 2018) and SCN8A (Table S4) and performed 

functional experiments of 50 variants in CACNA1I (Table S5). In this and all subsequent 
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validation analyses, we excluded functionally tested variants from the training data prior to 

modelling. In the published SCN1/2/8A data, out of the 119 variants 43 were GOF, 51 LOF, 

13 mixed, 7 unclear, and 5 neutral. We removed 10 unique variants in individuals with benign 

familial infantile seizures as some variants had opposite effects in different studies (Figure 

S7). Our model then predicted the results of 87 electrophysiological experiments with an 

outcome of either LOF or GOF with a BA of 0.69, ROC 0.71 and MCC 0.38 (Figure 4, 

permutation p-value < 1x10-4). When subsetting to 57 variants that either fulfilled our 

phenotype/pathogenicity criteria of being included in our functional variant prediction training 

data or were associated with a severe phenotype, our model predicted the variants with BA 

0.77, ROC 0.80 and MCC 0.54. All five variants with neutral effects were predicted to be 

neutral by our pathogenicity prediction method, significantly more than other functionally 

tested variants (Fisher’s Exact test, p-value 0.002, OR= Inf, 95%-CI 2.4-Inf). Our functional 

validation data also included 11 SCN2A variants in individuals where age of seizure onset 

was unavailable or outside of the cutoffs we used to infer GOF/LOF (see methods). We 

correctly predicted 9/11 of them emphasizing the benefit of our functional variant prediction 

when using phenotype as a proxy for variant function is unreliable.  

 We also tested our prediction on electrophysiology experiments of 50 variants in 

CACNA1I present in 12,332 individuals with and without psychiatric disease (Genovese et 

al., 2016) (Table S5). The functionally tested variants were present at different population 

frequencies. However, common variants are unlikely to have strong pathogenic effects – 

despite considerable efforts in GWAS, exome chip and exome sequencing, no common 

strong acting variants have been identified consistent with the fact that these would not be 

permitted by the strong selection against schizophrenia (Power et al., 2013). As our LOF-

GOF prediction is trained and should hence only be used on likely pathogenic variants we 

sought to first predict whether variants were likely pathogenic or neutral using our own 

method described above. Variants that were more rare were more likely to be predicted 

pathogenic despite variant frequency not being a component of the model (Spearman Rank 

correlation between minor allele frequency (MAF) in the population cohort gnomAD 

(Karczewski et al., 2019) and pathogenic prediction, rho= -0.60, p-value= 3.3x10-6, Figure 

5A). Interestingly, we found that whether a variant was predicted pathogenic correlated with 

whether a variant had a functional effect when considering variants that were present in only 

one individual (BA 0.75, ROC 0.77 and MCC 0.44). There was however no association of 

pathogenicity and functional effect in 19 variants that were present in >10 individuals in 

gnomAD (BA 0.46, ROC 0.36 and MCC -0.14). That is consistent with the above-mentioned 

statement, that common variants should have no strong pathogenic effects suggesting 

functional effects found at higher variant frequencies were likely milder or not disease-

causing. Given, that a variant is pathogenic, we predict its functional effect (LOF or GOF) 
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with BA 0.83, ROC 0.78 and MCC 0.58 (see Table S5, Figure 5B). We then combined the z-

scores of four electrophysiology parameters to investigate how well we could predict variants 

with different magnitudes of functional effects. Firstly, pathogenicity probability positively 

correlated with the combined experimental z-score in variants with functional effects 

(Spearman correlation, p-value: 0.02, rho: 0.43, Figure 5C). In a logistic regression model, 

we also found that the strength of the functional effect (combined experimental z-score) 

influenced whether funNCion correctly predicted LOF or GOF functional effects (coefficient 

0.29, p-value 0.02, Figure 5D). Accordingly, when only analyzing the ten variants with a 

combined z-score of four experimental parameters >=16, we predicted functional effect (LOF 

or GOF) with BA 0.94, ROC 0.89 and MCC 0.67. Taken together, these results suggest, we 

can successfully predict LOF vs. GOF in functionally tested variants, with an increased 

performance in variants with larger functional effects and variants that are more likely 

pathogenic. 

 

Figure	5		

Functional and pathogenicity prediction of 50 experimentally tested variants in 

CACNA1I. This figure shows that 10 out of 12 variants that our method labelled as pathogenic 

also show functional effects in experiments and are rare in the general population (gnomAD). 

Given that a variant is pathogenic, we predict its functional effect (LOF or GOF) correctly with 

BA 0.83, ROC 0.78 and MCC 0.58. In panels A-C, the y-axis indicates the probability to be 

pathogenic. If the probability to be pathogenic is > 0.5, we label the variant as pathogenic. In 

panels A and D, a combined z-score indicating how much the four electrophysiology 

parameters differ from wildtype (see Methods) is shown on the x-axis or y-axis. In panels A, C 

and D, we show minor allele frequency (MAF, log10) in gnomAD on the x-axis. In panels A 

and B variants are labelled according to classification in electrophysiology experiment (GOF: 

red, LOF: blue, neutral: black). In panel C and D variants are labelled according to the 

agreement of functional variant prediction (LOF or GOF) with electrophysiology experiments 

given that they are functional (correctly predicted: turquoise, wrongly predicted: yellow, neutral 

variants: black).  
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Validation of funNCion with large datasets of population controls and neuropsychiatric 

diseases 

 

We first predicted functional and pathogenicity effects of missense variants in 114,704 

individuals without severe pediatric and neurological disorders in gnomAD (Karczewski et al., 

2019). We set out to test which factors predict a variant’s probability to be pathogenic (method: 

linear regression). The most significant predictor was -log10 MAF in gnomAD (p-value	2x10-74, 

coefficient: -0.07) i.e. pathogenic variants were at significantly lower frequencies in gnomAD. 

This is expected, as selection should not allow deleterious variants to rise to high population 

frequencies (Power et al., 2013); see CACNA1I in previous paragraph. We also observe this in 

individual genes (Bonferroni corrected p<0.0025 for 8 CACNA1 and 5 SCN genes, p<0.01 for 

3 genes) except SCN7A, SCN10A, SCN11A and CACNA1F (see Figure 6A). A positive 

predictor of variant pathogenicity was a gene’s LOEUF (loss-of-function observed/expected 

upper bound fraction ((Karczewski et al., 2019), p-value	 2x10-67, coefficient: 0.21). A low 

LOEUF value means that the respective gene has significantly fewer protein-truncating 

variants (PTVs), here labelled “loss-of-function” variants as they have by definition a LOF 

effect, in gnomAD than expected. The equivalent value for missense variants (here termed 

“MOEUF”) was also significant (p-value	 1x10-4, coefficient: 0.06). It is again expected that 
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genes which are most intolerant to functional variants would harbor mostly neutral rather than 

pathogenic missense variants in a cohort of primarily healthy individuals. LOEUF being more 

strongly associated with pathogenicity than MOEUF suggests that Navs/Cavs may be generally 

more intolerant to loss-of-function (including LOF missense and truncating) than gain-of-

function variants. To test this, we ran a linear regression model of GOF probability as a 

response variable. Overall, pathogenicity probability was positively associated with GOF 

probability (p-value	 2x10-55, coefficient: 0.37), and LOEUF was negatively associated with 

GOF probability (p-value	 5x10-6, coefficient: -0.07) while MOEUF was slightly positively 

associated with GOF probability (p-value	0.01, coefficient: 0.06). This is in line with the notion 

that most Navs/Cavs, but in particular those with a lower PTV tolerance, tolerate LOF missense 

variants less than GOF missense variants. In contrast, genes with particularly low tolerance for 

missense variants harbored fewer GOF than LOF variants in gnomAD (see Figure 6B). We 

find the association of pathogenicity and GOF probability in all individual genes (p-value < 

0.0025 to correct for 20 tests) except SCN2A, SCN8A, CACNA1A, CACNA1B, CACNA1C, 

CACNA1D and CACNA1E. Fittingly, all of them except CACNA1B are implicated in severe 

GOF disorders and SCN8A, SCN2A, CACNA1C and CACNA1E have the lowest MOEUF 

values of all Navs/Cavs. Overall, these biologically meaningful results validate our method. 

We finally tested our prediction in large datasets of individuals with and without diseases to 

replicate known disease associations and mechanisms. We compared numbers of ultra-rare 

missense variants with Fisher’s exact tests between 9170 individuals with and 8436 without 

epilepsy from the Epi25 Collaborative (Feng et al., 2019), de novo variants (DNV) in 4186 

individuals with and 2179 without ASD from the autism sequencing consortium (ASC) 

(Satterstrom et al., 2018a); and 8347 individuals with ASD and/or ADHD to 5214 controls 

from the Danish bloodspot cohort (DBS)/ iPSYCH consortium (Satterstrom et al., 2018b). We 

found an enrichment of pathogenic LOF, but not GOF missense variants in genes, where 

PTVs are known to cause specific diseases. These included 29 LOF in SCN1A (Catterall et 

al., 2010) in several non-lesional epilepsies and 14 LOF in SCN2A in 5252 cases of autism 

with ID (Sanders et al., 2018) (see Figure 6C and Table S8). CACNA1G, a recent candidate 

for genetic generalized epilepsy (GGE, n=3108) was also enriched for LOF missense but not 

GOF variants and combining 3 LOF missense with 2 PTVs improved disease association to 

p=1x10-3. In contrast, only missense variants are known to cause EE in SCN8A and 

CACNA1E which were accordingly only enriched for 2 GOF missense variants in EE (p=0.01 

and 0.03, respectively). We can also nominate CACNA1B as a potential new candidate gene 

for GGE. Similar to CACNA1G, it was enriched for 6 missense LOF variants (p=2x10-3) with 

an overall missense signal of p=7x10-4. Further, bi-allelic PTVs in CACNA1B have recently 

been implicated in a severe epilepsy syndrome (Gorman et al., 2019). It would therefore be 
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plausible, that heterozygous LOF in CACNA1B may lead to a milder epilepsy phenotype.  
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Figure	6	

Predicting GOF, LOF, pathogenic and neutral variant effects in large cohorts of 

individuals with and without disease. In panel A, we show that predicted pathogenic 

variants (pathogenicity probability on y-axis) are at significantly lower minor allele frequencies 

(MAF, x-axis) in the gnomAD population cohort (rho and log10 p-value are given per gene, 

correlation method: Spearman, Bonferroni p-value: 0.0025). Variants predicted to be neutral 

are colored black. Variants predicted to be pathogenic are colored according to their predicted 

functional effect; GOF in blue, LOF in red. In panel B we show the 90%-CI of the observed-

over-expected ratio (oe) of missense (y-axis) and truncating variants (x-axis) of SCN/CACNA1 

genes in gnomAD. We plotted oe values of 3000 random genes in gnomAD in grey in the 

background. We colored genes red if pathogenicity probability was significantly (p-value	 < 

0.0025 to correct for 20 tests) associated with GOF probability, potentially indicating those 

genes tolerate LOF missense variants less than GOF missense variants. Genes without that 

association (blue, p-value	> 0.0025) also had the lowest oe ratios for missense variants in 

gnomAD (SCN2A, SCN8A, CACNA1C, and CACNA1E). In panel C we show our prediction in 

large datasets of individuals with diseases. We compared ultra-rare missense variants in 

individuals with and without epilepsy (Feng et al., 2019), ASD (Satterstrom et al., 2018a), and 

ADHD (Satterstrom et al., 2018a) (method: Fisher’s exact test). We found statistically 

significant associations withstanding Bonferroni correction (p-value threshold 8x10-5) only in 

SCN1A. However, nominally significant associations (orange) of known disease genes were 

enriched in the directions we would expect them to be (see further description in Results, 

Table S8). The horizontal bars show the 95%-confidence intervals of the odds ratio point 

estimates that are log10-transformed and cut at -1.7 and 1.7 for clarity. Odd’s ratios > 1.7 or < 

-1.7 are shown as arrows. 
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Discussion	
 

Tailoring treatment to individual patients’ genetic variants has made significant progress in 

many fields of medicine in recent years (Ashley, 2016). Studying variants’ functional effects - in 

ion channels with electrophysiology experiments - has enabled development of precision 

therapies, often accelerated by repurposing existing drugs (EpiPMConsortium, 2015; Møller et 

al., 2019; Oyrer et al., 2018). These functional studies require considerable effort and 

expertise and therefore usually focus on few variants. In Navs and Cavs, multiple precision 

medicine approaches have been described (Chiron et al., 2000; Fertleman et al., 2006; Ilg et 

al., 2014; Møller and Johannesen, 2016; Wolff et al., 2017), however their success is 

dependent on the type of functional changes of pathogenic variants. Here, we present a 

method that predicts LOF versus GOF effects in likely pathogenic variants in SCN and 

CACNA1 genes - applicable across a wide range of diseases and tissues where Navs and 

Cavs are of functional relevance. 

 

Relation to electrophysiology experiments 

In our study, we infer LOF and GOF effects of variants from disease phenotypes without 

functionally testing them. This poses several challenges. Phenotypes are ascertainment-

biased and there is often variable expressivity of the same variant in multiple individuals. 

Therefore, we carefully curated our data to clearly distinguish LOF- or GOF-associated 

disease phenotypes.. While few variants may still be miscategorized, specifically in the large 

validation cohorts the in silico and experimental validation rates of our method suggest that 

enough of them were inferred correctly to successfully train a statistical model predicting LOF 

versus GOF probabilities with a performance similar or better than popular variant prediction 

tools. Further, with the goal of predicting disease-contributing variant effects, it has also some 

advantages to use disease phenotypes as a quasi-functional readout. While only experiments 

can lead to functional insight, any experimental setup constitutes a model system. Hence, a 

variant may have a functional effect in a lab setting, which may not always translate to a 

pathophysiological effect on the organismal level. A phenotype-based model considers these 

additional layers of complexity that in vitro systems are not able to reproduce. This is illustrated 

for example by our data for CACNA1I, where pathogenicity prediction correlates with functional 

effects only for rare variants. This is expected, as natural selection should prevent deleterious 

variants from rising in population frequency. 

 

As an example, where phenotypic and functional interpretation are occasionally contradicting, 

we highlight the selectivity filter domain of the channel proteins. In this region, 42 out of 43 
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likely pathogenic variants are in individuals with LOF phenotypes including the DEKA motif in 

Navs that conveys selectivity to Na+ ions. However, there are examples of GOF effects in 

electrophysiology experiments. The p.G1662S variant in SCN10A encoding NaV1.8 was 

implicated in small fiber neuropathy and showed GOF functionally (Han et al., 2014). However, 

this variant was found at a frequency of 0.0014 in the gnomAD population database including 

four homozygous individuals and therefore rated benign by two independent laboratories in 

ClinVar. Thus, the variant’s functional changes are unlikely to contribute to disease. The 

second one is the variant p.K1422E in SCN2A carried by an individual with NDD and epilepsy 

who was 13 months old at the onset of seizures thus corresponding to a LOF disease 

phenotype. In previous studies, the variant rendered the channel much elevated permeability 

to divalent cations like Ba2+ and Ca2+ while selectivity of Na+ was significantly reduced (Schlief 

et al., 1996). We could experimentally replicate that the variant acted as a GOF 

electrophysiologically in terms of permeability to Ca2+ (data not shown). However, we also 

found that the Nav1.2 p.K1422E variant carried significantly lower overall current density 

compared to Nav1.2 wild-type and the Nav1.2 p.T1420M isogenic variant stable cell line 

(Figure S8 and Methods). The current density reduction we see potentially reflects biological 

defects in either forward trafficking, reduced single channel conductance, increased 

permeability to outward Na/Cs current, or enhanced endocytosis/degradation. The apparent 

LOF effect in current density may override the GOF effects in Ca2+ influx thus explaining the 

overall LOF disease phenotype. These effects would be difficult to properly evaluate in 

transient expression systems thus illustrating the difficulty of experimentally modelling those 

complex proteins. 

 

Limitations 

Our approach has several limitations. We acknowledge that the classification of variant effects 

into LOF and GOF oversimplifies complex electrophysiological mechanisms, even if frequently 

done in the literature. In SCN9A for example, two different types of GOF mechanisms 

impairing channel activation and inactivation have been shown to lead to two different 

diseases: erythromelalgia and paroxysmal pain syndrome, respectively (Waxman et al., 2014). 

With large-scale experimental electrophysiology data, it may be possible to further subdivide 

the GOF and LOF categories or introduce more quantitative GOF/LOF scoring systems for 

predictions in the future. Further, we have more functional variant and experimental validation 

data in Navs. Therefore, predictions in Navs should be more reliable than in Cavs. Also, our 

model was trained on likely pathogenic variants in mostly severe diseases. It remains to be 

properly validated in individuals with milder diseases with potentially milder variant effects. 
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Associations of GOF/LOF with protein’s functional regions 

Our results gain important insights into which functional protein domains and motifs in Navs 

and Cavs are associated with inferred GOF or LOF effects in 827 curated likely pathogenic 

variants. This may provide a valuable resource for experimental follow-up studies to potentially 

identify new mechanistically important sites and drug targets. We can also confirm 

associations across diseases with much higher statistical power that have thus far been shown 

mechanistically or only for few pathogenic variants.  

 As a positive control, we recapitulate known structure-function associations such as that 

pathogenic variants are enriched in transmembrane segments and functionally important 

domains like the channel pore or inactivation machinery. As mentioned above, LOF variants 

were clearly associated with the ion conduction structural motifs of the pore domain (S5-S6 

segments) and the selectivity filter. We confirm that the structural motifs associated with the 

inactivation process (Catterall and Swanson, 2015; Kellenberger et al., 1997) as well as the 

S4-S5 linker helix were associated with GOF variants, with the latter previously implicated in 

pain disorders caused by variants in SCN9A (Waxman et al., 2014) and in developmental and 

epileptic encephalopathy caused by variants in CACNA1E (Helbig et al., 2018) and SCN2A 

(Sanders et al., 2018). Worth noting is also a slight extension of the GOF variant cluster 

beyond the linker helices towards the start of S5 consistently across the four transmembrane 

domains. Another interesting takeaway is that GOF and LOF variants are not equally 

associated with transmembrane segments S1-6 at the four different transmembrane domains 

I-IV. This corroborates previous findings that different domains in Cavs and Navs have an 

overall structural similarity but a different contribution to the channel functioning (Chanda and 

Bezanilla, 2002; Pantazis et al., 2014; Savalli et al., 2016). We observe an accumulation of 

Nav and Cav GOF variants in the cytoplasmic part downstream of each transmembrane 

segment S6. Exploring this further may yield interesting mechanical insights.  

 We highlight an accumulation of four likely pathogenic variants in CACNA1C encoding 

Cav1.2 in individuals with long QT syndrome (transcript: ENST00000347598; variants: 

p.P857L, p.P857R, p.R858H, p.R860G). Two of these variants were previously functionally 

investigated. Peak calcium currents were significantly larger in mutant channels than those of 

wild-type for p.R858H (Fukuyama et al., 2014) and p.P857R (Boczek et al., 2013). (Boczek et 

al., 2013) also identified increased surface membrane expression of the channel compared to 

wild type. The authors found that those variants overlapped with the so-called PEST domain 

(proline, glutamic acid, serine, and threonine) which is involved in protein degradation 

signaling, leading to increased numbers of Cav1.2 channels at the cell membrane. 

Interestingly, this domain as well as the cluster of GOF variants are not present in other Cavs 

or Navs pointing to a distinct GOF mechanism in Cav1.2.   
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 We also report a GOF variant cluster of nine likely pathogenic SCN variants (genes 

SCN2A, ~4A and ~8A). When mapped onto SCN2A they are located in the C-terminal domain 

at aa sites 1875-1887 which is in close proximity to an FGF/FHF1 binding site of a 

Calmodulin(CaM)-FGF complex also present in Nav1.4 and Nav1.5 (Gabelli et al., 2016). 

FHF1-4 interact with the C-terminal domain of Navs to modulate the channels' fast and long-

term inactivation (Goldfarb, 2012). One of these variants, p.R1882Q in SCN2A, also showed a 

slower time course of inactivation (Berecki et al., 2018). Further, de novo GOF variants in 

FHF1 have been associated with epileptic encephalopathy (Al-Mehmadi et al., 2016) and 

variants in FHF2 with generalized epilepsy with febrile seizures plus (GEFS+). Interestingly, 

the C-terminal lobe of the CaM-FGF complex interacts with the conserved IQ-motif of helix α-

VI of the C-terminus of all Nav channels (Gabelli et al., 2016), suggesting that it may serve as 

an anchor for the control of activation of the channels by CaM. In contrast to the FHF binding 

site, the I of the potential “IQ motif” overlaps with two LOF variants in SCN1A. These 

observations could yield interesting starting points for hypotheses about this interaction. 

 We also identify secondary structural protein features associated with LOF and GOF 

variants. As expected, LOF variants are more likely to be buried in the protein where they can 

potentially disrupt protein stability so the probability for an aa to be buried therefore becomes a 

predictive feature in the machine learning model.  

 There exist generally more LOF than GOF variants, for SCN2A, a recent study estimates 

the incidence of LOF cases to be approximately fivefold higher than GOF cases (Sanders et 

al., 2018). The most important reason for this is likely that GOF can be achieved at fewer sites 

across the genes than LOF even though other factors like frequency of genetic testing, variant 

penetrance and expressivity also play a role. That GOF variants can be more easily identified 

by their location than LOF variants is also indicated by the fact that the two top predictors of 

LOF/ GOF are GOF variant density features. 

 

Outlook 

In the future, our method could potentially be used clinically, for example to predict which 

individuals with pathogenic variants may be likely to benefit from a particular treatment based 

on their variants’ LOF or GOF effects. This may potentially be relevant in an acute clinical 

setting when treatment decisions must be made before functional work can be done. 

Examples include SCN2A or SCN8A-related epileptic encephalopathy where basically any 

ancillary information supporting a GOF effect would help to guide treatment. tOur method 

could potentially be refined with large-scale experimental data, for example introducing more 

types of predictions than mere LOF and GOF. Beyond individual variant interpretation, our 

method may also be useful to stratify drug trial cohorts into functionally meaningful subgroups 

of patients with variants in a given gene, especially as drug trials in rare disease are difficult to 
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scale up. This is exemplified by two new drugs specifically targeting SCN8A function with a 

goal of rectifying the effects of a GOF variant, currently in Phase I clinical trials XEN901 

(https://clinicaltrials.gov/ct2/show/NCT03467100) and GS967/PRAX-330 

(https://adisinsight.springer.com/drugs/800050600). As most SCN/CACNA1 genes are 

depleted for functional variants in the general population it is likely that more SCN/CACNA1 

genes could contribute to disease for which disease associations and/or mechanisms have not 

yet been elucidated. In the future, our method could therefore potentially be applied in even 

more diseases. Finally, our study introduces disease-phenotype-based functional variant 

prediction that can also be used in other genes or gene families. 
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Tables	

Table	1		

Gene – disease mechanism. This table lists references for the associations of CACNA1/SCN 

genes with diseases and GOF or LOF mechanisms. 

Gene Disease 
Predicted 

mechanism 
Evidence Reference 

CACNA1A 
familial hemiplegic 

migraine 
GOF electrophysiology 

(Ophoff et al., 

1996; Pietrobon, 

2005) 

CACNA1A NDD (+ epilepsy) LOF 

mouse model, 

same phenotype of 

PTV and missense 

(Damaj et al., 

2015; Epi4K, 

2016; Oyrer et 

al., 2018) 

CACNA1A episodic ataxia LOF 

mouse model,  

same phenotype of 

PTV and missense 

(Fletcher et al., 

1996; Mori et al., 

2000; Ophoff et 

al., 1996) 

CACNA1C 
Timothy syndrome, Long 

QT syndrome (heart) 
GOF 

electrophysiology, 

ECG 

(Boczek et al., 

2013; Splawski 

et al., 2004) 

CACNA1D 
APAs and primary 

aldosteronism 
GOF electrophysiology 

  (Scholl et al., 

2013) 

CACNA1E NDD (+ epilepsy) GOF electrophysiology 
 (Helbig et al., 

2018; Heyne et 

al., 2018) 

CACNA1F 
congenital stationary night 

blindness 
LOF 

mouse model, 

same phenotype of 

PTV and missense 

 (Mansergh et 

al., 2005; Strom 

et al., 1998) 

CACNA1S 
hypokalaemic periodic 

paralysis 
LOF1 electrophysiology 

 (Bulman et al., 

1999; Cannon, 

2015; Matthews 

et al., 2009) 

SCN1A Dravet (NDD + epilepsy) LOF 

electrophysiology, 

same phenotype of 

PTV and missense 

(Catterall et al., 

2010; Claes et 

al., 2001) 

SCN1A 
familial hemiplegic 

migraine 
GOF electrophysiology 

 (Cestèle et al., 

2013; Dichgans 

et al., 2005) 
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SCN2A 

NDD + epilepsy  

(epilepsy onset > 1 year) 

or no epilepsy + autism 

LOF 

electrophysiology, 

response to 

sodium channel 

blockers (no) 

(Ben-Shalom et 

al., 2017; 

Sanders et al., 

2018; Wolff et 

al., 2017)) 

SCN2A 
NDD + epilepsy  

(epilepsy onset ≤ 10 days) 
GOF 

electrophysiology, 

response to 

sodium channel 

blockers (yes) 

 (Sanders et al., 

2018; Wolff et 

al., 2017) 

SCN4A 

hyperkalaemic periodic 

paralysis, Paramyotonia 

congenita (von 

Eulenburg), Potassium 

aggravated myotonia 

GOF electrophysiology 

 (Cannon, 2015; 

Mitrović et al., 

1994; Ptácek et 

al., 1992; Ptácek 

et al., 1991) 

SCN4A 
hypokalaemic periodic 

paralysis (HypoPP) 
LOF1 electrophysiology 

 (Bulman et al., 

1999; Cannon, 

2015; Matthews 

et al., 2009) 

SCN5A Brugada syndrome (heart) LOF 
electrophysiology, 

ECG 
 (Chen et al., 

1998) 

SCN5A Long QT syndrome (heart) GOF 
electrophysiology, 

ECG 
 (Wang et al., 

1995) 

SCN8A Epileptic encephalopathy GOF electrophysiology 

  (Blanchard et 

al., 2015; Larsen 

et al., 2015; Liu 

et al., 2019) 

SCN9A 
paroxysmal extreme pain 

disorder 
GOF electrophysiology 

 (Fertleman et 

al., 2006) 

SCN9A erythromelalgia GOF electrophysiology 
(Cummins et al., 

2004; Yang et 

al., 2004) 

 

NDD - Neurodevelopmental disorder 

Footnote 1: We assume that pathogenic variants in SCN4A and CACNA1S predominantly cause HypoPP via 

reducing the main current resulting in LOF, in agreement with a clustering with LOF variants in other channels 

(Figure 1B). However, we acknowledge that (Sokolov et al., 2007) showed that pathogenic variants at the gating 

charges of the voltage sensor can also lead to an additional gating pore or omega current leading to a partial GOF 

effect. See also Figure 10 in (Cannon, 2015). 
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Methods	
 

CONTACT FOR REAGENT AND RESOURCE SHARING  

 

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Henrike O. Heyne (hheyne@broadinstitute.org). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Automated patch-clamp 

 

The electrophysiology experiments of 50 variants in Cav3.3 and variant Nav1.2 p.K1422E were 

performed with automated patch-clamp experiments using the SyncroPatch 384PE platform 

(Nanion Technologies®). This automatic high-throughput patch-clamp system is able to record 

simultaneously up to 384 independent cells with GΩ resistance seals.  The position within the 

chip of the different variants and wt cells was randomized to avoid artifacts due to the 

recording position. Cells were harvested 72h after induction for recording, as described in 

recent protocols for automated patch clamp for calcium channel recordings (Pan et al., 2018). 

Cells were rinsed with PBS (5 mL) and treated with 3 mL Accutase (STEMCELL technologies) 

for 5 min at 37°C, re-suspended in 10 mL of serum-free media and pelleted at 1000 rpm for 3 

min at RT. The supernatant is discarded and cells are re-suspended in serum-free DMEM 

F12-GlutaMAX (ThermoFisher Scientific) and pECS 50% (v:v). The cells were kept until the 

moment of the experiment in a temperature controlled dedicated reservoir at 10° C and 

shaken at 200 rpm. The experiments were performed within one hour after the harvesting 

process. The assays were carried in single-hole chips with resistances between 4-5 MΩ after 

priming the chip with the following solutions (in mM), physiological extracellular solution 

(pECS) 10 HEPES, 140 NaCl, 5 Glucose, 4 KCl, 2 CaCl2, 1 MgCl2, 295-305 mOsm pH 7.4 

(NaOH). Internal recording solution (in mM) 20 EGTA, 10 HEPES, 50 CsCl, 10 NaCl, 60 CsF, 

285 mOsm pH 7.2 (by 1N CsOH). The junction potential (~ 12 mV) and the fast capacitive 

component were compensated, then 15 uL of the cell suspension (50% v/v pECS/DMEM no 

serum) was added to each well to a final density of 50-80K cells/mL. Cell capture was 

promoted by holding a negative pressure of -100 mbar for 20 s. After the capture the seal was 

enhanced by successive hyperpolarization steps from -30 mV to -100 mV followed by the 

transient addition of a high Ca2+ extracellular solution (in mM) 10 HEPES, 80 NaCl, 5 

Glucose, 60 NMDG, 4 KCl, 10 CaCl2, 1 MgCl2, 310 mOsm and pH 7.4 (HCl). High Ca2+ 

solution is washed out by successive external exchanges replacing half of the volume of the 
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well each time with the external recording solution (in mM) 10 HEPES, 80 NaCl, 5 Glucose, 60 

NMDG, 4 KCl, 6 CaCl2, 1 MgCl2, 300 mOsm and pH 7.4 (HCl). All recording solutions were 

prepared with ultrapure MilliQ water (18 MΩ-cm). All of the salts were purchased from Sigma-

Aldrich. Hygroscopic reagents were kept in a salt desiccator container; moist salts may lead to 

inadequate osmolarity, a key parameter in planar electrophysiology experiments. All the 

solutions were filtrated with 0.22 µm PES membrane and stored at 4°C until use. The whole-

cell configuration was achieved by a brief negative pressure pulse of -250 mbar. The holding 

potential was set at -100 mV for all the voltage protocols. Once in whole-cell configuration, the 

slow capacitive component (Cslow) was canceled and the series resistance (Rs) 

compensation was set at 80%. The data were acquired at 20 kHz and filtered at 10 kHz using 

Nanion proprietary software PatchControl 384 software (v.1.4.5). The data was processed on 

DataControl384 Version 1.5.0 previous to the analysis using the quality checkpoints along the 

experiment, using the seal resistance, capacitance and series resistance as qualitative 

parameters. The peak current and the activation steady-state parameters were obtained from 

currents elicited by a two-pulse protocol. During the preconditioning pulse (TP1) the cells were 

held for 1s to a range of voltages from -120 to 20 mV with a 10 mV increase per sweep, 

followed by a 200 ms test pulse at -20 mV (TP2). The peak current density value was 

calculated as the maximum peak current from the preconditioning pulse normalized by the 

capacitance. The normalized chord conductance (G/Gmax) was calculated from the I-V 

relationship constructed with the peak current values for each voltage during TP1, using the 

following equation: 

  G(V)=(Ipeak(V))/((V-Vrev)), 

where Vrev is the reversal potential obtained using a linear extrapolation of the last four 

points of the I-V relationship mentioned above. The voltage activation process was fitted 

using a single Boltzmann function: 

  G(V)=Gmax/(1+e^((-zδF(V-Vh))/RT) ). 

The Gmax was defined as the maximum value of G when the first derivative of G is minimal, zδ 
corresponds to the slope of the function and represent the voltage dependency of the 
activation, Vh is the voltage at which half of the Gmax.  R, T and F refer to the gas, temperature 
and Faraday constant.  

The steady-state inactivation parameters were obtained from the peak current values during 

TP2 which represent the fraction of channels able to be opened at the end of TP1. The 

voltage inactivation was fitted by the sum of two Boltzmann distributions according to the 

following equation: 

  I/Imax=A/(1+e^((z_1 δF(V-〖Vh〗_1 ))/RT) )+(1-A)/(1+e^((z_2 δF(V-〖Vh〗_2 ))/RT) 

). 
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 Where A represents the contribution of each individual Boltzmann to the final function 

normalized between 0 and 1, all the other parameters have the same meaning described 

above. The recovery from inactivation was obtained applying paired-pulse protocol. The 

protocol corresponds to a preconditioning pulse at -20 mV for 200 ms was followed by 

recovery inter-pulse with a variable length, ranging from 10 ms to 1600 ms. The peak current 

in the second pulse was normalized by the current in the first pulse, the current fraction was 

plotted as a function of the inter-pulse time. The data was well fitted by a mono-exponential 

function as follows: 

  I_2/I_1 =A_end+(A_0-A_end)*e^(-t/τ). 

 In order to compare the different variants across different parameters with different physical 

domains (voltage, time and current density) we transformed the different magnitudes into 

standard scores (Z scores), where each mean value in each parameter is represented as a 

standard deviation distance from the wt channel according to the following equation: 

  Z=(X ̅_wt-X ̅_var)/√((σ_wt^2)/n_wt +(σ_var^2)/n_var). 

 Where X, σ2 and n stand for mean, standard deviation, and size of the sample respectively   

  

Manual patch 

Conventional Patch-clamp experiments under the whole-cell configuration were carried out 

72h after induction. The currents traces were amplified using a MultiClamp 700B amplifier 

(Molecular Devices Inc.). The amplified electrical signals were acquired with a Digidata 

1440A (Molecular Devices Inc.) using the pClamp10 software (Molecular Devices Inc.). 

Extracellular recording solution contained in mM: 2 CaCl2, 10 HEPES, 140  NaCl, pH 

adjusted to 7.2 with NaOH. The internal electrode was fabricated from borosilicate capilars 

with the puller P1000 (Sutter inst), and polished using a microforge (Narishige, Inc.) to final 

diameter of 1-2 um, the resistance of the internal electrode was 3-5 Mohms, when was filled 

with the following solution in mM: 126 CsCl, 10 EGTA, 10 HEPES, 1 EDTA, and 4 MgATP, 

Vjp was estimated ~18 mV. 

 

Cell lines used for investigation of Nav1.2 K1422E and T1420M mutants 

Human Nav1.2 wild-type as well as Nav1.2 K1422E and Nav1.2 T1420M were introduced 

into FlpIn TREx 293 cell lines and selected single clone in the presence of 100 ug/mL 

Zeomycin and 15 ug/mL Blasticidin to generate stable cell lines. FlpIn TREx 293 cell lines 

were cultured and maintained in DMEM/F12 medium supplemented with 10% FBS. Cells are 

passaged with 0.25% trypsin at 80% confluence. The expression of Nav1.2 wild-type and 

mutants was induced by 1ug/ml Doxycycline addition to the culture for 48 hrs in T175 flasks 

for automated patch-clamp recording.  
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Interpretation of variants’ functional changes as LOF and GOF effects 

Functionally tested CACNA1I variants were defined as LOF or GOF according to how the 

different parameters influence the Ca2+ influx during simulated afterhyperpolarization (AHP) 

rebound in (Andrade et al., 2016). Only variant effects with Z scores significantly higher than 

observed in wildtype negative controls were interpreted as functional changes. Leftward 

shifts in the activation midpoint, rightward shift in the inactivation midpoint, increases in the 

peak current density were interpreted as GOF. Rightward shifts in the activation 

midpoint, leftward shift in the inactivation midpoint and decreases in the peak current density 

were defined as LOF. When two or more parameters were affected, the preponderant 

functional outcome was the effect in the Ca2+ influx of the different parameters combined 

during the AHP rebound. A combination of opposite effect parameters was interpreted as 

“neutral” predictions. 

 

 

METHOD DETAILS 

 

Variants used in variant prediction 

 

Likely pathogenic variants 

Assuming that diseases caused by variants in SCN/CACNA1 are caused by an ultimate GOF 

or LOF of Navs/Cavs, we inferred LOF or GOF effects of likely pathogenic variants from 

disease phenotypes from in total 19 different diseases (see Results section for examples and 

Table S1 for all disease mechanisms with references). We curated published variants from 

ClinVar (Landrum et al., 2016)(version 05/2018), Human Gene Mutation Database ((Stenson 

et al., 2017) HGMD, version 05/2018), (Heyne et al., 2019; Heyne et al., 2018), and curated 

variants in genes CACNA1D, CACNA1A and SCN2A from the literature including 

unpublished phenotype data for SCN2A resulting in 303 inferred GOF and 524 inferred LOF 

variants. We only included variants for which we could infer LOF or GOF effects with high 

confidence. In individuals with pathogenic variants in SCN2A, pathogenic variants have 

previously been suggested to have a LOF effect for individuals with seizure onset > 3 months 

and GOF effect for seizure onset < 3 months (Ben-Shalom et al., 2017; Wolff et al., 2017). 

However, exceptions to those cutoffs have been reported (Lauxmann et al., 2018). In 

SCN2A, we therefore classified variants in individuals with seizure onset ≤ 10 days as GOF 

due to a clear accumulation of 93 individuals with seizure onset in the first 10 days of life. We 

classified variants in individuals with seizure onset > 1 year as LOF. We used criteria based 
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on ACMG guidelines (Richards et al., 2015) to classify variants as likely pathogenic wherever 

possible. For example, if a variant is de novo and not present in controls it can be classified 

as “likely pathogenic” according to ACMG criteria PS2 and PM2. To increase specificity for 

variants in HGMD and ClinVar, we only used high-confidence likely pathogenic variants (in 

ClinVar corresponding to Review Status “criteria provided” or “reviewed by expert panel”, in 

HGMD corresponding to “high confidence”). We only included variants annotated as “Likely 

pathogenic" or "Pathogenic" in ClinVar and “Damaging Mutation” in HGMD. We curated 

HGMD and ClinVar phenotypes while also providing the original phenotype annotation for 

reproducibility (see Table S1). We applied a MAF filter to all disease variants. Disease-

specific MAF thresholds were inferred from disease prevalence, inheritance mode and 

penetrance (see Table S2) as described in (Whiffin et al., 2017) using the authors app 

(www.cardiodb.org/allelefrequencyapp). In SCN5A, we only used pathogenic variants with 

penetrance of at least 0.7 as described in (Kroncke et al., 2018). For training of pathogenic 

versus neutral variant prediction we used the same variants as in the functional variant 

prediction in addition to 694 likely pathogenic variants for which we could not infer LOF or 

GOF mechanisms.  

 

Neutral Variants 

We used 3794 variants in the Genome Aggregation Database (gnomAD) (Karczewski et al., 

2019) as variants with inferred neutral effects (see Table S2) during training of pathogenic 

versus neutral variant prediction. We excluded neuropsychiatric disease cohorts from the 

gnomAD data. We only included variants in genes where pathogenic as well as neutral 

variants were available in order to upsample to the same number of pathogenic and neutral 

variants per gene before training. We filtered neutral variants for MAF according to genic 

constraint with the rationale that mildly constrained genes might tolerate pathogenic noise-

introducing variants at higher frequencies than very constrained genes. Specifically, we 

excluded singletons in all genes and excluded variants with MAF < 10-4 for mildly constrained 

genes as indicated by pRec > 0.9 and pLI < 0.9 and missense-z < 3.09. We also excluded 

variants with MAF < 10-4 in SCN5A, as the associated cardiological diseases have a high 

prevalence of up to 1 in 2000 individuals (see  Table S3), and variants often have reduced 

penetrance (Kroncke et al., 2018).  

 

All variants were annotated with Variant Effect Predictor (VEP) (McLaren et al., 2016) of 

Ensembl GRCh37 release 94. For comparisons with other variant prediction methods we 

used CADD, version v1.4 (Kircher et al., 2014), PolyPhen-2, version 2.2.2 (Adzhubei et al., 

2013) and MPC (Samocha et al., 2017). Prior to these calculations variants used for training 

in Polyphen-2 were removed.  
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Features used in variant prediction 

 

Variant density in other paralog genes. 

We performed gene family alignments of the UniProt (UniProt Consortium, 2018) canonical 

isoform sequence with the program MUSCLE (Edgar, 2004). We then mapped all variants in 

a functional category of either LOF, GOF or neutral onto the gene family alignment (family 

alignment files deposited at GitHub). For use as feature in our prediction, we mapped 

variants in functional categories back to the individual genes. We then counted variants in a 

sliding window of 3 and 10 aa, respectively, to account for different-sized windows of local 

sequence context. We used different ways to avoid overfitting in the pathogenicity and 

functional LOF vs GOF prediction. In the pathogenicity prediction, we computed variant 

densities for each gene only with variants in other genes, as we could sample to the same 

number of variants per gene and functional category before training. In the LOF vs GOF 

prediction, we could not sample to the same number of variants per functional category and 

gene in the training data as most genes did not have GOF as well as LOF variants. 

Therefore, we calculated GOF and LOF variant density on half of the training variants and 

used those variant densities as covariates during model training with the other half of the 

data.  

 

Protein-based features 

The experimentally solved 3D protein structures for Navs/Cavs are only available in parts or not 

of all genes (Pan et al., 2019). We therefore computationally predicted the 3D structures of all 

20 channels using experimentally solved homologous protein structures from the Protein Data 

Bank (PDB, http://www.wwpdb.org) with the raptorX web server (Källberg et al., 2012) (see 

GitHub depository for p-values and scores of protein model predictions). Using the same web 

server, we collected the predicted likelihood of an aa residue being buried, medium and 

exposed (accessible surface area), and the likelihood of a residue conforming one out of the 

eight secondary structural types for all Navs/Cavs. We extracted protein structural features 

such as transmembrane, cytoplasm etc. from UniProt (UniProt Consortium, 2018) version 

10/2017. We inferred the functionally important motifs in 3D protein structures linker helix (AA 

sites between transmembrane segments S4 and S5 (Catterall and Swanson, 2015)) and 

voltage sensor (positively charged aa K and R in transmembrane segment S4 (Catterall and 

Swanson, 2015)) for all proteins from the literature. We annotated the inactivation gate from 

SCN2A (aa sites 1472 to 1522) and the gating break from CACNA1I (aa sites 401 to 460) and 

mapped them via the gene family alignment to all Navs or Cavs, respectively. We annotated 
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the selectivity filter from SCN2A (aa sites 378 to 389, 936 to 947, 1416 to 1427 and 1708 to 

1719) and mapped it via the gene family alignment to all Navs and Cavs. 

Amino acid-based features 

We annotated physicochemical features of reference and alternative aa’ side chains by 

classifying them into the different physiochemical groups annotated in 

www.sigmaaldrich.com/life-science/metabolomics/learning-center/amino-acid-reference-

chart.html. We considered Cysteine (with a reactive sulfhydryl group) and the “unique” aas 

(Proline and Glycine) together as “special aas”. Additionally, we used measures of aa 

deleteriousness such as the “missense badness” annotation from (Samocha et al., 2017), 

which quantifies tolerance of different types of missense aa exchanges in the general 

population by comparing expected versus observed numbers of all possible aa exchanges in 

ExAC (Lek et al., 2016). We included also the aa deleteriousness metrics “Grantham score” 

(Grantham, 1974) and BLOSUM score (Henikoff and Henikoff, 1992). All features of all 

potential aa changes have been deposited at github.com/heyhen/funNCion. 

 

Ancestry conditional site-specific selection score 

We constructed several features that estimate conservation within and between Navs and 

Cavs that were particularly informative in pathogenic versus neutral variant prediction. First, 

we simply counted how many genes have the same reference aa as the consensus 

sequence in the gene family alignment, similar to the parazscore (Lal et al., 2017). Secondly, 

we constructed estimates of ancestry informed selection pressure to explicitly account for the 

shared evolutionary history of paralog genes. We first estimate the ancestry of paralogs 

using the gene family transcript alignment using RAxML (Stamatakis, 2014) with the 

GTRGAMMA model. We use the best maximum likelihood tree across 100 bootstrap 

searches to define a strict prior on the ancestral history of paralog sequence alignments. 

Conditional on this tree structure and alignment, we estimate parameters of a codon model of 

sequence evolution (Goldman and Yang, 1994) modified to incorporate indels (Wilson and 

McVean, 2006) using MCMC. MCMC moves are as described previously (Palmer et al., 

2017; Wilson and McVean, 2006), with ancestry conditional likelihoods evaluated using 

Felsenstein's tree-pruning algorithm (Felsenstein, 1981). Code implemented in C, which we 

call “parsel” (paralog selection) and all sequences used for development of the score are 

freely available at github.com/astheeggeggs/parsel under the GNU General Public License, 

v2. 

 

Differences between canonical transcripts and canonical isoforms 
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One Table deposited at github.com/heyhen/funNCion includes genomic coordinates of all 

possible single nucleotide changes that can lead to all possible missense variants in 

SCN/CACNA1. To maintain compatibility with UniProt protein features we only included those 

transcripts whose aa sequence was 100% identical to the respective UniProt canonical 

isoform. In 14 out of the 20 genes, this was the Ensembl canonical transcript. The two genes 

for which no Ensembl or RefSeq transcript mapped to the canonical isoform were CACNA1A 

and CACNA1C. To maintain compatibility with the genomic coordinates, we decided to use the 

canonical transcripts as reference, which were the best-matching transcripts for both genes. 

We introduced a single aa deletion of G at aa 419 and a two-aa QQ insertion after aa 2312 in 

CACNA1A’s uniprot canonical isoform to align UniProt-derived features with the canonical 

transcript. In CACNA1C, the first 1863 aa are identical in the UniProt and Ensembl canonical 

transcripts, where all UniProt transmembrane features are located. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Statistical analyses were done with the R and the C programming languages. We used the R 

package caret for most machine learning-related functions and packages ggplot and plotROC 

for plotting. 

Comparison of tissue - associated phenotypes and tissue expression 

We calculated similarity of genes’ HPO terms (Kohler et al., 2017) available at 

https://hpo.jax.org, July 2018 release) to HPO terms that are specifically associated with a 

given tissue using Resnik’s method as implemented in the R package ontologySimilarity. We 

extracted daughter HPO terms using the R package ontologyIndex. Per tissue, we correlated 

genes’ tissue expression with genes’ similarity with tissue-associated phenotypes using 

Spearman rank correlation. P-values of correlations within different tissues were combined 

with Fisher’s method. 

Clustering of inferred LOF and GOF variants of Navs and Cavs 

In order to compare variant location between all Navs and Cavs, we mapped the aa sites on a 

combined gene family alignment of all 20 Nav/Cav sequences (details see method’s 

paragraph “variant density in other paralog genes”). We then removed alignment gaps 

obtaining 1268 aa sites mappable to all sodium and calcium channels (61% of their canonical 

isoforms length of 2064 aa ± 222 [mean ± SD]). 726 of all 827 LOF/GOF variants could be 

mapped on to the 1268 family-aligned aa sites. We then counted the LOF or GOF variant 

density on the 1268 family-aligned sites in sliding windows of 3 aa hereby considering LOF or 
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GOF effects of variants’ directly neighboring aa sites. 

 

Machine learning based prediction of GOF vs LOF and pathogenic vs neutral variant effects 

We used a table of all 89 protein features by all 827 variants (Table S1) to train a prediction 

tool that outputs the probability that a variant results in GOF or LOF. We used the R package 

caret’s train function to evaluate, using a 10-fold cross-validation resampling, the effect of 

model tuning parameters on performance and to choose the optimal parameters for the final 

model. Prior to resampling, we up-sampled the data to the same number of LOF versus GOF 

or pathogenic versus neutral variants, respectively and also to the same number of variants in 

SCN or CACNA1 genes. Before training of the pathogenicity model, we additionally up-

sampled to the same number of variants per gene. Prior to model training, we randomly split 

our dataset to retain 10% of variants as a test data set for validation. We used all available 

features relying on inbuilt feature selection algorithms. We included whether a gene was a Cav 

or Nav as covariate in our model, however we did not include the individual gene as covariate. 

We computed GOF and LOF variant density slightly differently for LOF vs GOF and 

pathogenic vs neutral prediction (see method section “Variant density in other paralog genes”). 

Comparing different machine learning methods, the decision-tree based algorithms Random 

Forest and Stochastic Gradient Boosting, also known as Gradient Boosting Machine (GBM) 

outperformed logistic regression, eXtreme Gradient Boosting and support vector machine (t-

tests, Bonferroni-corrected p-values 2x10-5 to <2x10-16, see Figure S5A). GBM performed best 

so we chose GBM as the final method for our prediction model with standard parameters. 

During the modelling process, tuning parameter 'shrinkage' (how quickly the algorithm adapts) 

was held constant at a value of 0.1. Parameter 'n.minobsinnode' (minimum number of training 

set samples in a node to commence splitting) was held constant at a value of 10. Maximizing 

accuracy was used to select parameters for the optimal model. The final values were: number 

of tree iterations = 50, interaction.depth (complexity of the tree) = 1, see also Figure S5.  

Performance metrics of machine learning based prediction 

We used following measures to assess the performance of our model: balanced accuracy 

(BA), Matthew’s Correlation Coefficient (MCC), Cohen's kappa (kappa)  and the Receiver 

Operating Characteristic (ROC). Using true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN) of the 2x2 contingency table of LOF vs. GOF or 

pathogenic vs. neutral predictions, those metrics are defined as follows (Baldi et al., 2000). 

 
BA=!"/ !"!!" !!"/(!"!!") 

!
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MCC= !" ! !"!!" ! !"
!"!!" !"!!" !"!!" !"!!"

 

The Kappa Statistic compares the accuracy of the prediction to the accuracy of a random 

prediction.  

kappa=!"!#$%&&'(#&)!!"#$%&'(()!"(*!!!"#$%&'(()!"(*  

totalAccuracy= !"!!"
!"!!"!!"!!" 

randomAccuracy= !"!!"  ! !"!!" ! !"!!"  ! (!"!!")
!"!!"!!"!!"  ! (!"!!"!!"!!")  

ROC is the area under the curve which is created by plotting the true positive rate against the 

false positive rate at various probabilities. 

 

 

DATA AND SOFTWARE AVAILABILITY 

Supplementary	Tables	

Table S1: All likely pathogenic variants used in functional and pathogenic variant prediction. 

Table S2: All inferred neutral variants used in pathogenic variant prediction. 

Table S3: Minor allele frequencies cutoffs of different diseases. 

Table S4: Functional and pathogenic variant prediction of functionally tested variants in 

SCN1A/ SCN2A/ SCN8A 

Table S5: Functional and pathogenic variant prediction of functionally tested variants in 

CACNA1I 

Table S6: Prediction of variants in diseases (autism, ADHD, epilepsy) 

PDB files to load 3D model of variants mapped on SCN2A (Figure S3) and homology models 

used to compute protein features into PyMOL: https://github.com/heyhen/funNCion  

Functional (LOF vs GOF) and pathogenic variant prediction of all possible single nucleotide 

genomic changes that can lead to aa changes in Navs and Cavs:  

https://github.com/heyhen/funNCion  

http://funNCion.broadinstitute.org 
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The R code used to perform functional variant prediction and associated data tables: 

https://github.com/heyhen/funNCion 

The C code used to perform ancestry conditional site-specific selection and associated data 

tables: https://github.com/astheeggeggs/parsel 

ClinVar public repository (Landrum et al., 2016) provides further information for ClinVar variant 

identifiers referenced in Table S1: https://www.ncbi.nlm.nih.gov/clinvar/ 

 

ADDITIONAL RESOURCES 

 

Please find functional and pathogenic predictions of all possible variants in Navs and Cavs, 

available as genomic or protein coordinates, on our website 

http://funNCion.broadinstitute.org. 
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