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ABSTRACT

Correlation coefficients are abundantly used in the life sciences. Their use can be limited to simple
exploratory analysis or to construct association networks for visualization but they are also basic
ingredients for sophisticated multivariate data analysis methods. It is therefore important to have
reliable estimates for correlation coefficients. In modern life sciences, comprehensive measurement
techniques are used to measure metabolites, proteins, gene-expressions and other types of data. All
these measurement techniques have errors. Whereas in the old days, with simple measurements, the
errors were also simple, that is not the case anymore. Errors are heterogeneous, non-constant and not
independent. This hampers the quality of the estimated correlation coefficients seriously. We will discuss
the different types of errors as present in modern comprehensive life science data and show with theory,
simulations and real-life data how these affect the correlation coefficients. We will briefly discuss ways to
improve the estimation of such coefficients.

1 Introduction

The concept of correlation and correlation coefficient dates back to Bravais1 and Galton2 and found its
modern formulation in the work of Fisher and Pearson3, 4, whose product moment correlation coefficient
ρ has become the most used measure to describe the linear dependence between two random variables.
From the pioneering work of Galton on heredity, the use of correlation (or co-relation as is it was termed)
spread virtually in all fields of research and results based on it pervade the scientific literature.

Correlations are generally used to quantify, visualize and interpret bivariate (linear) relationships
among measured variables. They are the building blocks of virtually all multivariate methods such as
Principal Component Analysis (PCA5–7), Partial Least Squares regression, Canonical Correlation Analysis
(CCA8) which are used to reduce, analyze and interpret high-dimensional omics data sets and are often
the starting point for the inference of biological networks such as metabolite-metabolite associations
networks9, 10, gene regulatory networks11, 12 an co-expression networks13, 14.

Fundamentally, correlation and correlation analysis are pivotal for understanding biological systems
and the physical world. With the increase of comprehensive measurements (liquid-chromatography mass-
spectrometry, nuclear magnetic resonance, gas-chromatography mass-spectrometry in metabolomics and
proteomics; RNA-sequencing in transcriptomics) in life sciences, correlations are used as a first tool for
visualization and interpretation, possibly after selection of a threshold to filter the correlations. However,
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the complexity and the difficulty of estimating correlation coefficients is not fully acknowledged.
Measurement error is intrinsic to every experimental technique and measurement platform, be it a

simple ruler, a gene sequencer or a complicated array of detectors in a high-energy physics experiment, and
in the early days of statistics it was known that measurement errors can bias the estimation of correlations15.
This bias was called attenuation because it was found that under the error condition considered, the
correlation was attenuated towards zero. The attenuation bias has been known and discussed in some
research fields16–19 but it seems to be totally neglected in modern omics-based science. Moreover,
contemporary comprehensive omics measurement techniques have far more complex measurement error
structures than the simple ones considered in the past and on which early results were based.

In this paper, we intend to show the impact of measurement errors on the quality of the calculated
correlation coefficients and we do this for several reasons. First, to make the omics community aware of the
problems. Secondly, to make the theory of correlation up to date with current omics measurements taking
into account more realistic measurement error models in the calculation of the correlation coefficient
and third, to propose ways to alleviate the problem of distortion in the estimation of correlation induced
by measurement error. We will do this by deriving analytical expressions supported by simulations and
simple illustrations. We will also use real-life metabolomics data to illustrate our findings.

2 Measurement error models

We start with the simple case of having two correlated biological entities x0 and y0 which are randomly
varying in a population. This may, e.g., be concentrations of two blood-metabolites in a cohort of persons
or gene-expressions of two genes in cancer tissues. We will assume that those variables are normally
distributed(

x0
y0

)
∼ N(µ,Σ0) (1)

with underlying parameters

µ =

(
µx0

µy0

)
(2)

and

Σ0 =

(
σ2

x0
σx0y0

σx0y0 σ2
y0
,

)
(3)

Under this model the variance components σ2
x0

and σ2
y0

describe the biological variability for x0 and y0,
respectively. The correlation ρ0, between x0 and y0 is given by

ρ0 =
σx0y0√
σ2

x0
σ2

y0

(4)

We refer to ρ0 as the true correlation.
Whatever the nature of the variables x0 and y0 and whatever the experimental technique used to measure

them there is always a random error component (also refereed to as noise or uncertainty) associated with
the measurement procedure. This random error is by its own nature not reproducible (in contrast with
systematic error which is reproducible and can be corrected for) but can be modeled, i.e. described, in a
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statistical fashion. Such models have been developed and applied in virtually every area of science and
technology and can be used to adjust for measurement errors or to describe the bias introduced by it. The
measured variables will be indicated by x and y to distinguished them from x0 and y0 which are their
errorless counterparts.

The correlation coefficient ρ0 is sought to be estimated from these measured data. Assuming that N
samples are taken, the sample correlation rN is calculated as

rN =
∑

N
i=1 (xi− x̄)(yi− ȳ)

Nsxsy
, (5)

where (x̄, ȳ) is the sample mean over N observations and sx,sy are the usual sample standard deviation
estimators. This sample correlation is used as a proxy of ρ0. The population value of this sample
correlation is

ρ =
E[xy]−E[x]E[y]√

E[x2]−E[x]2
√

E[y2]−E[y]2
, (6)

and it also holds that

lim
N→∞

rN = ρ. (7)

We will call ρ the expected correlation. Ideally, ρ0 = ρ but this is unfortunately not always the case. In
plain words: certain measurement errors do not cancel out if the number of samples increases.

In the following section we will introduce three error models and will show with both simulated and
real data how measurement error impacts the estimation of the Pearson correlation coefficient. We will
focus mainly on ρ0 and ρ .

2.1 Additive error

The most simple error model is the additive error model where the measured entities x and y are modeled
as {

x = x0 + εaux

y = y0 + εauy

(8)

where it is assumed that the error components εaux and εauy are independently normally distributed around
zero with variance σ2

aux
and σ2

auy
and are also independent from x0 and y0. The subscripts aux, auy stand

for additive uncorrelated error (ε) on variable x and y.
Variable x and y represent measured quantities accessible to the experimenter. This error model

describes the case in which the measurement error causes within-sample variability, which means that
p measurement replicates xi,1,xi,2, . . .xi,p of observation xi of variable x will all have slightly different
values due to the random fluctuation of the error component εaux ; the extent of the variability among the
replicates depends on the magnitude of the error variance σ2

aux
(and similarly for the y variable). This

can be seen in Figure 1A where it is shown that in the presence of measurement error (i.e. σ2
aux

,σ2
auy

> 0)
the two variables x and y are more dispersed. Due to the measurement error, the expected correlation
coefficient ρ is always biased downwards, i.e. ρ < ρ0, as already shown by Spearman15 (see Figure 1B)
who also provided an analytical expression for the attenuation of the expected correlation coefficient as a
function of the error components (a modern treatment can be found in reference20):

ρ = Aρ0, (9)
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Figure 1. A: Correlation plot of two variables x and y (σ2
x0
= σ2

y0
= 1) generated without (σ2

aux
= σ2

auy
= 0) and

with uncorrelated additive error (σ2
aux

= σ2
auy

= 0.75) with underlying true correlation ρ0 = 0.8 (model 8). B:
Distribution of the sample correlation coefficient for different levels of measurement error (σ2

au = σ2
aux

= σ2
auy

) for a
true correlation ρ0 = 0.8.C: The attenuation coefficient A from Equation (10) as a function the measurement error
for different level of the variance σ2 = σ2

x0
= σ2

y0
of the variables x0 and y0. See Material and Methods section 6.5.1

for details on the simulations.

where

A =
1√(

1+ σ2
aux

σ2
x0

)(
1+

σ2
auy

σ2
y0

) . (10)

Equation (9) implies that in presence of measurement error the expected correlation is different from the
true correlation ρ0 which is sought to be estimated. The attenuation A is always strictly smaller than 1 and it
is a decreasing function of the size of the measurement error relative to the biological variation (see Figure
1C), as it can be seen from Equation (10). The attenuation of the expected correlation, despite being known
since 1904, has sporadically resurfaced in the statistical literature in the psychological, epidemiology and
behavioral sciences (where it is known as attenuation due to intra-person or intra-individual variability,
see19 and reference therein) but has been largely neglected in the life sciences, despite its relevance.

The error model (8) can be extended to include a correlated error term εac{
x = x0 + εaux + εac

y = y0 + εauy± εac
(11)

with εac normally distributed around zero with variance σ2
ac. The ’±’ models the sign of the error

correlation. When εac has a positive sign in both x and y the error is positively correlated; if the sign is
discordant the error is negatively correlated. The subscript ac is used to indicate additive correlated error.
The variance for x is given by

σ
2
x = σ

2
x0
+σ

2
aux

+σ
2
ac (12)

and likewise for the variable y. In general, additive correlated error can have different causes depending on
the type of instruments and measurement protocols used. For example, in transcriptomics, metabolomics
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Figure 2. Consequences of measurement error when using correlation in systems biology. A: Time concentration
profile of three metabolites P1, P2 and P3 generated through a simple enzymatic metabolic model; 100 profiles are
generated by randomly varying the kinetic parameters defining the model and sampled at time 0.4 (a.u.). B: Average
pairwise correlation of P1, P2 and P3 as a function of the variance of the additive uncorrelated error. C: Inference of
a metabolite-metabolite correlation network: two metabolites are associated if their correlation is above 0.622 (see
threshold in B). The increasing level of measurement error hampers the network inference (compare the different
panels). See Material and Methods section 6.5.2 for details on the simulations.

and proteomics, usually samples have to be pretreated (sample work-up) prior to the actual instrumental
analysis. Any error in a sample work-up step may affect all measured entities in a similar way21. Another
example is the use of internal standards for quantification: any error in the amount of internal standard
added may also affect all measured entities in a similar way. Hence, in both cases this leads to (positively)
correlated measurement error. In some cases in metabolomics and proteomics the data are preprocessed
using deconvolution tools. In that case two co-eluting peaks are mathematically separated and quantified.
Since the total area under the curve is constant and (positive) error in one of the deconvoluted peaks
is compensated by a (negative) error in the second peak, this may give rise to negatively correlated
measurement error.

To show the effect of additive uncorrelated measurement error we consider the concentration profiles
of three hypothetical metabolites P1, P2 and P3 simulated using a simple dynamic model (see Figure 2A
and Section 6.5.2) where additive uncorrelated measurement error is added before calculating the pairwise
correlations among P1, P2 and P3: also in this case the magnitude of the correlation is attenuated, and the
attenuation increases with the error variance (see Figure 2B.)

This has serious repercussions when correlations are used for the definition of association networks, as
commonly done in systems biology and functional genomics10, 23: measurement error drives correlation
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towards zero and this impacts network reconstruction. If a threshold of 0.6 is imposed to discriminate
between correlated and non correlated variables as usually done in metabolomics22, an error variance of
around 15% (see Figure 2B, point where the correlation crosses the threshold) of the biological variation
will attenuate the correlation to the point that metabolites will be deemed not to be associated even if they
are biologically correlated leading to very different metabolite association networks (see Figure 2C.)

2.2 Multiplicative error

In many experimental situations it is observed that the measurement error is proportional to the magnitude
of the measured signal; when this happens the measurement error is said to be multiplicative. The model
for sampled variables in presence of multiplicative measurement error is{

x = x0(1+ εmux + εmc)

y = y0(1+ εmuy± εmc)
(13)

where x0, y0, εmux , εmuy and εmc have the same distributional properties as before in the additive error case,
and the last three terms represent the multiplicative uncorrelated errors in x and y, respectively, and the
multiplicative correlated error.

The characteristics of the multiplicative error and the variance of the measured entities σ2
x depend on

the level µx0 of the signal to be measured (for a derivation of Equation (14) see Section 6. 6.1.1):

σ
2
x = σ

2
x0
+
(
σ

2
x0
+µ

2
x0

)(
σ

2
mux

+σ
2
mc
)
, (14)

while in the additive case the standard deviation is similar for different concentrations and does not depend
explicitly on the signal intensity, as shown in Equation (12). A similar equation holds for the variable y.

It has been observed that multiplicative errors often arises because of the different procedural steps
like sample aliquoting24: this is the case of deep sequencing experiments where the multiplicative error is
possibly introduced by the pre-processing steps like, for example, linker ligation and PCR amplification
which may vary from tag to tag and from sample to sample25. In other cases the multiplicative error arise
from the distributional properties of the signal, like in those experiments where the measurement comes
down to counts like in the case of RNA fragments in an RNA-seq experiment or numbers of ions in a
mass-spectrometer that are governed by Poisson distributions for which the standard deviation is equal to
the mean. For another example, in NMR spectroscopy measured intensities are affected by the sample
magnetization conditions: fluctuations in the external electromagnetic field or instability of the rf pulses
affects the signal in a fashion that is proportional to the signal itself26.

A multiplicative error distorts correlations and this affects the results of any data analysis approach
which is based on correlations. To show the effect of multiplicative error we consider the analysis
of a simulated metabolomic data set starting from real mass-spectrometry (MS) data on which extra
uncorrelated and correlated multiplicative measurement errors have been added. As can be seen in Figure
3A the addition of error affects the underlying data structure: the error free data is such that only a subset
of the measured variables contributes to explain the pattern in a low dimensional projection of the data,
i.e. have PCA loadings substantially different from zero (3B). The addition of extra multiplicative error
perturbs the loading structure to the point that all variables contribute equally to the model (3C), obscuring
the real data structure and hampering the interpretation of the PCA results. This is not necessarily caused
by the multiplicative nature of the error, it is certainly caused by the correlated error part. Since the
term εmc is common to all variables it introduces the same amount of correlation among all the variables
and this leads to all the variables contributing to the latent vector (principal component). One may also
observe that the variation explained by the first principal component increases when adding the correlated
measurement error.

6/27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/671693doi: bioRxiv preprint 

https://doi.org/10.1101/671693


Figure 3. Consequences of multiplicative (correlated and uncorrelated) measurement error for data analysis. A:
Scatter plot of the overlayed view of the first two components of two PCA models of simulated data sets; one
without multiplicative error and one with multiplicative error. For visualization purposes, the scores are plotted in
the same graph, but the subspaces spanned by the first two principal components for the two data sets are of course
different. The labels on both axes also present the percentage explained variation for the two analyses. B: Loading
plot for the error free data. C: Loading plot for the data with multiplicative error. See Material and Methods section
6.5.3 for details on the simulations.
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Figure 4. A: PCA plot of 5 different samples of fish extracts measured with technical replicates (10×) using
NMR29. B: Overlap of the average binned NMR spectra of the 5 samples: the two resonances whose correlation is
investigated are highlighted (3.23 and 4.98 ppm). C: Distribution of the correlation coefficient between the two
resonances calculated, taking as input the average over different numbers of technical replicates (see inserts). See
Material and Methods section 6.5.4 for more details on the estimation procedure.

2.3 Realistic error

The measurement process usually consists of different procedural steps and each step can be viewed as
a different source of measurement error with its own characteristics, which sum to both additive and
multiplicative error components as is the case of comprehensive omics measurements27. The model for
this case is:{

x = x0(1+ εmux + εmc)+ εaux + εac

y = y0(1+ εmuy± εmc)+ εauy± εac
(15)

where all errors have been introduced before and are all assumed to be independent of each other and
independent of the true (biological) signals (x0 and y0).
This realistic error model has a multiplicative as well as an additive component and also accommodates
correlated and uncorrelated error. It is an extension of a much-used error model for analytical chemical
data which only contains uncorrelated error28. From model (15) it follows that the error changes not only
quantitatively but also qualitatively with changing signal intensity: the importance of the multiplicative
component increases when the signal intensity increases, whereas the relative contribution of the additive
error component increases when the signal decreases.

Since most of the measurements do not usually fall at the extremity of the dynamic range of the
instruments used, the situation in which both additive and multiplicative error are important is realistic.
For example, this is surely the case of comprehensive NMR and Mass Spectrometry measurements, where
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multiplicative errors are due to sample preparation and carry-over effect (in the case of MS) and the
additive error is due to thermal error in the detectors29. To illustrate this we consider an NMR experiment
where a different number of technical replicates are measured for five samples (Figure 4A and 4B). We are
interested in establishing the correlation patterns across the (binned) resonances. For sake of simplicity
we focus on two resonances, binned at 3.22 and 4.98 ppm. If one calculates the correlation using only
one (randomly chosen) replicate per sample the resulting correlation can be anywhere between -1 and 1
(see Figure 4C.1). The variability reduces considerably if more replicates are taken and averaged before
calculating the correlation (see Figure 4C), but there is still a rather large variation, induced by the limited
sample size.

Averaging across the technical replicates reduces variability among the sample means: however this
not accompanied by an equal reduction in the variability of the correlation estimation. This is because the
error is not taken into account in the calculation of the correlation coefficient.

3 Estimation of Pearson’s correlation coefficient in presence of measure-
ment error

In the ideal case of an error free measurement where the only variability is due to intrinsic biological
variation, ρ coincides with the true correlation ρ0. If additive uncorrelated error is present, then ρ is given
by Equations (9) and (10) which explicitly take into account the error component and it holds that ρ < ρ0.

In the next Section we will derive analytical expressions, akin to Equations (9) and (10), for the corre-
lation for variables sampled with measurement error (additive, multiplicative and realistic) as introduced
in Section 2.

Before moving on, we define more specifically the error components. The error terms in models (11),
(13) and (15) are assumed to have the following distributional properties(

εaux

εauy

)
∼ N(0,ΣA) and

(
εmux

εmuy

)
∼ N(0,ΣM) (16)

with

ΣA =

(
σ2

aux
0

0 σ2
auy

)
and ΣM =

(
σ2

mux
0

0 σ2
muy

)
, (17)

and

εmc ∼ N(0,σ2
mc) and εac ∼ N(0,σ2

ac). (18)

From definitions (16), (17) and (18) it follows that:

1) The expected value of the errors E[εα ] is zero:

E[εα ] = 0 ∀ α in {au,ac,mu,mc}. (19)

2) The covariance between x0 (y0) and the error terms is zero because x0 (y0) and errors are indepen-
dent,

E[x0εα ]−E[x0]E[εα ] = 0 ∀ α in {au,ac,mu,mc}. (20)

3) The covariance between the different error components is zero because the errors are independent
from each other.

E[εαεα ′]−E[εα ]E[εα ′] = 0 ∀ α, 6= α
′ in {au,ac,mu,mc}. (21)
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3.1 The Pearson correlation in the presence of additive measurement error

We show here a detailed derivation of the correlation among two variables x and y sampled under the
additive error model (11). The variance for variable x (similar considerations hold for y) is given by

var(x) = E[x2]−E[x]2 (22)

where

E[x] = E[x0 + εaux + εac] = µx0. (23)

and

E[x2] = E[x2
0 + ε

2
aux

+ ε
2
ac +2x0εaux +2x0εac +2εauxεac] (24)

= σ
2
x0
+µ

2
x0
+σ

2
aux

+σ
2
ac.

It follows that

var(x) = σ
2
x0
+σ

2
aux

+σ
2
ac. (25)

The covariance of x and y is

cov(x,y) = E[xy]−E[x]E[y] (26)

with

E[xy] = E[x0y0 + x0εauy± x0εac + εauxy0 + εauxεauy± εauxεac + εacy0 + εacεauy± ε
2
ac] (27)

Considering (20) and (21), Equation (27) reduces to

E[xy] = E[x0y0]±E[ε2
ac] (28)

with

E[x0y0] = cov(x0,y0)+E[x0]E[y0] (29)
= σx0y0 +µx0 µy0

and

±E[ε2
ac] =±σ

2
ac, (30)

with ± depending on the sign of the measurement error correlation. From Equations (23), (28), (29), and
(30) it follows

cov(x,y) = σx0y0±σ
2
ac. (31)

Plugging (25) and (31) into (6) and defining the attenuation coefficient Aa

Aa =
1√

1+ σ2
aux

σ2
x0

+
σ2

ac
σ2

x0

√
1+

σ2
auy

σ2
y0

+
σ2

ac
σ2

y0

=
1√

1+ξ 2
x + γ2

x

√
1+ξ 2

y + γ2
y

, (32)
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Figure 5. The expected correlation coefficient ρ in the presence of additive measurement error as a function of
the uncorrelated (ξ 2) and correlated (γ2) measurement error ratios (m.e.r.) for different values of the true correlation
ρ0. A: Positively correlated error. B: Negatively correlated error.

where ξ 2
x = σ2

aux
/σ2

x0
, ξ 2

y = σ2
auy

/σ2
y0

, γ2
x = σ2

ac/σ2
x0

and γ2
y = σ2

ac/σ2
y0

; the superscript a in Aa stands for
additive.

The Pearson correlation in presence of additive measurement error is obtained as:

ρ = Aa(ρ0± γxγy) (33)

where the sign ± signifies positively and negatively correlated error.
The attenuation coefficient Aa is a decreasing function of the measurement error ratios, that is, the

ratio between the variance of the uncorrelated and the correlated error to the variance of the true signal.
Compared to Equation (9), in formula (33) there is an extra additive term related to the correlated
measurement error expressing the impact of the correlated measurement error relative to the original
variation. In the presence of only uncorrelated error (i.e. σ2

ac = 0), Equation (33) reduces to the Spearman’s
formula for the correlation attenuation given by (9) and (10). As previously discussed, in this case the
correlation coefficient is always biased towards zero (attenuated).

Given the true correlation ρ0, the expected correlation coefficient (33) is completely determined by
the measurement error ratios. Assuming the errors on x and y to be the same (σ2

aux
= σ2

auy
, σ2

mux
= σ2

muy
,

an assumption not unrealistic if x and y are measured with the same instrument and under the same
experimental conditions during an omics comprehensive experiment) and taking for simplicity σ2

x0
= σ2

y0
,

then ξx = ξy = ξ and γx = γy = γ and Equation (33) can be simplified to:

ρ =
ρ0± γ2

1+ξ 2 + γ2 , (34)
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Figure 6. Calculations of the correlation coefficient ρ (40) as a function of the different realizations of the signal
means and the size of the error components for different values of the true correlation ρ0. The shadowed area
encloses the maximum and the minimum of the values of ρ calculated in the simulation using the different error
models. The dots represent the realized values of ρ (only 100 of 105 Monte Carlo realizations for different values of
the variances of error component are shown). The solid lines represent the 5-th and the 95-th percentiles of the
observed values. A: Additive measurement error with positive correlated error. B: Multiplicative measurement error
with positive correlated error. C Realistic case with both additive and multiplicative measurement error with positive
correlated error. D: Additive measurement error with negative correlated error. E: Multiplicative measurement error
with negative correlated error. F: Realistic case with both additive and multiplicative measurement error with
negative correlated error. For more details on the simulations see Material and Methods section 6.5.5.

and ρ can be visualized graphically as a function of the uncorrelated and correlated measurement error
ratios ξ and γ as shown in Figure 5.

In the presence of positively correlated error, the correlation ρ is attenuated towards 0 if the uncorrelated
error increases and inflated if the additive correlated error increases (Figure 5A, which refers to Equation
(34)) when ρ0 > 0. If ρ0 < 0 the distortion introduced by the correlated error can be so severe that the
correlation ρ can become positive. When the error is negatively correlated (Figure 5B), the correlation ρ

is biased towards 0 when ρ0 > 0 (and can change sign), while it can be attenuated or inflated if ρ0 < 0.

A set of rules can be derived to describe quantitatively the bias of ρ . For positively correlated
measurement error (for negatively correlated measurement error see Section 6. 6.2) if the true correlation
ρ0 is positive the correlation ρ is always strictly positive: this is shown on Figure 6A where the relationship
between ρ and ρ0 is shown by means of Monte Carlo simulation (see Figure caption for more details).
The magnitude of ρ (‖ρ‖) depends on how Aa (for readability in the following equations we will use A)
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Figure 7. Limiting surfaces S for the inflation and deflation region of the correlation coefficient in presence of
additive measurement error. The surfaces are a function of the uncorrelated (ξ 2) and correlated (γ2) measurement
error ratios (m.e.r.). A: S in the case of positively correlated error. B: S for negatively correlated error. The plot
refers to ρ defined by Equation (34) with ξ 2

x = ξ 2
y = ξ 2 and γ2

x = γ2
y = γ2.

and the additive term γxγy > 0 compensate each other. In particular when ρ0 > 0

ρ →


0 < ρ < ρ0 if ρ0 >

A
1−Aγxγy

ρ0 if ρ0 =
A

1−Aγxγy

> ρ0 if ρ0 <
A

1−Aγxγy

(35)

This means that ρ is always a biased estimator of the true correlation ρ0, with the exception of the second
case which happens only for specific values of γ and ρ0. This is unlikely to happen in practice.

If ρ0 < 0 it holds that

ρ →


< ρ0 if − A

A+1γxγy < ρ0 < 0
= ρ0 if ρ0 =− A

A+1γxγy

> ρ0 if ρ0 <− A
A+1γxγy

(36)

The interpretation of Equation (36) is similar to that of Equation (35) but additionally, the correlation
coefficient can even change sign. In particular, this happens when

|ρ0|>
√

γxγy. (37)

The terms S = A
1−Aγxγy and S = A

A+1γxγy in Equations (35), (36), (71) and (72) describe limiting
surfaces S of ρ0 values delineating the regions of attenuation and inflation of the correlation coefficient ρ .

13/27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/671693doi: bioRxiv preprint 

https://doi.org/10.1101/671693


As can be seen from Figure 7, these surfaces are not symmetric with respect to zero correlation, indicating
that the behavior of ρ is not symmetric around 0 with respect to the sign of ρ0 and of the correlated error.

3.2 The Pearson correlation in presence of multiplicative measurement error

The correlation in the presence of multiplicative error can be derived using similar arguments and detailed
calculations can be found in Section 6.1.1. Here we only state the main result:

ρ = ρ0(1±σ
2
mc)A

m±δxδyσ
2
mcAm (38)

with δx = µx0/σx0 , δy = µy0/σy0 (biological signal to biological variation ratios) and Am is the attenuation
coefficient (the superscript m stands for multiplicative):

Am =
1√

1+
(

1+
µ2

x0
σ2

x0

)(
σ2

mux
σ2

x0
+

σ2
mc

σ2
x0

)√
1+
(

1+
µ2

y0
σ2

y0

)(
σ2

muy
σ2

y0
+

σ2
mc

σ2
y0

) . (39)

In this case, the correlation coefficient depends explicitly on the mean of the variables, as an effect of
the multiplicative nature of the error component.

Our simulations show that if the signal intensity is not too large, the correlation can change sign (as
shown in Figure 6B); if the signal intensity is very large the multiplicative error will have a very large
effect and if the correlated error is positive the expected correlation ρ will also be positive, and will be
negative if the error are negatively correlated. but simulations cannot be exhaustive (as shown in Figure
6B.)

3.3 The Pearson correlation in presence of realistic measurement error

When both additive and multiplicative error are present, the correlation coefficient is a combination of
formula (33) and (38) (see Section 6.1.2 for detailed derivation):

ρ = ρ0(1±σ
2
mc)A

r± (γxγy +δxδyσ
2
mc)A

r (40)

Where the γ and δ parameters have been previously defined for the additive and multiplicative case. Ar is
the attenuation coefficient (the superscript r stands for realistic):

Ar =
1√

1+
(

1+
µ2

x0
σ2

x0

)(
σ2

mux
σ2

x0
+

σ2
mc

σ2
x0

)
+

σ2
aux

σ2
x0

+
σ2

ac
σ2

x0

√
1+
(

1+
µ2

y0
σ2

y0

)(
σ2

muy
σ2

y0
+

σ2
mc

σ2
y0

)
+

σ2
auy

σ2
y0

+
σ2

ac
σ2

y0

.

(41)

General rules governing the sign of the numerator and denominator in Equation (40) cannot be determined
since it depends on the interplay of the six error components, the true mean and product thereof. Within
the parameter setting of our simulations, the results presented in Figures 6C show that the behavior of
ρ under error model 15 is qualitatively similar to that in presence of only multiplicative error. However
different behavior could be emerge with different parameter settings.
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3.4 Generalized correlated error model
The error models presented in Equations (11), (13), and (15) assume a perfect correlation of the correlated
errors, since the correlated error terms εac appear simultaneously in both x and y; the same hold true for
εmc. A more general model that accounts for different degrees of correlation between the error components
can be obtained by modifying the model (15) (other cases are treated in Section 6.3.) to{

x = x0(1+ εmux + εmcx)+ εaux + εacx

y = y0(1+ εmuy + εmcy)+ εauy + εacy

(42)

where the correlated error components εmcx , εacx , εmcy and εacy are distributed as(
εacx

εacy

)
∼ N(0,ΣAC) and

(
εmcx

εmcy

)
∼ N(0,ΣMC) (43)

with

ΣAC =

(
σ2

acx
σacxy

σacxy σ2
acy

)
and ΣMC =

(
σ2

mcx
σmcxy

σmcxy σ2
mcy

)
, (44)

where σacxy is the covariance between error term εacx and εacy and σmcxy is the covariance between error
term εmcx and εmcy .

It is possible to derive expression for the correlation coefficient under the model (43) as shown
in Section 3.1 and in the Section 6.1.1 and 6.1.2. The only difference is that under this model the
terms E[ε2

ac] and E[ε2
mc] in Equations (27), (58), (65), and (66) are replaced by E[εacx ,εacy ] = σacxy and

E[εmcx ,εmcy ] = σmcxy , respectively.
From the definition of covariance it follows that

σacxy = πac

√
σ2

acx
σ2

acy
(45)

and

σmcxy = πmc

√
σ2

mcx
σ2

mcy
, (46)

where πac and πmc are the correlations among the error terms for which it holds −1 ≤ πmc ≤ 1 and
−1≤ πmc ≤ 1. If πac and πmc are negative the errors are negatively correlated. Equation (40) becomes
now:

ρ = ρ0(1+πmcσmcxσmcy)A
r +(πacγxγy +δxδyπmcσmcxσmcy)A

r, (47)

with γx = σacx/σx0 , γy = σacy/σy0 , and

Ar =
1√

1+
(

1+
µ2

x0
σ2

x0

)(
σ2

mux
σ2

x0
+

σ2
mcx

σ2
x0

)
+

σ2
aux

σ2
x0

+
σ2

acx
σ2

x0√
1+
(

1+
µ2

y0
σ2

y0

)(
σ2

muy
σ2

y0
+

σ2
mcy

σ2
y0

)
+

σ2
auy

σ2
y0

+
σ2

acy
σ2

y0

. (48)

This model generalizes the correlation coefficient among x and y from Equation (40) to account for
different strength of the correlation among the correlated error components. All considerations discussed
in the previous sections do apply also to this model. Expressions for ρ in the case of additive and
multiplicative error can be found in the Section 6.3.1 and 6.3.2.

By setting σ2
acx

= σ2
acy

= σ2
ac, σ2

mcx
= σ2

mcy
= σ2

mc, and πac = πmc = 1 (perfect correlation), model (40)
is obtained, and similarly models (33) and (38).
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4 Correction for correlation bias

Because virtually all kinds of measurement are affected by measurement error, the correlation calculated
from sampled data is distorted to some degree depending on the level of the measurement error and on its
nature. We have seen that experimental error can inflate or deflate the correlation and that ρ (and hence
its sample realization r) is almost always a biased estimation of the true correlation ρ0. An estimator
that gives a theoretically unbiased estimate of the correlation coefficient between two variables x and
y taking into account the measurement error model can be derived. For simple uncorrelated additive
error this is given by the Spearman’s formula (49): this is a known results which in the past has been
presented and discussed in many different fields16–19. To obtain similar correction formulas for the error
models considered here it is sufficient to solve for ρ0 from the defining Equations (33), (38) and (40). The
correction formulas are as follows (the ± indicates positive and negatively correlated error):

1. Correction for simple additive error (only uncorrelated error):

ρ0 = A−1
ρ. (49)

2. Correction for additive error:

ρ
corrected
± =

1
Aa ρ∓ γxγy. (50)

3. Correction for multiplicative error:

ρ
corrected
± =

1
Am(1±σ2

mc)
ρ∓ σ2

mc
1±σ2

mc
.δxδy (51)

4. Correction for realistic error:

ρ
corrected
± =

1
Ac(1±σ2

mc)
ρ∓

γxγy +δxδyσ2
mc

1±σ2
mc

. (52)

In practice, to obtain a corrected estimation of the correlation coefficient ρ0, the ρ is substituted by r in
(50), (51) and (52), which is the sample correlation calculated from the data. The effect of the correction
is shown, for the realistic error model (15), in Figure 8 where the true know error variance components
have been used. It should be noted that it is possible that the corrected correlation exceeds ±1.0. This
phenomenon has already been observed and discussed16, 30: it is due to the fact that the sampling error of
a correlation coefficient corrected for distortion is greater than would be that of an uncorrected coefficient
of the same size (at least for the uncorrelated additive error4, 18, 31). When this happens the corrected
correlation can be rounded to ±1.019, 31.

4.1 Estimation of the error variance components
Simulations shown in Figure 8 have been performed using the known parameters for the error components
used to generate the data. In practical applications the error components needs to be estimated from the
measured data and the quality of the correction will depend on the accuracy of the error variance estimate.
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Figure 8. Correction of the distortion induced by the realistic measurement error (see Equation (15)). A:
Pairwise correlations ρ among 25 metabolites calculated from simulated data with additive and
multiplicative measurement error vs the true correlation ρ0. B: Corrected correlation coefficients using
Equation 52 and using the known error variance components. See Section 6.5.6 for details on the data
simulation.

The case of purely additive uncorrelated measurement error (σ2
ac = 0) has been addressed in the

past18, 19, 32: in this case the variance components σ2
x0

and σ2
y0

can be substituted with their sample
estimates (s2

x0
and s2

y0
) obtained from measured data, while the error variance components (σ2

aux
and σ2

auy
)

can be estimated if an appropriate experimental design is implemented, i.e. if n replicates are measured
for each observation.

Unfortunately, there is no simple and immediate approach to estimate the error component in the other
cases when many variance components need to be estimated (6 error variances in the case of error model
(15) and 8 in the case of the generalized model (42), to which the estimations of πmc and πac) must be
added).

Different approaches can be foreseen to estimate the error components which is not a trivial task,
including the use of (generalized) linear mixed model33, 34, error covariance matrix formulation29, 35, 36 or
common factor analysis factorization37. None of these approaches is straightforward and require some
extensive mathematical manipulations to be implemented; an accurate investigation of the simulation of
the error component is outside the scope of this paper and will presented in a future publication.

5 Discussion

Since measurement error cannot be avoided, correlation coefficients calculated from experimental data are
distorted to a degree which is not known and that has been neglected in life sciences applications but can
expected to be considerable when comprehensive omics measurement are taken.

As previously discussed, the attenuation of the correlation coefficient in the presence of additive
(uncorrelated) error has been known for more than one century. The analytical description of the distortion
of the correlation coefficient in presence of more complex measurement error structures (Equations (33),
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(38) and (40)) has been presented here for the first time to the best of our knowledge.
The inflation or attenuation of the correlation coefficient depends on the relationship between the value

of true correlation ρ0 and the error component. In most cases in practice, ρ is a biased estimator for ρ0. In
absence of correlated error, there is always attenuation; in the presence of correlated error there can also
be increase (in absolute value) of the correlation coefficient. This has also been observed in regression
analysis applied to nutritional epidemiology and it has been suggested that correlated error can, in principle,
be used to compensate for the attenuation38. Moreover, the distortion of the correlation coefficient has
also implications for hypothesis testing to assess the significance of the measured correlation r.

To illustrate the counterintuitive consequences of correlated measurement error consider the following.
Suppose that the true correlation is null. In that case, Equations (33), (38) and (40) reduce to

ρ = Aa
γxγy (53)

ρ = Am
δxδyσ

2
mc (54)

ρ =±(γxγy +δxδyσ
2
mc)A

c (55)

which implies that the correlation coefficient is not zero. Moreover, in real-life situations there is also
sampling variability superimposed on this which may in the end result in estimated correlations of the
size as found in several omics applications (in metabolomics observed correlations are usually lower than
0.610, 22; similar patterns are also observed in transcriptomics39, 40) while the true biological correlation is
zero.

The correction equations presented need the input of estimated variances. Such estimates also carry
uncertainty and the quality of these estimates will influence the quality of the corrections. This will be the
topic of a follow-up paper. Prior information regarding the sizes of the variance components would be
valuable and this points to new requirements for system suitability tests of comprehensive measurements.
In metabolomics, for example, it would be worthwhile to characterize an analytical measurement platform
in terms of such error variances including sizes of correlated error using advanced (and to be developed)
measurement protocols.

Distortion of the correlation coefficient has implications also for experimental planning. In the case
of additive uncorrelated error, the correction depends explicitly on the sample size N used to calculate r
and on the number of replicates nx, ny used to estimate the intraclass correlation (i.e. the error variance
components): since in real life the total sample size N× (nx +ny) is fixed, there is a trade off between the
sample size and the number of replicates that can be measured and the experimenter has to decide whether
to increase N or nx.

The results presented here are derived under the assumption of normality of both measurement and
measurement errors. If x0 and y0 are normally distributed, then x and y will be, in presence of additive
measurement error, normally distributed, with variance given by (12). For multiplicative and realistic error
the distribution of x and y will be far from normality since it involves the distribution of the product of
normally distributed quantities which is usually not normal41. It is known that departure from normality
can result in the inflation of the correlation coefficient42 and in distortion43 of its (sampling) distribution
and this will add to the corruption induced by the measurement error.

We think that in general correlation coefficients are trusted too much on face value and we hope to
have triggered some doubts and pointed to precautions in this paper.
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6 Material and Methods

6.1 Mathematical calculations
6.1.1 Derivation of ρ in presence of multiplicative measurement error
In presence of purely multiplicative error it holds

E[x] = E[x0(1+ εmux± εmc)] = µx0 (56)

and

E[x2] = E[x2
0 + x2

0(ε
2
mux

+ ε
2
mc +2εmux + εmc± εmc±2εmuxεmc)] (57)

= σ
2
x0
+µ

2
x0
+σ

2
mux

(
σ

2
x0
+µ

2
x0

)
+σ

2
mc
(
σ

2
x0
+µ

2
x0

)
using (19) - (21) main text to calculate the expectation of the cross terms. For E[xy] it holds

E[xy] = E[x0y0 + x0y0(εmc± εmc± ε
2
mc± εmcεmuy + εmcεmux + εmux + εmuy + εmuxεmuy)]. (58)

Because of the independence of x0, y0 and the error terms, the expectations of all cross terms is null except

±E[x0y0ε
2
mc] =±E[x0y0]E[ε2

mc] (59)

=±σ
2
mc
(
σ

2
x0y0

+µx0 µy0

)
,

where E[x0y0] is given by Equation (29). Plugging (56), (57) and (58) in (6), the expected correlation
coefficient is

ρ =
σx0y0±σ2

mc(σx0y0 +µx0 µy0)√
σ2

x0
+
(
σ2

x0
+µ2

x0

)(
σ2

mux
+σ2

mc
)√

σ2
y0
+
(
σ2

y0
+µ2

y0

)(
σ2

muy
+σ2

mc

) , (60)

and it can re-written as (38) by setting γx = σ2
ac/σ2

x0
and γy = σ2

ac/σ2
y0

δx = µx0/σx0 , δy = µy0/σy0 and
defining the attenuation coefficient Am (39).

6.1.2 Derivation of ρ in presence of realistic measurement error
To simplify calculations we set{

Mx = x0(1+ εmux± εmc)

Ax = εaux± εac
(61)

and similarly we define My and Ay for variable y. It holds

E[Ax] = 0 and E[Mx] = µx0 (62)

and

E[A2
x ] = σ

2
aux

+σ
2
ac. (63)

E[M2
x ] is given by Equation (57). Because error components are independent and with zero expectation

(see Equations (19)-(21)) it holds

E[MxAx] = E[MxAy] = E[MyAx] = 0 (64)
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and

E[MxMy] = σx0y0 +µx0 µy0± (σx0y0 +µx0 µy0)σ
2
mc (65)

E[AxAy] =±σ
2
ac (66)

It follows that

E[x] = µx0 (67)

E[x2] = E[M2
x ]+E[A2

x ]+2E[MxAx] (68)

= σ
2
x0
+µ

2
x0
+σ

2
mux

(
σ

2
x0
+µ

2
x0

)
+σ

2
c
(
σ

2
x0
+µ

2
x0

)
+σ

2
aux

+σ
2
ac

E[xy] = E[MxMy]+E[AxAy]+E[MxAy]+E[MyAx] (69)

= σx0y0 +µx0 µy0± (σx0y0 +µx0 µy0)σ
2
c ±σ

2
ac

Plugging (67), (68), and (69) into (6) one gets the expression for the correlation coefficient in presence of
additive and multiplicative measurement error:

ρ =
σx0y0± (σx0y0 +µx0 µy0)σ

2
mc±σ2

ac√
σ2

x0
+
(
σ2

x0
+µ2

x0

)(
σ2

mux
+σ2

mc
)
+σ2

aux
+σ2

ac ×√
σ2

y0
+
(
σ2

y0
+µ2

y0

)(
σ2

muy
+σ2

mc

)
+σ2

auy
+σ2

ac

, (70)

that can re-written as (40) by using previously defined γx,γy,δx and δy and defining the attenuation
coefficient Ac (41).

6.2 Behavior of ρ in the case of additive negatively correlated error
For negative correlated error, when the true correlation is positive

ρ →


0 < ρ < ρ0 if ρ0 >

A
A−1γxγy

ρ0 if ρ0 =
A

A−1γxγy

> ρ0 if ρ0 <
A

A−1γxγy

(71)

Since A
A−1γxγy < 0, ρ is always smaller than the true correlation. When the true correlation is negative

(ρ0 < 0) the expected correlation is always negative, but it can be, in absolute value, smaller or larger than
the absolute value of the true correlation:

ρ →


< ρ0 if A

A−1γxγy < ρ0 < 0
= ρ0 if ρ0 =

A
A−1γxγy

> ρ0 if ρ0 >
A

A−1γxγy

(72)
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6.3 Correlation coefficient under the generalized error model
6.3.1 Additive error
Under the generalized additive correlated error model{

x = x0 + εaux + εacx

y = y0 + εauy + εacy

(73)

with εacx and εacy defined in Equations (43), the correlation coefficient can be expressed as:

ρ = Aa(ρ0 +πacγxγy), (74)

with γx = σacx/σx0 , γy = σacy/σy0 , and

Aa =
1√

1+ σ2
aux

σ2
x0

+
σ2

acx
σ2

x0

√
1+

σ2
auy

σ2
y0

+
σ2

acy
σ2

y0

. (75)

6.3.2 Multiplicative error
Under the generalized multiplicative error model{

x = x0(1+ εmux + εmcx)

y = y0(1+ εmuy + εmcy)
(76)

with εmcx and εmcy defined in Equations (43), the correlation coefficient can be expressed as:

ρ = ρ0(1+πmcσmcxσmcy)A
m +δxδyπmcσmcxσmcyA

m (77)

with

Am =
1√

1+
(

1+
µ2

x0
σ2

x0

)(
σ2

mux
σ2

x0
+

σ2
mcx

σ2
x0

)√
1+
(

1+
µ2

y0
σ2

y0

)(
σ2

muy
σ2

y0
+

σ2
mcy

σ2
y0

) (78)

6.3.3 General realistic error
Formulas for the correlation coefficient under the generalized realistic correlated error model are to be
found in the main text in Equations (47) and (48).

6.4 Correction of the correlation coefficient under the generalized correlated error model
6.4.1 Additive error
Under the generalized additive correlated error model the corrected correlation coefficient is

ρ
corrected =

1
Aa ρ−πacγxγy. (79)
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6.4.2 Multiplicative error
Under the generalized multiplicative correlated error model the corrected correlation coefficient is

ρ
corrected =

1
Am(1+πmcσmcxσmcy)

ρ−
πmcσmcxσmcy

1+πmcσmcxσmcy

δxδy. (80)

6.4.3 Realistic error
Under the generalized realistic correlated error model the corrected correlation coefficient is

ρ
corrected =

1
Ar(1+πmcσmcxσmcy)

ρ−
πacγxγy +δxδyπmcσmcxσmcy

1+πmcσmcxσmcy

(81)

6.5 Simulations
We provide here details on the simulation performed and shown in Figures 1 - 4, 6 and 8.

6.5.1 Simulations in Figure 1
N = 100 realizations of two variables x and y were generated under model with additive uncorrelated
measurement error (11), with ρ0 = 0.8, σ2

x0
= σ2

y0
= 1 and µ = (100,100). Error variance components

were set to σ2
aux

= σ2
auy

= 0 and to σ2
aux

= σ2
auy

= 0.75 (Panel A).

6.5.2 Simulations in Figure 2
The time concentrations profiles P1(t), P2(t) and P3(t) of three hypothetical metabolites P1, P2 and P3 are
simulated using the following dynamic model

d
dt P1(t) =−k1P−1(t)(ET −P2(t))+ k−1P2(t)
d
dt P2(t) =−k−1P1(t)+ k1P1(t)(ET −P2(t))− k2P2(t)
d
dt P3(t) = +k2P2(t)

which is the model of an irreversible enzyme-catalyzed reaction described by Michaelis-Menten kinetics.
Using this model, N = 100 concentration time profiles for P1, P2 and P3 were generated by solving the
system of differential equations after varying the kinetic parameters k1, k−1 and k2 by sampling them from
a uniform distribution. For the realization of the jth concentration profile

k j
1 ≈U(0.9× k1,1.1× k1) (82)

k j
−1 ≈U(0.9× k−1,1.1× k−1)

k j
2 ≈U(0.9× k2,1.1× k2)

E j
T ≈U(0.9×ET ,1.1×ET )

22/27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 11, 2019. ; https://doi.org/10.1101/671693doi: bioRxiv preprint 

https://doi.org/10.1101/671693


with population values k1 = 30,k−1 = 20,k2 = 10, and ET = 1. Initial conditions were set to (P10,P20 ,P30)=

(P j
10
,0,0) with P j

10
≈U(0.9×P10,1.1×P10) and P10 = 5. All quantities are in arbitrary units. Time profiles

were sampled at t = 0.4 a.u and collected in a data matrix X0 of size 100× 3. The variability in data
matrix X0 is given by biological variation. The concentration time profiles of P1, P2 and P3 shown in
Panel A are obtained using the population values for the kinetic parameters and for the initial conditions.

Additive uncorrelated and correlated measurement error is added on X0 following model (11) where
P1, P2 and P3 in X0 play the role of x0,y0 and of an additional third variable z0 which follows a similar
model. The variance of the error component was varied in 50 steps between 0 and 25% of the sample
variance s2

x0
,s2

y0
and s2

z0
calculated from X0. The variance of the correlated error was set to σ2

ac = 0.05 in
all simulations. Pairwise Pearson correlations ri, j with i, j = {P1,P2,P3} were calculated for the error
free case X0 and for data with measurement error added. 100 error realization were simulated for each
error value and the average correlation across the 100 realization is calculated and it is shown in Panel B.

The ”mini” metabolite-metabolite association networks shown in Panel C are defined by first taking the
Pearson correlation ri j among P1, P2 and P3 and then imposing a threshold on r to define the Connectivity
matrix Ai j

Ai j =

{
1 if |ri j|> 0.6
0 otherwise

. (83)

For more details see reference10.

6.5.3 Simulations in Figure 3
Principal component analysis was performed on a 100× 133 experimental metabolomic data set (see
Section 6.6 for a description). The 15 variables with the highest loading (in absolute value) and the 45
variables with the smallest loading (in absolute value) on the first principal component where selected
to form a 100× 60 data set X0 (we call this now the error free data, as if it only contained biological
variation). On this subset a new a principal component analysis was performed. Then multiplicative
correlated and uncorrelated measurement error was added on X0. The variance of the additive error was
set σ2

mu j
= 0.05× s2

j0 with j = 1,2, . . . ,60 where s2
j0 is the variance calculated for the jth column of X0,

i.e., the biological variance. The variance of the correlated error was fixed to 5% of the average variance
observed in the error free data (σ2

mc = 0.045).

6.5.4 Simulations in Figure 4
Let xi j and yi j denote the intensities of the resonances measured at 3.23 and 4.98 in randomly drawn
replicate j of sample Fi (i = 1,2, . . . ,5) and define the 5×1 vectors of means

xJ =
1
J

∑ j x1 j
...

∑ j x5 j

 and yJ =
1
J

∑ j y1 j
...

∑ j y5 j

 . (84)

The correlation rJ = corr(xJ,yJ) is calculated for J = 1,2,5, and 10; for each J the replicates used to
calculate xJ and yJ are randomly and independently sampled, for each sample separately, from the total
set of the 12 to 15 replicates available per sample. The procedure is repeated 105 times to construct the
distributions of the correlation coefficent shown in Figure 4C.

6.5.5 Simulations in Figure 6
Simulation results presented in Figure 6 show the results from calculations of the sample correlation
coefficient as a function of the true correlation ρ0 and of the true means (µx0 and µy0), the variances (σ2

x0
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and σ2
y0

of the signals x0 and y0 and the measurement error variances as they appear in the definitions of
ρ under the different error models (Equations (33), (38) and (40)). The calculations were done multiple
times for varying values for µx0 and µy0 , which were randomly and independently sampled from a uniform
distribution U(0,µ0), where µ0 was set to be equal to 23.4, which was the maximum values observed
in Data set 1 (see Section 6.6).Values for σ2

x0
and σ2

y0
were randomly and independently sampled from

a uniform distribution U(0,σ2
0 ), where σ2

0 was set to be equal to the average variance observed in the
experimental Data set 1. The values of the variance of all error components are randomly and independently
sampled from U(0, 1

4σ2
0 ). The overall procedure was repeated 104 for each value of ρ0 in the range [−1,1]

in steps of 0.1.

6.5.6 Simulations in Figure 8
The first 25 variables from Data set 1 have been selected and used to compute the means µ0 and the
correlation/covariance matrix Σ0 used to generate error-free data X0 ∼ N(µ0,Σ0) of size 104× 25 on
which additive and multiplicative measurement error (correlated and uncorrelated) is added (error model
(15)) to obtain X. All error variances are set to 0.1 which is approximately equal to 5% of the average
variance observed in X0. Pairwise correlations among the 25 metabolites are calculated from X. The
correlations are corrected using Equation (52) using the known distributional and error parameters (µ0,Σ0)
used to generate the data. The data generation is repeated 103 times and correlations (uncorrected and
corrected) are averaged over the repetitions.

6.6 Data sets
Data set 1: A publicly available data set containing measurements of 133 blood metabolites from 2139
subjects was used as a base for the simulation to obtain realistic distributional and correlation patterns
among measured features. The data comes from a designed case-cohort and a matched sub-cohort
(controls) stratified on age and sex from the TwinGene project44. The first 100 observation were used in
the simulation described in Section 6.5.3 and shown in Figure 3.

Data were downloaded from the Metabolights public repository45 (www.ebi.ac.uk/metabolights) with
accession number MTBLS93. For full details on the study protocol, sample collection, chromatography,
GC-MS experiments and metabolites identification and quantification see the original publication46 and
the Metabolights accession page.

Data set 2: This data set was acquired in the framework of a study aiming to the ”Characterization of
the measurement error structure in Nuclear Magnetic Resonance (NMR) data for metabolomic studies”29.
Five biological replicates of fish extract F1 - F5 were originally pretreated in replicates (12 to 15) and
acquired using 1H NMR. The replicates account for variability in sample preparation and instrumental
variability. For details on the sample preparation and NMR experiments we refer to the original publication.

6.7 Software
All calculations were performed in Matlab (version 2017a 9.2). Code to generate data under measurement
error models (11), (13) and (15) is available at systemsbiology.nl under the SOFTWARE tab.
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