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Abstract

To develop vaccines it is mandatory yet challenging to account for inter-individual

variability during immune responses. Even in laboratory mice, T cell responses of single

individuals exhibit a high heterogeneity that may come from genetic backgrounds, intra-

specific processes (e.g. antigen-processing and presentation) and immunization protocols.

To account for inter-individual variability in CD8 T cell responses in mice, we propose a

dynamical model and a statistical, nonlinear mixed effects model. Average and individual
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dynamics during a CD8 T cell response are characterized in different immunization

contexts (vaccinia virus and tumor). We identify biological processes more likely to be

affected by the immunization and those that generate inter-individual variability. The

robustness of the model is assessed by confrontation to new experimental data.

Our approach allows to investigate immune responses in various immunization con-

texts, when measurements are scarce or missing, and contributes to a better understand-

ing of inter-individual variability in CD8 T cell immune responses.

Author summary

Developments of vaccines and therapies based on the immune response require to

understand inter-individual variability, that is variations observed in responses of in-

dividuals subject to the same immunizations. These variations may originate from

genetic backgrounds, intra-specific processes and immunization protocols. We propose

a mathematical framework to describe and investigate inter-individual variability in

CD8 T cell responses in mice. It consists in coupling a dynamical model of CD8 T cell

response and an original statistical model of inter-individual variability. We characterize

individual mice dynamics in response to vaccinia virus and also tumor cells inoculation.

In addition we identify biological processes more likely to be affected by the immunization

and those that generate inter-individual variability. Our work provides a framework to

investigate immune responses in various immunization contexts, when measurements

are scarce or missing as is often the case. It contributes to a better understanding of

variability and its biological causes in CD8 T cell immune responses, and can be applied

to various immune responses provided that appropriate data are available.

Introduction 1

The immune response is recognized as a robust system able to counteract invasion by 2

diverse pathogens (Fischer and Raussel, 2016; Wong and Germain, 2018). However, 3

as a complex biological process, the dynamical behavior of its cellular components 4

exhibits a high degree of variability affecting their differentiation, proliferation or death 5

processes. Indeed, the frequency of antigen-specific T cells and their location relative to 6
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pathogen invasion will affect the dynamic of the response (Estcourt et al., 2005; Wong 7

and Germain, 2018; Xiao et al., 2007). Similarly, the pathogen load and virulence as well 8

as the host innate response will affect the T cell response (Iwasaki and Medzhitov, 2015). 9

Finally, at the cellular level, variation in protein content can also generate heterogeneous 10

responses (Feinerman et al., 2008). Genetic variability of the numerous genes controlling 11

the immune response will also be a source of variability among individuals (Fischer and 12

Raussel, 2016). Even among genetically identical individuals, the response to the same 13

infection can result in highly heterogeneous dynamics (Althaus et al., 2007; Grau et al., 14

2018; Murali-Krishna et al., 1998). 15

Cytotoxic CD8 T cells play an essential role in the fight against pathogens or tumors 16

as they are able to recognize and eliminate infected or transformed cells. Indeed, following 17

encounter of antigen-presenting cells loaded with pathogen or tumor derived antigens, 18

in lymphoid organs, quiescent naive CD8 T cells will be activated. This leads to their 19

proliferation and differentiation in effector cells that have acquired the capacity to kill 20

their targets, and to their ultimate differentiation in memory cells (Crauste et al., 2017; 21

Youngblood et al., 2017). The CD8 T cell immune response is yet a highly variable 22

process, as illustrated by experimental measurements of cell counts: dynamics of the 23

responses (timing, cell counts) may differ from one individual to another (Miller et al., 24

2008; Precopio et al., 2007; Xiao et al., 2007), but also depending on the immunogen 25

(Althaus et al., 2007; Estcourt et al., 2005; Murali-Krishna et al., 1998). 26

The role of genome variability in explaining inter-individual variations of T cell 27

responses has been recently investigated (Ferraro et al., 2014; Li et al., 2016) but 28

provided limited understanding of the observed heterogeneity. Li et al. (2016) focused on 29

correlations between gene expression and cytokine production in humans, and identified a 30

locus associated with the production of IL-6 in different pathogenic contexts (bacteria and 31

fungi). Ferraro et al. (2014) investigated inter-individual variations based on genotypic 32

analyses of human donors (in healthy and diabetic conditions) and identified genes that 33

correlate with regulatory T cell responses. 34

To our knowledge, inter-individual variability characterized by heterogeneous cell 35

counts has been mostly ignored in immunology, put aside by focusing on average behaviors 36

of populations of genetically similar individuals. The use of such methodology, however, 37

assumes that variability is negligible among genetically similar individuals, which is not 38
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true (Althaus et al., 2007; Badovinac et al., 2007; Crauste et al., 2017). 39

In this work, we propose to study inter-individual variability based on CD8 T cell 40

counts with nonlinear mixed effects models (Delyon et al., 1999; Kuhn and Lavielle, 41

2005; Lavielle, 2014). In these models, instead of considering a unique set of parameter 42

values as characteristic of the studied data set, a so-called population approach is used 43

based on distributions of parameter values. All individuals are assumed to be part of 44

the same population, and as so they share a common behavior (average behavior) while 45

they keep individual behaviors (random effects). Nonlinear mixed effects models are well 46

adapted to repeated longitudinal data. They aim at characterizing and understanding 47

“typical behaviors” as well as inter-individual variations. T cell count measurements, 48

obtained over the course of a response (few weeks), and the large variability they exhibit 49

represent a case study for this approach. 50

Nonlinear mixed effects models have been used to analyze data in various fields 51

(Davidian and Giltinan, 2003), especially in pharmakokinetic studies, and more recently 52

to model cell to cell variability (Almquist et al., 2015; Llamosi et al., 2016) or to study 53

tumor growth (Benzekry et al., 2014; Ferenci et al., 2017). In immunology, Keersmaekers 54

et al. (2018) have recently studied the differences between two vaccines with nonlinear 55

mixed effects models and ordinary differential equation (ODE) models for T and B cells. 56

Jarne et al. (2017) and Villain et al. (2018) have used the same approach to investigate 57

the effect of IL7 injections on HIV+ patients to stimulate the CD4 T cell response, and 58

have identified biological processes accounting for inter-individual variability. 59

A number of models of the CD8 T cell response based on ODEs have been proposed 60

over the years. Of particular relevance here is the work of De Boer et al. (2001), where 61

the model accounts for activated and memory cell dynamics but the influence of the 62

immunogen is imposed. Antia et al. (2003) proposed a model based on partial differential 63

equations, that includes immunogen effects and dynamics of naive, effector and memory 64

cells. These works describe different subpopulations of CD8 T cells, however most of the 65

time only total CD8 T cell counts are available to validate the models. In Crauste et al. 66

(2017), the authors generated cell counts for four subpopulations of CD8 T cells in mice 67

that they used to identify the most likely differentiation pathway of CD8 T cells after 68

immunogen presentation. This approach has led to a model of the average CD8 T cell 69

dynamics in mice after immunization and its representation as a set of nonlinear ODEs. 70
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The model consists in a system of ODEs describing the dynamics of naive, early effector, 71

late effector, and memory CD8 T cell subsets and the immunogen. 72

The goal of this article is to explore the ability of a mathematical model to describe the 73

inter-individual variability observed in CD8 T cell responses, in different immunization 74

contexts, by considering parameter values drawn from probability distributions (nonlinear 75

mixed effects model). Starting from the model published in (Crauste et al., 2017), we 76

will first select a model of the CD8 T cell immune response dynamics accounting 77

for variability in cell counts by using synthetic then experimental data, generated in 78

different immunization contexts. Second we will establish that the immunogen-dependent 79

heterogeneity influences the early phase of the response (priming, activation of naive 80

cells, cellular expansion). Finally, we will show that besides its ability to reproduce CD8 81

T cell response dynamics our model is able to predict individual dynamics of responses 82

to similar immunizations, hence providing an efficient tool for investigating CD8 T cell 83

dynamics and inter-individual variability. 84

Results 85

Model selection on synthetic data 86

In Crauste et al. (2017), System (3) (see Section Models of CD8 T cell dynamics) has 87

been shown to be able to describe average dynamics of CD8 T cell immune responses, 88

when CD8 T cells go through 4 differentiation stages: naive, early- then late- effector 89

cells, and memory cells (see Section Data). Here System (3) is reduced in order to 90

obtain a mixed effect model of CD8 T cell immune response whose parameters are 91

correctly estimated on ideal data. Ideal data are generated by simulating ODE models 92

and accounting for more individuals and time points than with real, biological data: we 93

call them“synthetic data”, see Section Model selection on synthetic data. 94

We use Synth data sets 1 to 4 (Table 1) to reduce System (3). Parameter estimation 95

is performed with SAEM algorithm (Monolix, 2019), see Section Parameter estimation. 96

Using the procedure described in Section Model selection on synthetic data, based in 97

particular on the use of the relative standard error (RSE) defined in (4) that informs on 98

the confidence in the estimation, we iteratively remove parameters (see Table S2) 99
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µEI (estimated value = 0.2 vs true value = 1.8 cell−1 day−1, RSE = 61%), 100

µEL (estimated value = 0.3 vs true value = 3.6 cell−1 day−1, RSE = 17%), and 101

µI (estimated value = 0.013 vs true value = 0.055 day−1, RSE = 9%). 102

They are all related to death rates, of late effector cells (µEL ) and of the immunogen 103

(µI , µ
E
I ). In each case, the model still accounts for death of late effector cells and 104

of the immunogen, via parameters µLL and µLI . Nonlinear mixed effects models avoid 105

redundancy in the description of biological processes, thus they allow reliable parameter 106

estimation using synthetic data. Parameter values are available in Table S1. 107

This leads to a reduction of the initial 12-parameters System (3) to the 9-parameters 108

System (1), 109

Ṅ = −µNN − δNEIN,

Ė = δNEIN + ρEIE − [µEE + δEL]E,

L̇ = δELE − [µLL+ δLM ]L,

Ṁ = δLML,

İ = [ρII − µIL] I.

(1)

For the sake of simplicity the parameters are renamed in System (1): µLL = µL and 110

µLI = µI . Fig 1.A displays a schematic representation of System (1). 111

A model of CD8 T cell dynamics accounting for in vivo inter- 112

individual heterogeneity 113

Biological data from VV data set 1 (see Section Data) are confronted to System (1). 114

Parameter estimation is performed using the SAEM algorithm (Monolix, 2019) and, 115

following the procedure described in Section Model selection on biological data, leads to 116

further reduction of the model. Using in vivo data to estimate parameter values provides 117

a priori less information than synthetic data. Hence, it might be necessary to reduce 118

the number of parameters to ensure correct estimations, either mean values or random 119

effects, similarly to what has been done in the previous section. 120

The first step in the model reduction procedure leads to an estimated value of 121

parameter µL close to zero (2× 10−8 cell−1 day−1), with a RSE > 100%, see Table 2, 122
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(A) Schematic representation of System (1)

(B) Schematic representation of System (2)

Fig 1. Schematic CD8 T cell differentiation diagram following immunization. (A)
Schematic representation of System (1). (B) Schematic representation of System (2).
Dashed black lines represent individual-dependent parameters, while straight black lines
(only in (B)) represent parameters fixed within the population. Grey round-ended
dotted lines represent feedback functions (see systems of equations).
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Step 1. Hence parameter µL is removed, and the estimation is performed again with the 123

updated model. We observe that all mean value parameters have now RSE < 30%, so 124

we conclude that their estimations are reliable (Table 2, Step 2 ). 125

In the second step of the procedure however, several random effects have large RSE 126

and high shrinkages (Table 2, Step 2 to Step 5 ). The shrinkage is defined in (5) as 127

a measure of the difference between the estimated variance of a parameter and the 128

empirical variance of its random effect. Parameter δLM has the worst RSE and the 129

largest shrinkage (99%), so we remove the random effect of δLM . Estimating parameter 130

values with the updated reduced model leads to removing successively random effects of 131

δEL (RSE = 138%, shrinkage = 95%), ρE (shrinkage = 97%), and µN (shrinkage = 84%). 132

At each step, RSE of mean value parameters are low, and quality of individual fits 133

is preserved. 134

The resulting model, System (2) (see Fig 1.B), comprises 8 parameters, 4 of them 135

vary within the population (δNE , µE , ρI , µI) and 4 are fixed within the population (µN , 136

ρE , δEL, δLM ): 137

Ṅ = −µNN − δNEIN,

Ė = δNEIN +
[
ρEI − µEE − δEL

]
E,

L̇ = δELE − δLML,

Ṁ = δLML,

İ = [ρII − µIL] I.

(2)

Bars highlight fixed parameters within the population. This system enables to describe 138

VV data set 1 and its inter-individual variability. The inter-individual variability is 139

entirely contained in the activation rate of naive cells (δNE), the mortality-induced 140

regulation of effector cells (µE), and the dynamics of the immunogen (ρI and µI). 141

Fig 2.A shows the good agreement between model predictions and individual mea- 142

surements for each CD8 T cell subpopulation. Model predictions are obtained from 143

numerical simulations of System (2) performed with estimated individual parameter 144

values. Despite over- or under-estimation of some individual observations, the 90th per- 145

centile of the difference between observed and predicted values (dashed line) shows that 146

most experimental cell counts are efficiently predicted (estimated errors are relatively 147

small for all subpopulations: aN = aM = 0.3 log10(cells), aE = aL = 0.4 log10(cells)). 148
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Parameter values are given in Table 3. 149

Fig 3 shows the estimated dynamics of early- and late-effector and memory cells 150

of two individuals. One individual (Fig 3.A) was monitored on days 7, 15 and 47pi 151

leading to three measurements points for late effector cells and two for early effector and 152

memory cells. Estimated dynamics are in agreement with what is expected, especially 153

regarding the time and height of the peak of the response and the following contraction 154

phase. The other individual (Fig 3.B) had cell count measurements only on day 8pi, yet 155

the estimated dynamics correspond to an expected behavior. This could not have been 156

obtained by fitting this individual alone. Hence we are able to simulate likely dynamics 157

even with a small amount of data points, thanks to the use of nonlinear mixed effects 158

models and the parameter estimation procedure. By focusing first on the population 159

dynamics (based on a collection of individual dynamics), the method enables to recover 160

the whole individual dynamics. This is a huge advantage when data sampling frequency 161

is low. 162

Similar good results are obtained for Tumor data set 1 (see Fig 2.B and parameter 163

values in Table 3). Therefore System (2) enables to describe inter-individual variability 164

in different immunization contexts, here VV and Tumor immunizations, and with only 165

few data points per individual. 166

Estimated parameter values obtained with System (2) for VV or Tumor data sets 167

are in the same range as in the estimation previously performed on average cell counts 168

on a similar experimental set (VV immunization, Crauste et al. (2017)), see Table 3. 169

Some differences are observed for estimated values of differentiation rates, yet for the 3 170

estimations (VV data set 1, Tumor data set 1, Crauste et al. (2017)) parameter values 171

remain in the same order of magnitude, indicating consistency between the two studies. 172

Estimated values of parameter δNE show the largest relative differences. Yet, the largest 173

difference is observed between VV and Tumor data sets obtained with System (2), rather 174

than between these values and the one obtained in Crauste et al. (2017). This may 175

highlight a potential difference in the capacity of the two immunogens (VV and Tumor) 176

to activate naive cells. This is investigated in the next section. 177
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Fig 2. For each CD8 T cell count experimental point, the prediction obtained with
System (2) is plotted, for (A) VV data set 1 and (B) Tumor data set 1. Dashed lines
represent the 90th percentile of the difference between observed and predicted values. In
both figures, naive (blue), early effector (red), late effector (green), and memory
(purple) cell counts are depicted, and the solid black line is the curve y = x.
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(A)

(B)

Fig 3. The dynamics of three subpopulations (early effector - red, late effector - green,
memory - purple) are simulated with System (2) for two individuals. Experimental
measurements are represented by dots, simulations of the model by straight lines. (A)
Individual cell counts have been measured on days 7, 15 and 47pi. (B) Individual cell
counts have been measured on day 8pi only. Although each individual is not
characterized by enough experimental measurements to allow parameter estimation on
single individuals, nonlinear mixed effects models provide individual fits by considering
a population approach.
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Immunization-dependent parameters 178

Parameter comparison between immunizations. VV and Tumor induced im- 179

munizations differ in many aspects. VV immunizations are virus-mediated, use the 180

respiratory tract to infect cells, and trigger an important innate response. Tumor immu- 181

nizations involve eukaryotic cells bearing the same antigen, use subcutaneous routes, and 182

induce a reduced innate response. From the independent estimations on VV and Tumor 183

data sets (Table 3), we compute differences between estimated values of fixed effects. 184

Differences are large for parameters – in decreasing order – δNE (62%), ρE (60%), µN 185

(47%), ρI (37%), and δLM (30%). These large differences may result from biological 186

processes involved in the CD8 T cell response that differ depending on the immunogen. 187

Consequently, combining both data sets (VV and Tumor) as observations may 188

highlight which parameters have to be significantly different to describe both data sets. 189

Parameters depending on immunization. To perform this analysis, we combine 190

VV and Tumor data sets 1 and we include a categorical covariate into the model to 191

estimate parameter values (see Section Parameter estimation). Covariates allow to 192

identify parameter values that are significantly different between two CD8 activation 193

conditions (tumors vs virus). 194

A covariate is added to the fixed effects of the five parameters that showed the larger 195

differences in the initial estimation: δNE , ρE , µN , ρI and δLM . This results in the 196

estimation of two different parameter values for parameters ρE , µN and δLM (that are 197

fixed within the population) and two probability distributions with different mean values 198

for parameters δNE and ρI (that vary within the population). 199

One may note that adding a covariate increases the number of parameters to estimate. 200

However, the number of parameters is not doubled, since we assumed that parameters 201

without covariates are shared by both immunization groups. In addition, the data set is 202

larger, since it combines VV and Tumor measurements. Hence the number of parameters 203

with respect to the amount of data remains reasonable. 204

From this new estimation, we conclude that among the five selected parameters the 205

covariates of only four of them are significantly different from zero: δNE , ρE , µN , and 206

δLM (Wald test, see Table S3 and Section Parameter estimation). The estimation is 207

therefore performed a second time assuming ρI distribution is the same in both groups. 208
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Fig 4. Probability distribution of parameter δNE defined with a covariate. Estimated
distributions of VV-associated (left, red) and Tumor-associated (right, green) values are
plotted. Histograms of estimated individual parameter values are also plotted (red for
VV-associated values, green for Tumor-associated values).

Then the Wald test indicates that the remaining covariates are significantly different 209

from zero (Table 4). 210

Fig 4 shows the estimated distribution for parameter δNE that varies within the 211

population and for which we included a covariate. Histograms display the estimated 212

individual parameter values of δNE . They show two distinct distributions of δNE values, 213

corresponding to VV (red)- and Tumor (green)-associated values. The histograms and 214

the theoretical distributions are in agreement. 215

Table 4 gives the estimated values of all parameters in both groups. Regarding 216

parameters that do not vary within the population, it is required for parameters µN , 217

δLM and ρE to be different to describe each data set, and this difference is accounted 218

for with a covariate parameter. Noticeably, using categorical covariates mostly improves 219

the confidence in the estimation, as highlighted by either RSE values in the same range 220
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(µN , ρE) or improved (all other parameters) RSE values (Tables 3 and 4). 221

In summary, we identified parameters whose values are significantly different according 222

to the immunogen used to activate CD8 T cells. These parameters correspond to the 223

dynamics of naive cells (µN ), their activation (δNE), the proliferation of early effector 224

cells (ρE), and differentiation to memory cells (δLM ). We hence conclude that different 225

immunizations affect the CD8 T cell activation process in the first phase of the response 226

(priming, activation of naive cells, expansion of the CD8 T cell population) as well as 227

the development of the memory population, and induce various degrees of variability in 228

these responses through the activation of naive cells. 229

Predicting dynamics following VV and Tumor immunizations 230

To challenge System (2) and the estimated parameters (Table 4), we compare simulated 231

outputs to an additional data set, not used for data fitting up to this point, of both VV 232

and Tumor immunizations, VV data set 2 and Tumor data set 2 (Table 1 and Section A 233

posteriori model validation on biological data). 234

We already know the probability distribution of parameters (Table 4), so we only 235

estimate individual parameters in order to fit individual dynamics. Results are shown in 236

Fig 5, for both VV data set 2 and Tumor data set 2. It is clear that estimated individual 237

dynamics are consistent with previous individual dynamics estimations. Hence, we 238

validate System (2) and values estimated in both VV and Tumor immunization contexts 239

by showing that estimated parameter values allow to characterize CD8 T cell counts 240

obtained in similar contexts. 241

Discussion 242

When following an in vivo immune response, experimental measurements are often 243

limited by either ethical issues or tissue accessibility. Consequently, one often ends up 244

measuring cell counts in peripheral blood on a restricted number of time points per 245

individual, over the duration of a response (see Fig 3). With such data, estimation 246

of all model parameters becomes unlikely. Using nonlinear mixed effects models, we 247

propose a dynamical model of CD8 T cell dynamics that circumvents this difficulty by 248

assuming that all individuals within a population share the main characteristics. The 249
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Fig 5. Observations vs estimated values of individual CD8 T cell counts, for (A) VV
data set 2 and (B) Tumor data set 2. Individual parameter values have been estimated
with System (2) and population parameter values and distribution defined on VV and
Tumor data sets 1. In both figures, naive (blue), early effector (red), late effector
(green), and memory (purple) cell counts are depicted, and grey points correspond to
individual values from Fig 2. The black straight line is y = x.
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model allows the accurate description of individual dynamics, even though individual 250

measurements are scarce. Indeed, we are able to obtain both good fits and relevant 251

dynamics for individuals with only few cell count measurements, as illustrated in Fig 3. 252

These results indicate that knowledge of population dynamics parameters and numerical 253

simulations complement information given by experimental measurements. 254

Starting from the model described in Crauste et al. (2017) that could efficiently 255

describe CD8 T cell dynamics, at the level of average population cell-counts in peripheral 256

blood, we built and validated this nonlinear mixed effects model in a step-wise fashion. 257

The system was first reduced to ensure correct parameter estimation when confronted 258

to ideal, highly informative data. We next identified parameters – hence biological 259

processes – that vary between individuals, and parameters that can be fixed within 260

the population to explain biological data measured in different immunization contexts 261

(virus and tumor). Finally, by adding a categorical covariate we identified immunization- 262

dependent parameters. 263

Noteworthy, from a biological point of view, the removal of one parameter during 264

model reduction (for example, the death rate of late effector cells) must not be understood 265

as if the corresponding process is not biologically meaningful. Based on the available 266

data, our methodology found that some processes are non-necessary in comparison with 267

the ones described by the system’s equations. 268

Similarly, parameters characterizing immunogen dynamics vary within the population 269

whereas model reduction led to remove the variability of equivalent processes (proliferation 270

for instance) in CD8 T cell dynamics. It is likely that this is due to a lack of experimental 271

measures on immunogen dynamics (whether virus load evolution or tumor growth), and 272

one cannot conclude that inter-individual variability mostly comes from immunogen 273

dynamics. Information on immunogen dynamics, when available, could significantly 274

improve parameter estimation and help refining the information on inter-individual 275

variability during CD8 T cell responses. 276

In our biological data, inter-individual variability is explained only by variability 277

in the activation rate of naive cells, the mortality rate of effector cells, and dynamics 278

(proliferation and death) of the immunogen. The former is actually in good agreement 279

with the demonstration that in diverse infection conditions the magnitude of antigen- 280

specific CD8 T cell responses is primarily controlled by clonal expansion (van Heijst et 281
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al., 2009). 282

Two of the three differentiation rates (early effector cell differentiation in late effector 283

cells, and late effector cell differentiation in memory cells) do not need to vary to 284

describe our data sets. This robustness of the differentiation rates is in good agreement 285

with the auto-pilot model that shows that once naive CD8 T cells are activated their 286

differentiation in memory cells is a steady process (Kaech and Ahmed, 2001; Stipdonk 287

et al., 2001). 288

Eventually, using nonlinear mixed effects models and an appropriate parameter 289

estimation procedure, we were able to quantitatively reproduce inter-individual vari- 290

ability in two different immunization contexts (VV and Tumor) and provide predictive 291

population dynamics when confronted to another data set (for both immunogens). This 292

demonstrates the robustness of the model. 293

The addition of a categorical covariate allowed us to identify parameters that are 294

immunization-dependent. Interestingly they control the activation of the response 295

(priming, differentiation of naive cells, expansion of effector cells) as well as the generation 296

of memory cells. This is again in good agreement with the biological differences that 297

characterize the two immunogens used in this study. Indeed, pathogen-associated 298

molecular patterns (PAMP) associated with vaccinia virus will activate a strong innate 299

immune response that will provide costimulatory signals that in turn will increase the 300

efficiency of naive CD8 T cell activation (Iwasaki and Medzhitov, 2015). In contrast, when 301

primed by tumor cells CD8 T cells will have access to limited amount of costimulation 302

derived from damage associated molecular patterns (Yang et al., 2017). The amount 303

of costimulation will also control the generation of memory cells (Mescher et al., 2006). 304

Focusing on average CD8 T cell behaviors (not shown) highlights stronger responses 305

following VV immunization, characterized by a faster differentiation of naive cells and a 306

higher peak of the response (at approximately 3× 105 cells compare to 105 cells for the 307

Tumor induced response). Also, in average, more memory cells are produced following 308

VV immunization. Hence the addition of covariates to the model parameters has allowed 309

to identify biologically relevant, immunogen-dependent parameters. 310

Using covariates has additional advantages. First, they allow to consider a larger data 311

set (in our case, the combination of two data sets) without adding too many parameters to 312

estimate (4 covariates in our case). This is particularly adapted to situations where only 313

March 19, 2020 17/40

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2020. ; https://doi.org/10.1101/671891doi: bioRxiv preprint 

https://doi.org/10.1101/671891
http://creativecommons.org/licenses/by-nc-nd/4.0/


Individual 1 Individual 2

0 10 20 30 40
Time (days)

102

103

104

105

106

Ea
rly

 e
ffe

ct
or

 c
el

l c
ou

nt
s (

lo
g1

0)

0 10 20 30 40
Time (days)

102

103

104

105

106

Ea
rly

 e
ffe

ct
or

 c
el

l c
ou

nt
s (

lo
g1

0)

Fig 6. Positive side-effect of using covariates. For two illustrative individuals,
accounting for covariates allows to better estimate early effector cell dynamics: red
plain curve with covariate, blue dashed curve without covariate.

some parameters are expected to differ depending on the data set (here, the immunogen). 314

Second, and as a consequence, data fits may be improved compared to the situation 315

where data sets generated with different immunogens are independently used to estimate 316

parameters. Fig 6 illustrates this aspect: dynamics of two individuals are displayed, with 317

and without covariate. In both cases using the covariate (and thus a larger data set) 318

improved the quality of individual fits, and in the case of Individual 1 generated more 319

relevant dynamics with a peak of the response occurring earlier, before day 10pi. No 320

individual fit has been deteriorated by the use of a covariate (not shown). 321

Finally, CD8 T cell response dynamics to both VV and Tumor immunogens were 322

well captured for data sets that had not been used to perform parameter estimation 323

(Section Predicting dynamics following VV and Tumor immunizations). The behavior of 324

each individual was estimated with the prior knowledge acquired on the population (i.e. 325

fixed parameters values and variable parameter distributions) and proved consistent with 326

previous estimated individual behaviors. The correct prediction of individual behaviors 327

by the model, in a simple mice experiment, paves the way to personalized medicine 328

based on numerical simulations. Indeed, once the population parameters are defined, 329

numerical simulation of individuals can be performed from a few measurements per 330

individual and consequently would allow to adapt personalized therapies. 331
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Material, Methods and Models 332

Ethics Statement 333

CECCAPP (Lyon, France) approved this research accredited by French Research Ministry 334

under project #00565.01. 335

Mice were anesthetized either briefly by placement in a 3% isoflurane containing 336

respiratory chamber or deeply by intraperitoneal injection of a mix of Ketamin (70 337

mg/kg) and Xylazin (9 mg/kg). All animals were culled by physical cervical disruption. 338

Data 339

All data used in this manuscript are available at 340

https://osf.io/unkpt/?view_only=ff91bd89bc32421dbcbb356c3509ca55. 341

Experimental Models. C57BL/6 mice (C57BL6/J) and CD45.1+ C57BL/6 mice 342

(B6.SJL-PtprcaPepcb/BoyCrl) were purchased from CRL. F5 TCR-tg mice recognizing 343

the NP68 epitope were crossed to a CD45.1+ C57BL/6 background (B6.SJL-PtprcaPep- 344

cb/BoyCrl-Tg(CD2-TcraF5,CD2-TcrbF5)1Kio/Jmar) (Jubin et al., 2012). They have 345

been crossed at least 13 times on the C57BL6/J background. All mice were homozygous 346

adult 6-8-week-old at the beginning of experiments. They were healthy and housed in 347

our institute’s animal facility under Specific Pathogen-Free conditions. 348

Age- and sex-matched litter mates or provider’s delivery groups, which were naive of 349

any experimental manipulation, were randomly assigned to 4 experimental groups (of 5 350

mice each) and co-housed at least for one week prior to experimentation. Animals were 351

maintained in ventilated enriched cages at constant temperature and hygrometry with 352

13hr/11hr light/dark cycles and constant access to 21 kGy-irradiated food and acid (pH 353

= 3 ± 0.5) water. 354

Vaccinia Virus (VV) Immunization. 2 × 105 naive CD8 T cells from CD45.1+ 355

F5 mice were transferred by retro-orbital injection in, 6-8-week-old congenic CD45.2+ 356

C57BL/6 mice briefly anaesthetized with 3% isoflurane. The day after deeply Xylazin/ 357

Ketamin-anaesthetized recipient mice were inoculated intra-nasally with 2× 105 pfu of a 358

vaccinia virus expressing the NP68 epitope (VV-NP68) provided by Pr. A.J. McMichael 359
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(Jubin et al., 2012). 360

Tumor Immunization. 2 × 105 naive CD8 T cells from CD45.1+ F5 mice were 361

transferred by retro-orbital injection in 6-8-week-old congenic CD45.2+ C57BL/6 mice 362

briefly anaesthetized with 3% isoflurane. The day after, recipients were subcutaneously 363

inoculated with 2.5× 106 EL4 lymphoma cells expressing the NP68 epitope (EL4-NP68) 364

provided by Dr. T.N.M. Schumacher (de Brito et al., 2011). 365

Phenotypic Analyses. Mice were bled at intervals of at least 7 days. Blood cell 366

suspensions were cleared of erythrocytes by incubation in ACK lysis solution (TFS). 367

Cells were then incubated with efluor780-coupled Fixable Viability Dye (eBioscience) 368

to label dead cells. All surface stainings were then performed for 45 minutes at 4◦C in 369

PBS (TFS) supplemented with 1% FBS (BioWest) and 0.09% NaN3 (Sigma-Aldrich). 370

Cells were fixed and permeabilized with the Foxp3-fixation and permeabilization kit 371

(eBioscience) before intra-cellular staining for one hour to overnight. The following 372

mAbs(clones) were utilized: Bcl2(BCL/10C4), CD45.1(A20) and CD45(30-F11) from 373

Biolegend, Mki67(SolA15) and CD8(53.6.7) from eBioscience, and CD44 (IM7.8.1) from 374

Miltenyi. Samples were acquired on a FACS LSR Fortessa (BD biosciences) and analyzed 375

with FlowJo software (TreeStar). 376

CD8 T Cell Differentiation Stages. For both immunizations (VV and Tumor), 377

phenotypic cell subsets based on Mki67-Bcl2 characterization (Crauste et al., 2017) 378

have been identified and the corresponding cell counts measured in blood, from day 4 379

post-inoculation (pi) up to day 28pi, 32pi, 46pi, or 47pi depending on the experiment 380

(VV and Tumor data sets 1, Table 1). Naive cells are defined as CD44-Mki67-Bcl2+ cells, 381

early effector cells as CD44+Mki67+Bcl2- cells, late effector cells as CD44+Mki67-Bcl2- 382

cells, and memory cells as CD44+Mki67-Bcl2+ cells. 383

Models of CD8 T cell dynamics 384

Initial model. The following system (3) is made of ODE and describes individual 385

behaviors. This is the model in Crauste et al. (2017), it describes CD8 T cell subpopula- 386

tion dynamics as well as the immunogen load dynamics in primary immune responses, 387
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as follows 388

Ṅ = −µNN − δNEIN,

Ė = δNEIN + ρEIE − [µEE + δEL]E,

L̇ = δELE −
[
µLLL+ µELE + δLM

]
L,

Ṁ = δLML,

İ =
[
ρII − µEI E − µLI L− µI

]
I.

(3)

The variables N , E, L and M denote the four CD8 T cell subpopulation counts, naive, 389

early effector, late effector, and memory cells respectively (see Section Data), and I is 390

the immunogen load. 391

The immunogen load dynamics are normalized with respect to the initial amount 392

(Crauste et al., 2015, 2017), so I(0) = 1. The initial amounts of CD8 T cell counts are 393

N(0) = 104 cells, E(0) = 0, L(0) = 0 and M(0) = 0. 394

Parameters δk are the differentiation rates, with k = NE, EL or LM for differentia- 395

tion from naive to early effector cells, from early effector to late effector cells and from 396

late effector to memory cells, respectively. 397

Death parameters are denoted by µk, where k = N , E and I for the death of 398

naive cells, early effector cells and the immunogen respectively. Notations µYX for some 399

mortality-related parameters refer to parameters µXY in Crauste et al. (2017): the 400

subscript X refers to the CD8 T cell population or the immunogen that dies, and the 401

superscript Y to the CD8 T cell population responsible for inducing death. 402

Proliferation parameters of early effector cells and the immunogen are respectively 403

denoted by ρE and ρI . 404

System (3) has been introduced and validated on a similar VV data set in Crauste et 405

al. (2017). This system is simplified in this work, through a model selection procedure 406

(see Sections Model selection on synthetic data and Model selection on biological data). 407

Model selected on synthetic data. Model (3) has been obtained by fitting average 408

dynamics of a CD8 T cell immune response (Crauste et al., 2017). When confronting 409

this model to heterogeneous data of individual CD8 T cell dynamics and using mixed 410

effects modeling, we have to verify that assumptions of the mixed effects model (see 411

Section Nonlinear mixed effects models) are valid. Using synthetic data and the procedure 412
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described in Section Model selection on synthetic data leads to the selection of the 413

System (1), 414

Ṅ = −µNN − δNEIN,

Ė = δNEIN + [ρEIE − µEE − δEL]E,

L̇ = δELE − [µLL+ δLM ]L,

Ṁ = δLML,

İ = [ρII − µIL] I.

This model is dynamically similar to System (3), but in order to correctly fit synthetic 415

data and to satisfy the assumptions of mixed effects modeling, parameters µEL , µEI and 416

µI have been removed: it was not possible to accurately estimate them to non-zero true 417

values. For the sake of simplicity the parameters are renamed in System (1): µLL = µL 418

and µLI = µI . System (1) is defined by 9 parameters. 419

Model selected on biological data. When using biological, experimental data 420

instead of synthetic data, not as many time points and measurements can be obtained 421

(in particular with in vivo data) so the dynamical model may easily be over-informed 422

(too many parameters compared to the size of the sampling). Using System (1), the 423

confrontation with VV data set 1 leads to the reduced System (2), 424



Ṅ = −µNN − δNEIN,

Ė = δNEIN +
[
ρEIE − µEE − δEL

]
E,

L̇ = δELE − δLML,

Ṁ = δLML,

İ = [ρII − µIL] I.

System (2) has 8 parameters (µL has been removed from System (1)): 4 parameters are 425

fixed within the population (µN , ρE , δEL, δLM ) and 4 parameters have a random effect 426

(δNE , µE , ρI , µ
L
I ). 427
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Nonlinear mixed effects models 428

Nonlinear mixed effects models allow a description of inter-individual heterogeneity 429

within a population of individuals (here, mice). The main idea of the method is to 430

consider that since all individuals belong to the same population they share common 431

characteristics. These common characteristics are called “fixed effects” and characterize 432

an average behavior of the population. However, each individual is unique and thus 433

differs from the average behavior by a specific value called “random effect”. 434

This section briefly describes our main hypotheses. Details on the method can be 435

found in Delyon et al. (1999), Kuhn and Lavielle (2005), Samson and Donnet (2007), 436

Lavielle (2014). 437

Each data set {yi,j , i = 1, ..., Nind, j = 1, ..., ni} is assumed to satisfy 438

yi,j = f(xi,j , ψi) + aεi,j , 439

where yi,j is the jth observation of individual i, Nind is the number of individuals within 440

the population and ni is the number of observations for the ith individual. 441

The function f accounts for individual dynamics generated by a mathematical model. 442

In this work f is associated with the solution of a system of ODE, see Section Models of 443

CD8 T cell dynamics. The function f depends on known variables, denoted by xi,j , and 444

parameters of the ith individual, denoted by ψi. 445

Individual parameters ψi are assumed to be split into fixed effects (population- 446

dependent effects, average behavior) and random effects (individual-dependent effects). 447

If ψki denotes the k-th parameter characterizing individual i, then it is assumed that 448

log(ψki ) = log(pkpop) + ηki , 449

where the vector of parameters ppop = (pkpop)k models the average behavior of the 450

population, and ηi = (ηki )k represents how the individual i differs from this average 451

behavior. Variables ηki ∼ N (0, ω2
k), and they are assumed independent and identically 452

distributed. The variance ω2
k quantifies the variability of the k-th parameter within the 453

population. From now on we will denote by ω2 the vector of variances (ω2
k)k. Parameters 454

ψi are assumed to follow a log-normal distribution to ensure their positivity. 455
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The residual errors, combining model approximations and measurement noise, are 456

denoted by aεi,j . They quantify how the model prediction is close to the observation. 457

Residual errors are assumed independent, identically and normally distributed, i.e 458

εi,j ∼ N (0, 1). Moreover, the random effects ηi and the residual errors aεi,j are 459

mutually independent. In this work, we assume a constant error model, with a constant a, 460

for all cell populations, since they are all observed in log10 scale. The error parameter is 461

estimated for each subpopulation (naive cells - aN ; early effector cells - aE ; late effector 462

cells - aL ; memory cells - aM ). When data on the immunogen dynamics are available 463

(only when using synthetic data), we assume a proportional error for the immunogen 464

which is observed, so that aI = bIf . 465

We will write that a parameter is fixed within the population if all individuals have 466

the same value for this parameter. On the contrary, if the variance ω2
k of a parameter 467

is non-zero, then this parameter will account for inter-individual variability within the 468

population. 469

Parameter estimation 470

Parameter values are estimated with Stochastic Approximation Expectation-Maximi- 471

zation (SAEM) algorithm. The SAEM algorithm is available in Monolix (2019). 472

Population and individual parameters. Under the previous assumptions (Sec- 473

tion Nonlinear mixed effects models), cell population dynamics (average behavior and 474

inter-individual variability) are described by parameters: ppop, ω
2 and a. These parame- 475

ters are estimated by maximizing the likelihood with the SAEM algorithm. 476

Once these parameters have been estimated, each individual vector of parameters ψi 477

is estimated by maximizing the conditional probabilities P(ψi|yi,j ; p̂pop, ω̂2, â), where x̂ 478

denotes the estimated value of x. 479

Both estimations are performed with Monolix software (Monolix, 2019). Files to run 480

the algorithm (including all algorithm parameters) are available in Supplementary File 2. 481

Covariates. In order to study whether differences observed in parameter values be- 482

tween VV and Tumor data sets (Table 1) are only related to random sampling or if they 483

can be explained by the immunogen, we use categorical covariates (Section Immunization- 484
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dependent parameters). 485

To tackle this question, we first pool together VV and Tumor data sets 1. Second, 486

using this full data set, we estimate parameter values by assuming that fixed effects 487

of some Tumor-associated parameters are different from those of the corresponding 488

VV-associated parameters. 489

To introduce categorical covariates in our mixed effect model, we assume that if an 490

individual is either in Tumor or VV data set then the probability distribution of its 491

individual parameter vector ψi has a different mean. We write 492

log(ψki ) = log(pkpop) + βkci + ηki , 493

where ci equals 0 if individual i is in VV data set 1 and 1 if it is in Tumor data set 1, and 494

β = (βk)k is a vector of covariate parameters. We test whether the estimated covariate 495

parameter β̂ is significantly different from zero with a Wald test, using Monolix (2019) 496

software, and we use a p-value threshold at 0.05. 497

Parameters (ppop, ω
2, a, β) are then characterizing cell population dynamics for both 498

VV and Tumor immunogens. If the estimated vector β̂ is significantly different from 499

zero, then part of the experimentally observed variability could be explained by the 500

immunogen. 501

Model selection on synthetic data 502

Model selection relies on criteria that allow to evaluate to which end a model appropriately 503

satisfies a priori assumptions. For instance, one usually requires a model to correctly fit 504

the data, and uses so-called quality of fit criteria, and/or requires that initial modeling 505

assumptions are satisfied. 506

Here, we do not use quality of fit criteria to select a model because all models correctly 507

fit data (see Paragraph Model selection below). Instead, we focus on the capacity of the 508

parameter estimation procedure to correctly estimate model parameters. To do so, we 509

first use synthetic data (see Paragraph Generation of synthetic data below). Because 510

we know the exact true parameter values used to generate the data, to evaluate the 511

correctness of estimated parameter values we rely on: 512

- the relative difference between the estimated parameter value and the true value, 513
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- the relative standard error (RSE), defined as the ratio between the standard error 514

(square root of the diagonal elements of the variance-covariance matrix) and the 515

estimated value of the parameter (Lavielle, 2014), 516

RSE =
s.e.(θ̂)

θ̂
, θ a parameter, θ̂ its estimated value. (4)

A large RSE indicates a poor estimation of the parameter. 517

- the η-shrinkage value (denoted throughout this manuscript as the shrinkage value), 518

defined as 519

η-shrinkage = 1− var(ηi)

ω2
, (5)

where var(ηi) is the empirical variance of the random effect ηi and ω2 the estimated 520

variance of the parameter; Large values of the shrinkage characterize individual 521

estimates shrunk towards the conditional mode of the parameter distribution. 522

We decided not to consider the mathematical notion of identifiability here. Indeed, 523

studying identifiability in nonlinear mixed effect models is a complicated, open question 524

that has been discussed for instance in Lavielle and Aarons (2016). Approaches based 525

on the Fisher Information Matrix (RSE) have been proposed and are often used for 526

evaluating identifiability of population parameters, while analysis of the shrinkage 527

allows to investigate individual parameters identifiability, and we used such methods in 528

this work. 529

Generation of synthetic data. Using a dynamical model (for instance, System (3)), 530

we generate a set of data associated to solutions of the model, where all the parameters 531

are drawn from known log-normal distributions. Parameters pk varying in the population 532

satisfy log(pk) ∼ N (log(mk), 0.12). The standard deviation is fixed to the value 0.1 to 533

generate heterogeneity, and values of medians mk are given in Table S1. A multiplicative 534

white noise modifies model’s outputs in order to mimic real measurements (we consider 535

a white noise with standard deviation 0.2). 536

These data consist of time points and measurements for the 4 subpopulations of CD8 537

T cell counts (in log10 scale) and the immunogen load. These are called synthetic data, 538

and these sets of data are referred to as Synth data set X, with X= 1, . . . , 4 (Table 1). 539
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We generate synthetic data for 100 individuals, cell counts are sampled at days 4, 540

5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30pi (cf. Fig S1 to S4). In agreement with real 541

biological data, we assume that all cell counts below 100 cells are not measured, and 542

account for missing data. For the immunogen load, values lower than 0.1 are also not 543

considered. 544

Model selection. Model selection on synthetic data is performed in 4 steps: 545

Step 1 Select an initial model 546

Step 2 Estimate parameter values using SAEM (Monolix, 2019) 547

Step 3 Remove (priority list): 548

- parameters whose estimated value is different from their true value, and the 549

RSE is larger than 5% 550

- random effect of parameters with shrinkage larger than 30%. 551

Step 4 Select a model with all parameters correctly estimated 552

In Step 1, model (3) is used, with all parameters varying within the population. This 553

makes 29 parameters to estimate: 12 mean values, 12 random effects, 5 error parameters. 554

In Step 3, based on the estimations performed in Step 2, we iteratively remove

parameters that are not correctly estimated. To do so, we first focus on parameters that

are not estimated to their true value (which is known) and whose RSE is larger than 5%.

We consider that the estimated value is different from the true value if Err > 10%, with

Err =
|true value− estimated value|

true value
.

Once all parameters are correctly estimated according to the two first criteria, we remove 555

random effects of parameters with shrinkage larger than 30%. 556

One must note that every time a parameter is removed from the model (mean value 557

or random effect) then new synthetic data are generated using the same protocol as 558

described above, and Step 2 is performed again. 559

Errors are known when using synthetic data: since a normal noise, proportional to 560

the observation, modifies each observation then there is a constant error on observations 561
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of cell counts in log10 scale, and a proportional error on the immunogen load. As 562

mentioned in Section Nonlinear mixed effects models, we assume a constant error for all 563

cell populations and a proportional error for the immunogen load. Diagnostic tools in 564

Monolix (2019) show that error models are correct (not shown here). 565

Quality of fit criteria do not provide relevant information in our case: the Bayesian 566

Information Criterion (BIC) reaches very low values, even for the initial model (3), 567

whereas observations vs predictions graphs show that the number of outliers is not 568

modified by simplifications of the model. Hence, we do not use quality of fit criteria to 569

select a model. In Step 4, we select a model based on the chosen criteria that insure the 570

correct estimation of all its parameters and its reduced shrinkage when confronted to a 571

set of synthetic data. 572

Model selection on biological data 573

Biological data are the ones introduced in Section Data. Compared to synthetic data, 574

they provide less observations, hence it may not be possible to correctly estimate as 575

many parameters as in the synthetic data case. 576

Model selection on biological data is also performed in 4 steps: 577

Step 1 Select an initial model 578

Step 2 Estimate parameter values using SAEM (Monolix, 2019) 579

Step 3 Remove (priority list): 580

- parameters whose RSE is larger than 100% 581

- random effect of parameters with shrinkage larger than 75% 582

Step 4 Select a model with RSE and shrinkages low 583

In Step 1, model (1) is used, with all parameters varying within the population. This 584

makes 23 parameters to estimate: 9 mean values, 9 random effects, 5 error parameters. 585

This model is the one selected on synthetic data (see Section Model selection on synthetic 586

data). 587

In Step 3, we iteratively remove parameters that are not correctly estimated. We first 588

focus on parameters that are not estimated with a high confidence, that is RSE > 100%. 589
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Once all parameters are correctly estimated, we remove random effects of parameters 590

with shrinkage larger than 75%. 591

The error model is not known, so we use the same error model as for synthetic data: 592

a constant error for all cell populations (note that no data on immunogen is available, so 593

the error parameter for the immunogen is not estimated). Diagnostic tools in Monolix 594

(2019) show that assuming constant error models is acceptable (not shown here). 595

A posteriori model validation on biological data 596

In Section Predicting dynamics following VV and Tumor immunizations, the model 597

selected on biological data is compared to data that were not used for parameter 598

estimation. These data are presented hereafter. 599

In order to assess the model ability to characterize and predict immune response 600

dynamics we compare our results to additional experiments, VV data set 2 and Tumor 601

data set 2 (see Table 1 and Section Data), similar to the ones used to estimate parameters 602

(VV and Tumor data sets 1). CD8 T cell counts of naive, early and late effector, and 603

memory cells have been measured following VV and tumor immunizations, on days 4, 6, 604

7, 8, 11, 13, 15, 21, 28, 42pi. 605

The probability distribution of parameters (mean values, random effects) are known 606

since we have estimated them on VV and Tumor data sets 1 (Section Model selection on 607

biological data). These parameters are not estimated on the validation data. We use 608

them to estimate the individual parameter values that fit individual behaviors of these 609

new data sets (see Section Parameter estimation). 610
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Figures legends

Fig 1. Schematic CD8 T cell differentiation diagram following immunization. (A)

Schematic representation of System (1). (B) Schematic representation of System (2).

Dashed black lines represent individual-dependent parameters, while straight black lines

(only in (B)) represent parameters fixed within the population. Grey round-ended

dotted lines represent feedback functions (see systems of equations).

Fig 2. For each CD8 T cell count experimental point, the prediction obtained with

System (2) is plotted, for (A) VV data set 1 and (B) Tumor data set 1. Dashed lines

represent the 90th percentile of the difference between observed and predicted values. In

both figures, naive (blue), early effector (red), late effector (green), and memory (purple)

cell counts are depicted, and the solid black line is the curve y = x.
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Fig 3. The dynamics of three subpopulations (early effector - red, late effector - green,

memory - purple) are simulated with System (2) for two individuals. Experimental

measurements are represented by dots, simulations of the model by straight lines. (A)

Individual cell counts have been measured on days 7, 15 and 47pi. (B) Individual

cell counts have been measured on day 8pi only. Although each individual is not

characterized by enough experimental measurements to allow parameter estimation on

single individuals, nonlinear mixed effects models provide individual fits by considering

a population approach.

Fig 4. Probability distribution of parameter δNE defined with a covariate. Estimated

distributions of VV-associated (left, red) and Tumor-associated (right, green) values are

plotted. Histograms of estimated individual parameter values are also plotted (red for

VV-associated values, green for Tumor-associated values).

Fig 5. Observations vs estimated values of individual CD8 T cell counts, for (A) VV

data set 2 and (B) Tumor data set 2. Individual parameter values have been estimated

with System (2) and population parameter values and distribution defined on VV and

Tumor data sets 1. In both figures, naive (blue), early effector (red), late effector (green),

and memory (purple) cell counts are depicted, and grey points correspond to individual

values from Fig 2. The black straight line is y = x.

Fig 6. Positive side-effect of using covariates. For two illustrative individuals, accounting

for covariates allows to better estimate early effector cell dynamics: red plain curve with

covariate, blue dashed curve without covariate.

Supporting information

Supplementary File 1. Contains the following tables and figures.

Table S1. Parameter values of fixed effects (median values) used to generate Synth

data sets 1 to 4 from System (3) and its subsequent reductions: removal of µEI (column

4), of µEL (column 5), and of µI (column 6). Notations µYX for some mortality-related

parameters refer to parameters µXY in Crauste et al. (2017): the subscript X refers to

the CD8 T cell population or the immunogen that dies, and the superscript Y to the
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CD8 T cell population responsible for inducing death. .

Table S2. Steps in estimating parameter values using Synth data sets 1 to 4 and System

(3). The procedure is detailed in Section Model selection on synthetic data. True values

of parameters (fixed effects) are given on the second line, true values of random effects

all equal 0.1. At Step 1, the procedure leads to removing parameter µEI . At Step 2, the

procedure leads to removing parameter µEL . At Step 3, the procedure leads to removing

parameter µI . At Step 4, no other action is required. Values used to take a decision

are highlighted in bold at each step. In the first column, ‘m.v.’ stands for mean value,

RSE is defined in (4), ‘r.e.’ stands for random effect, and the shrinkage is defined in (5).

Note that values (mean values and random effects) of parameters µEE , µLL, µEL , µEI and

µLI have to be multiplied by 10−5 (for µLI ), 10−6 (for µEE and µLL), 10−7 (for µEI ), and

10−8 (for µEL ). Units are omitted for the sake of clarity.

Fig. S1. Synth data set 1. These data have been obtained by simulating System (3)

with parameter values in Table S1 and using a multiplicative white noise, as detailed

in Section Model selection on synthetic data. 100 individuals are simulated and first

observations are on day 4 pi for cell populations and the immunogen. Then measurements

are on days 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, and 30 pi. All cell counts below

100 cells are not measured. For the immunogen load, values lower than 0.1 are also not

considered.

Fig. S2. Synth data set 2. These data have been obtained by simulating a reduced

System (3), with parameter values in Table S1, and using a multiplicative white noise,

as detailed in Section Model selection on synthetic data. See Fig. S1 for details.

Fig. S3. Synth data set 3. These data have been obtained by simulating a reduced

System (3), with parameter values in Table S1, and using a multiplicative white noise,

as detailed in Section Model selection on synthetic data. See Fig. S1 for details.

Fig. S4. Synth data set 4. These data have been obtained by simulating a reduced

System (3), with parameter values in Table S1, and using a multiplicative white noise,

as detailed in Section Model selection on synthetic data. See Fig. S1 for details.

Supplementary File 2. Monolix files. Are included:

- files to run the algorithm of parameter estimation, including algorithm parameters

(mlxtran files)

- mathematical model files (System1 model.txt and System2 model.txt)
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- data files (txt files, monolix format)

- associated result files (folders with Monolix outputs)

for the following cases:

- Synth data set 4 and System (1)

- VV data set 1 and System (2)

- Tumor data set 1 and System (2)

- VV and Tumor data set 1, System (2) and 4 categorical covariates

Tables

Table 1. Data sets (details in Sections Data, Models of CD8 T cell dynamics and
Model selection on synthetic data).

Short Name Description
VV data set 1 CD8 T cell counts of 59 individual mice inoculated

intra-nasally with 2× 105 pfu of a vaccinia virus
(VV) expressing the NP68 epitope ; naive, early
and late effector, and memory cell counts have
been measured up to day 47pi

VV data set 2 Similar to VV data set 1 (15 individual mice) ;
CD8 T cell counts of naive, early and late effector,
and memory cells have been measured following
VV immunization, up to day 42pi

Tumor data set 1 CD8 T cell counts of 55 individual mice subcuta-
neously inoculated with 2.5× 106 EL4 lymphoma
cells expressing the NP68 epitope ; naive, early
and late effector, and memory cell counts have
been measured up to day 47pi

Tumor data set 2 Similar to Tumor data set 1 (20 individual mice);
CD8 T cell counts of naive, early and late effector,
and memory cells have been measured following
Tumor immunization, up to day 42pi

Synth data sets 1 to 4 Synthetic data sets generated with System (3) and
its subsequent simplifications (see Section Model
selection on synthetic data), consisting in CD8 T
cell counts of naive, early and late effector, and
memory cells on days 4, 5, 6, 7, 8, 9, 10, 12, 14,
16, 18, 20, 25, 30pi for 100 individuals
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Table 2. Steps in estimating parameter values using VV data set 1 and System (1).
The procedure is detailed in Section Model selection on biological data. At Step 1, the
procedure leads to removing parameter µL. At Step 2, the random effect of δLM is
removed. At Step 3, the random effect of δEL is removed. At Step 4, the random effect
of ρE is removed. At Step 5, the random effect of µN is removed. At Step 6, no other
action is required. Values used to take a decision are highlighted in bold at each step.
In the first column, ‘m.v.’ stands for mean value, RSE is defined in (4), ‘r.e.’ stands for
random effect, and the shrinkage is defined in (5). Note that values (mean values and
random effects) of parameters µE , µL, and µI have to be multiplied by 10−6 (for µE
and µL) and 10−5 (for µI). Units are omitted for the sake of clarity.

µN δNE ρE µE δEL µL δLM ρI µI
Step 1
m.v. 0.59 0.002 0.9 5.2 0.13 0.02 0.09 0.08 1.9
RSE 5 30 2 21 11 207 8 7 28
r.e. 0.16 0.8 0.04 0.67 0.1 1.9 0.05 0.2 1.3
RSE 66 36 44 35 567 220 103 25 18
shrinkage 82 76 97 77 98 99 100 62 45
Step 2
m.v. 0.60 0.003 0.9 4.8 0.12 - 0.10 0.09 2.3
RSE 5 29 3 21 10 - 8 6 25
r.e. 0.15 0.8 0.06 0.73 0.2 - 0.05 0.2 1.2
RSE 69 34 71 29 150 - 103 25 17
shrinkage 83 78 94 74 96 - 99 64 47
Step 3
m.v. 0.60 0.001 1.00 5.0 0.12 - 0.10 0.08 2.0
RSE 5 32 1 20 10 - 8 7 29
r.e. 0.16 0.8 0.04 0.67 0.2 - - 0.2 1.3
RSE 55 35 20 31 138 - - 25 18
shrinkage 81 75 98 77 95 - - 63 45
Step 4
m.v. 0.59 0.002 0.9 5.2 0.12 - 0.10 0.09 2.1
RSE 5 29 2 20 11 - 8 6 24
r.e. 0.12 0.9 0.04 0.74 - - - 0.2 1.2
RSE 102 32 47 29 - - - 24 16
shrinkage 89 75 97 72 - - - 63 49
Step 5
m.v. 0.59 0.004 0.8 4.5 0.12 - 0.10 0.09 2.7
RSE 5 32 4 21 11 - 8 6 21
r.e. 0.15 0.8 - 0.85 - - - 0.2 1.0
RSE 72 32 - 24 - - - 23 16
shrinkage 84 73 - 65 - - - 61 57
Step 6
m.v. 0.60 0.001 1.0 5.3 0.12 - 0.10 0.08 1.9
RSE 5 29 0 20 11 - 8 7 27
r.e. - 0.9 - 0.69 - - - 0.2 1.3
RSE - 29 - 28 - - - 23 17
shrinkage - 72 - 75 - - - 62 46
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Table 3. Estimated parameter values for VV and Tumor data sets 1 (median of
log-normal distribution for parameters with random effects, RSE (%) in parentheses),
obtained with System (2), and estimated parameter values from Crauste et al. (2017)
(VV immunization). Estimations have been performed independently.

Parameters Units Estimated Values (RSE%) Values from
VV Tumor Crauste et al.,

data set 1 data set 1 (2017)
Parameters fixed within the population
µN day−1 0.60 (5) 0.32 (15) 0.75
ρE day−1 1.02 (0) 0.43 (4) 0.64

δEL day−1 0.12 (9) 0.10 (3) 0.59

δLM day−1 0.10 (8) 0.07 (14) 0.03
Parameters varying within the population
δNE day−1 0.001 (29) 0.063 (22) 0.009
ωδNE

day−1 0.9 (29) 0.4 (54) -
µE 10−6 cell−1 day−1 5.3 (20) 4.9 (18) 21.5
ωµE

10−6 cell−1 day−1 0.7 (28) 0.2 (78) -
ρI day−1 0.08 (6) 0.11 (3) 0.64
ωρI day−1 0.23 (23) 0.06 (58) -
µI 10−5 cell−1 day−1 1.9 (26) 2.4 (18) 1.8
ωµI

10−5 cell−1 day−1 1.3 (17) 0.6 (22) -
Residual errors
aN cell counts (log10) 0.3 (15) 0.5 (14) -
aE cell counts (log10) 0.4 (10) 0.5 (9) -
aL cell counts (log10) 0.4 (9) 0.6 (8) -
aM cell counts (log10) 0.3 (10) 0.5 (10) -
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Table 4. Estimated parameter values using combined VV and Tumor data sets 1.
Parameters that do not vary within the population are shown in the upper part of the
table, whereas individual-dependent parameters are shown in the central part (mean
and standard deviation values). RSE (%) are indicated in parentheses. Parameters
whose values depend on the immunogen (VV, Tumor) are highlighted in grey, and the
p-value characterizing the covariate non-zero value is shown in the last column.

Parameters Units VV (RSE%) Tumor (RSE%) p-value
Parameters fixed within the population
µN day−1 0.59 (7) 0.34 (24) 10−5

ρE day−1 0.69 (2) 0.46 (17) 10−9

δEL day−1 0.11 (4) 0.11 (4) -

δLM day−1 0.10 (10) 0.07 (10) 0.01
Parameters varying within the population
δNE day−1 0.006 (24) 0.047 (17) 10−9

ωδNE
day−1 0.6 (31) 0.6 (31) -

µE 10−6 cell−1 day−1 4.1 (17) 4.1 (17) -
ωµE

10−6 cell−1 day−1 0.7 (26) 0.7 (26) -
ρI day−1 0.1 (3) 0.1 (3) -
ωρI day−1 0.1 (17) 0.1 (17) -
µI 10−5 cell−1 day−1 2.9 (18) 2.9 (18) -
ωµI

10−5 cell−1 day−1 0.9 (15) 0.9 (15) -
Residual errors
aN cell counts (log10) 0.5 (10) 0.5 (10) -
aE cell counts (log10) 0.5 (7) 0.5 (7) -
aL cell counts (log10) 0.5 (6) 0.5 (6) -
aM cell counts (log10) 0.4 (8) 0.4 (8) -
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