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backbone design using a long short-term memory
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Abstract

The ability to perform de novo protein design will allow researchers to expand the pool and variety of available
proteins, by designing synthetic structures computationally they can utilise more structures than is available
in the Protein Data Bank, design structures that are not found in nature, or direct the design of proteins to
acquire a specific desired structure. While some researchers attempt to design proteins from first physical
and thermodynamic principals, we decided to attempt to test whether it is possible to perform de novo helical
protein design of just the backbone statistically using machine learning by building a model that used a long
short-term memory generative adversarial neural network architecture. The LSTM based GAN model used only
the ¢ and w angles of each residue from an augmented dataset of only helical protein structures. Though the
network’s generated backbone structures were not perfect, they were idealised and evaluated post generation
where the non-ideal structures were filtered out and the adequate structures kept. The results were successful in
developing a logical, rigid, compact, helical protein backbone topology. This paper is a proof of concept that
shows it is possible to generate a novel helical backbone topology using an LSTM-GAN architecture using only
the ¢ and y angles as features. The next step is to attempt to use these backbone topologies and sequence

design them to form complete protein structures.
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Author summary

This research project stemmed from the desire to expand the
pool of available protein structures that can be used as a scaf-
fold in computational vaccine design since the number of
structures available from the Protein Data Bank was not suffi-
cient to allow for great diversity and increase the probability of
grafting a target motif onto a protein scaffold. Since a protein
structure’s backbone can be defined by the ¢ and y angles
of each amino acid in the polypeptide and can effectively
translate a protein’s 3D structure into a table of numbers, and
since protein structures are not random, this numerical rep-
resentation of protein structures can be used to train a neural
network to mathematically generalise what a protein struc-
ture is, and therefore use this generalisation to generate new
protein structures. Instead of using all proteins in the Protein
Data Bank a curated dataset was used encompassing protein
structures with specific characteristics that will, theoretically,
allow them to be easily evaluated computationally and chem-
ically. This paper details how a trained neural network was

able to successfully generate logical helical protein backbone
structures.

Introduction

The concept of amino acid sequences folding into globular pro-
tein molecules allows for proteins’ large functional diversity,
making them mediate all the functional aspects of living or-
ganisms, thus winning themselves attention from biochemists
for decades. Everything in this universe can be described
by a mathematical algorithm, including living organisms and
their functional units. The fusion of machine learning with
computational biology is accelerating research in both fields
and bringing humanity closer to the setup of performing most
biological research quickly, cheaply, and safely in silico while
only translating the very crucial aspects of it. Having access
to a large database of protein crystal structures would natu-
rally result in the use of machine learning to design proteins
computationally.

De novo protein design (i.e from the beginning) is very
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well explained in this review [1]. Proteins fold into a specific
shape depending on the sequence of their amino acids, and of
course shape dictates function. The driving forces that allows
proteins to fold are the hydrogen bond interactions within the
backbone and between the side chains, the Van der Waals
forces, and principally the interaction of hydrophobic side
chains within the core. The space of all possible sequences
for all protein sizes is extremely large (as an example there
are 20?9 possibilities for a 200 residue protein). Thus is it not
surprising that natural proteins exist in clusters close to each
other, which is logical since proteins would evolve away from
a central functional protein to fold correctly and acquire new
folds and functions rather than go through the tedious ordeal
of finding a totally new protein structure within the space of
all possibilities. Thus, even though the protein data bank adds
about 10,000 new structures to its repository every year, most
of these new structures are not unique folds.

The relationship between the sequence of a protein and
its specific structure is understood, but we still lack a unified
absolute solution to calculate one from the other. Hence why
some research groups generated man-made protein designs
through evolving already natural proteins [2] since randomly
finding a functionally folded protein from the space of all
possible protein sequences is more or less impossible. On the
other hand, other researchers attempted de novo protein de-
sign by designing a topology from assembling short sequence
peptide fragments taken from natural protein crystal structures
[4] [5], these fragments are calculated statistically depending
on the secondary structures they are found in. Sometimes this
fragment system is combined with first physical principals
to model the loops between secondary structures to achieve
a desired three dimensional topology [6]. Others have used
parametric equations to study and specify the desired protein
geometry [7] [8] [9] [10] [11] [12]. These solutions employ
an energy function, such as REF15, that uses some funda-
mental physical theories, statistical mechanical models, and
observations of protein structures in-order to approximate the
potential energy of a protein [3]. Knowing the protein poten-
tial energy allows us to guide our search for the structure of a
protein given its sequence (the structure resides at the global
energy minima of that protein sequence) thus attempting to
connect the sequence of a protein with its structure. The criti-
cal item is in the energy function, the higher its accuracy the
higher our confidence in knowing the computed structure is
the real natural structure. Thus using the energy function to
perform structure prediction (going from a known sequence
to find the unknown three dimensional structure) can also be
used to perform fixed-backbone design (going from a known
three dimensional structure to find the sequence that folds
it). Where as de novo design (neither backbone nor sequence
is known), knowing one results in finding the other using
the same energy function [1], and a good starting point is to
design the backbone.

Other researchers have used machine learning for protein
design, employing the constraints (Ca-Ca distances) as the
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input feature of the network and using a sliding window to
read a sequence of residues, getting their types and constraints
then predicting the next one giving the output prediction as
an amino acid sequence [13], this architecture reported an
accuracy of 38.3%.

The deep neural network architecture that we chose was
a Long Short-Term Memory (LSTM) based Generative Ad-
versarial Network (GAN) [14]. The LSTM is usually used
in natural language and data sequence processing, but in our
model the LSTM was setup in a slightly different manner. The
model was made up of two networks that worked against each
other, the first was a generator network that was made up of
a stack of LSTM layers, followed by fully connected layers,
followed by a Mixture Density Network (MDN) and worked
by using random noise numbers as input to build the values
for the ¢ and y angles. The other network was a discrimina-
tor that was made up of a stack of LSTM layers followed by
fully connected layers and worked to studying the dataset and
determining whether the output from the generator was a truly
logical structure or not (fake or real) [15].

Our effort in this paper was to use machine learning to
learn the general fold of natural proteins, and using this gen-
eralising statistical concept we can design a novel yet logical
protein backbone topologies, thus getting the three dimen-
sional structure. Our research at this moment was a proof of
concept and only concerned with getting a new and unique
folded ideal helical protein backbone rather than a protein with
a specific sequence, or function, or a specific structure, thus
our system resulted in random yet compact helical backbone
topologies.

Materials and methods

The following steps were used to generate the augmented
training dataset, along with details of the neural network ar-
chitecture and how the output was optimised then evaluated.

Data generation

The entire PDB database was downloaded on 28 June 2018
(~150,000 structures), each entry was divided into its con-
stituent chains resulting in individual separate structures (i.e:
each PDB file had only a single chain). Each structure was
analysed and chosen only if it contained the following crite-
ria: contained only polypeptides, had a size between 80 and
150 amino acids without any breaks in the chain (a continu-
ous polypeptide), a sum of residues that made up helices and
sheets were larger than the sum of amino acids that made up
loops, and the final structure having an Rg (radius of gyration)
value of less than 15 88 A. The chosen structures were then
further filtered by a human to ensure only the desired structure
concepts were selected, removing the structures that slipped
through the initial computational filter. Furthermore, a diver-
sity of structure folds were acheived rather than numerous
repeats of the same fold (the haemoglobin fold was quite abun-
dant). In previous attempts a mixture of different structure
classes were used, where some structures were only helices,


https://doi.org/10.1101/671552
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/671552; this version posted December 12, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY. 4.
RamaNet: Computational de novo heﬁca? protein

some were only sheets, and the remaining were a mix of the
two. But that proved challenging in optimising the network,
as such a dataset made up of only helical protein structures
was chosen for this initial proof of concept. The final dataset
had 607 ideal helical structures. These structures were then
cleaned (non-amino acid atoms were removed) in preparation
to push them through the Rosetta modelling software that only
takes in polypeptide molecules.

Data augmentation

These 607 structures were augmented using the Rosetta Fas-
tRelax protocol [16]. This protocol performs multiple cycles
of packing and minimisation. In other words, it performs small
slight random moved on the backbone and side chains. Its
originally intended function was to move a structure slightly
to find the conformation of the backbone and side chains that
corresponds to the lowest energy state as per the REF15 en-
ergy function. Since the protocol performs random moves, a
structure relaxed on two separate occasions will result in two
molecules that look very similar with similar minimum energy
scores, but technically have different ¢ and y angle values.
This is the concept we used to augment our structures, and
each structure was relaxed 500 times to give a final dataset
size of 303,500 structures.

Ramachandran Plot
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Figure 1. Ramachandran plot of dataset. Ramachandran plot of the dataset
showing the ¢ and y angles of each amino acid for each structure. This is
the un-augmented data of structures that are only made of helices. Green
represents the angles on amino acids in loops, while red represents the angles
of amino acids in helices. Some orange can be seen where the DSSP algorithm
classified the amino acids as sheets. One point to note; the angles here are
represented between the range —180° to 180° as is conventional, while in the
actual dataset the range was from 0° to 360°.

Feature extraction

Using only the ¢ and y angle values from a crystal structure
it was possible to re-fold a structure back to its correct native
fold, thus these angles were the only relevant features required
to correctly fold a structure, Fig 1 details the range of angles
in the un-augmented data. Each amino acid’s ¢ and y angle
values were extracted and tabulates as in Table 1. This was
the dataset used to train the neural network.
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Table 1. The PS_Helix_500.csv dataset. The first 5 examples of the
PS_Helix_500.csv dataset showing the PDB ID_chain_augmentation num-
ber, residue 1 ¢ angle, residue 1 y angle, all the way to residue 150. 360.0°
was used for the first missing angle while 0.0° was used to represent no
residues.

PDB_ID phi_l | psil phi2 | psi2 | phi3 psi3 | ... phi_150  psi_150i
1 | 1ITQG_A_0293.pdb | 360 98.8 207.4 | 163.8 | 298.1 | 313.6 | ..... 0.0 0.0
2 | 1IEZ3_A_0261.pdb | 360 227.8 | 208.3 | 37 306.7 | 3164 | ... 0.0 0.0
3 | 5IP0_E_0241.pdb 360 86.7 293.2 | 328.7 | 292.2 | 313.1 | ... 0.0 0.0
4 | 2P5T_G_0123.pdb | 360 185.9 | 254.3 | 176.2 | 308.4 | 139.3 | ... 0.0 0.0
5 | SEOH_A_0211.pdb | 360 144.4 | 293.5 | 334.6 | 3209 | 3209 | ... 0.0 0.0
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Figure 2. The LSTM-GAN neural network. The LSTM based GAN
model employing a generative network and a discriminator network that work
adversarially against each other.

The neural network
The model in Fig 2 was built using the SenseGen model as
a template [15] and consisted of two networks: a generator
G network and a discriminator D network. The G network
was constructed from an LSTM layer with 64 nodes, followed
by two dense fully connected MLPs with 32 nodes for the
first layer and 12 nodes for the second one, both employed a
sigmoid activation function:

sigmoid(x) = 5 +L,X
Which was followed by an MDN layer employing an MDN
activation function:

POIX) = £ () 251 o (), A (4), )
c: the index of the corresponding mixture component. o:
the mixing parameter. &: the corresponding distribution to
be mixed. A: the parameters of the distribution 2, as we
denote 2 to be a Gaussian distribution, A; corresponds to the
conditional mean and A, to the conditional standard deviation.
The training was done using the Adam optimiser, for each
parameter @/:

vi=pyiei+ (1= p)xgihey = — Zloxgiog = o +
Ay
7M: initial learning rate. v;: exponential average of squares of
gradients. g.: gradient at time ¢ along /. The Adam optimiser
had an MDN activation through time loss function defined to
increase the likelihood of generating the next time step value.
The loss defined as the root mean squared difference between
the sequence of inputs and the sequence of predictions:

loss =Y, (x —y)?
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yi: output. x¢: next step sample x¢+; = y;. The D network was
constructed from an LSTM layer with 64 nodes, followed by
a dense fully connected MLP layer with 32 nodes, and that
was followed by a single dense MLP unit layer employing
a sigmoid activation function, so that the output of this net-
work was a prediction; the probability of the data being real
(indicated by the integer 1) or fake (indicated by the integer
0). The network employed the cross-entropy loss function:

CE = — Y tilog(s;)

Where #; and s; are the groundtruth and the neural network
score for each class i in C. In a binary classification problem,
such as the discriminator network output where C'= 2, the
Cross Entropy Loss can be defined as:

CE=— ngz tilog(s;) = —t1log(s1) — (1—11)log(1—sy)
Where it is assumed that there are two classes: C; and C;. 1
[0,1] and sy are the groundtruth and the score for C;, while
tp =1—1t; and so = 1 — s are the groundtruth and the score for
C>. The G network used random noise as a starting seed, this
noise was generated by taking a single randomly distributed
number between [0, 1) as the first predicted values, these
values were then reshaped to the same shape of the last item
of the predicted value resulting in a final shape of (batch_size,
step_numbmer, 1). The network predicted the main parameters
of the new value (U, o, 7) several times (according to the
numbmer_of_mixtures value) and selected the single mixture
randomly but according to the 7 value. It then predicted
the next value according to the normal distribution using the
W and o values. It added the final value to the prediction
chain and then returned to the step 2 until the predefined
sequence length was obtained. The initial random number
was stripped from the returned sequence. Once the networks
were constructed, the dataset was normalised and the training
was done as follows for each adversarial epoch:

1. Sample minibatch from dataset (Xtrue).

2. Sample minibatch from G network (XG).

3. Train the D network on the training set (Xtrue, XG).
4. Sample minibatch from dataset (Xtrue).

5. Sample minibatch from G network (XG).

6. Train the G network on the training set (Xtrue).

The neural network had the following parameters: the G
learning rate was 0.001 while the D learning rate was 0.0003,
a drop out rate of 50% was used along with a batch size of 4
over 18,000 epochs.

Post backbone topology generation processing and
filtering

The output of the neural network was always a structure with
150 amino acids, thus the ends were trimmed if they had no
helical structures. The ¢ and y angel values were used to
fold the structure, but since the majority of the structures
ended up with helical secondary structures yet still with an
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open conformation, the generated structure was relaxed using
the Rosetta FastRelax protocol to idealise the helices and
compact the structure. Furthermore, not every prediction from
the neural network resulted in an ideal structure even after
the relax step, therefore we employed a filter to filter out non-
ideal structures. The filter discards structures that are less than
80 amino acids, has more residues in loops than in helices,
has less than 20% residues making up its core, and has a
maximum distance between Cat1 and any other Car greater
than 88 A (the largest value in the dataset).

Results

The dataset was named PS_Helix_500 due to the fact that the
features used were the ¢ and y angles, only strictly helical
protein structures were used, and each structure was aug-
mented 500 times.

The neural network was trained on the dataset for 18,000

Loss

Loss

0 2000 4000 6000 8000
Epochs
Figure 3. The training loss. The mean loss of the whole network over
epoch, for 18,000 epochs, showing a general downward trend, this indicates
that subsequent epochs the G network gets better at generating structures that
the D network correctly classifies as real logical structures.

10000

12000 14000 16000 18000

epochs (further training collapsed the network) with a gen-
erally sloping down mean loss as shown in Fig 3 indicating
that the G network got better at generating data that the D
network classified as real rather than fake. The network was
used to generate the ¢ and y angles for 25 structures. All
structures started with as primary straight structures with a
length of 150 valine residues, the generated ¢ and y angle
profiles were applied to those primary structures resulting in
folded structures clearly showing helical secondary structures,
but the loops were usually non-ideal, thus the structures did
not come together into compact topologies. To correct this,
the structures were relaxed and brought together resulting in
logical backbone topologies with valines as a temporary place-
holder sequence. Fig 7 shows the ramachandran plot of the
25 generated structures after the relaxation step showing in
red the amino acids withing helices having angles clustering
around the same location as Fig 1 within the fourth quad-
rant as is desired for an a-helix that has ideal angles around
(—60°, —45°), our results had an angle range for the helices
(—127.4°<p<—44.7°, =71.3°<y<30.6°) not including the
outliers. This setup was not perfect at achieving an ideal
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structure every time, so a filter was deployed to filter out
suboptimal structures by choosing a structure that had more
residues within helices than within loops, was not smaller than
80 residues, and had more than 20% residues comprising its
core. Generating multiple structures revealed that the success
rate of the network was ~1.311% Fig 4 which took between
4 minutes and 12 hours to generate a single structure with the
desired characteristics. The protocol is summarised in Fig 5,
and the results are compiled in Fig 6.

Attempts to generate one successful structure
4000

3500
3000
2500
2000

1500

Number of attempts

1000

500

0
123456 7 8 91011121314151617181920212223242526

Structure names
Figure 4. Attempts to success. The number of attempts before a structure
with desired structural characteristics is reached. The figure shows great
variability ranging rom 4 attempts to 3,995 attempts over the span of 26
different structures, giving an average success rate of ~1.311%.

These 25 structures had on average 84.7% of their amino
acids comprising their heliceas, along with and an average of
29.9% of thier amino acids comprising their cores.

Conclusion

In this paper we outlined how we developed a neural network
architecture that can design a helical and compact protein
backbone topology. We prooved that using only the ¢ and y
angles of a protein structure were adequate features to design
a protein backbone topology only without a sequence. Though
our network had a low success rate (~1.311%), generating
multiple structures and auto filtering the suboptimal ones
proved an adequate setup to achieve our goal of de novo
helical protein backbone design within a reasonable time (1-
6 hours). Still the low success rate is not satisfactory, and
we are currently working on an improved model that uses
further dataset dimensions to increase the success rate. As
a next step, we will improve the neural network’s output
by implementing additional features (such as Co distances -
sometimes referred to as constraints) to generate better loops
and cores, implement sequence design, as well as crystallise
the output structures to get a definitive understanding of the
neural network capabilities.
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Figure 5. The /textitde novo helical protein backbone design protocol.
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but not a final compact structure due to suboptimal loop structures as a result
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compact structures but was not always ideal, thus a filter was used to filter
our non-ideal structures and keep an ideal structure when generated which
was kept.
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