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Abstract Multi-neuronal spike-train data recorded in vivo often exhibit rich dynamics as well as considerable
variability across cells and repetitions of identical experimental conditions (trials). Efforts to characterize
and predict the population dynamics and the contributions of individual neurons require model-based tools.
Abstract statistical models allow for principled parameter estimation and model selection, but possess only
limited interpretive power because they typically do not incorporate prior biophysical constraints. Here
we present a statistically principled approach based on a population of doubly-stochastic integrate-and-fire
neurons, taking into account basic biophysics. This model class comprises an idealized description for
the dynamics of the neuronal membrane voltage in response to fast independent and slower shared input
fluctuations. To efficiently estimate the model parameters and compare different model variants we compute
the likelihood of observed single-trail spike trains by leveraging analytical methods for spiking neuron models
combined with inference techniques for hidden Markov models. This allows us to reconstruct the shared input
variations, classify their dynamics, obtain precise spike rate estimates, and quantify how individual neurons
couple to the low-dimensional overall population dynamics, all from a single trial. Extensive evaluations
based on simulated data show that our method correctly identifies the dynamics of the shared input process
and accurately estimates the model parameters. Validations on ground truth recordings of neurons in vitro
demonstrate that our approach successfully reconstructs the dynamics of hidden inputs and yields improved
fits compared to a typical phenomenological model. Finally, we apply the method to a neuronal population
recorded in vivo, for which we assess the contributions of individual neurons to the overall spiking dynamics.
Altogether, our work provides statistical inference tools for a class of reasonably constrained, mechanistic
models and demonstrates the benefits of this approach to analyze measured spike train data.

Introduction

Cortical computations are represented in the collective spiking activity of multiple neurons. The growing
interest to uncover how these neuronal populations process and transform complex incoming information into
decisions and motor actions has brought about cell-resolving activity measurements at an increasing scale
and pace. Although these activity patterns can, in principle, span a high-dimensional space, often a large
fraction of neural variability is captured by low-dimensional manifolds [1–5].

Statistical inference based on generative models is a powerful approach to interpret the measured spike
train data and characterize the hidden, low-dimensional, collective dynamics [6, 7]. For this purpose typically
abstract, time-dependent latent variable models are fitted to the data [6, 8–15]. These approaches are
well suited for quantifying the structure in the data, and benefit from statistically principled parameter
estimation and model selection methods. However, their interpretive power and capacity for identifying neural
mechanisms are limited as the underlying models typically do not incorporate prior biophysical constraints.

Mechanistic models of neural populations, on the other hand, involve variables and parameters that can
be biophysically interpreted, and have proven useful to dissect neural dynamics. Well-known exponents
are the detailed Hodgkin–Huxley-type neuron models [16,17], which can involve complex morphology and
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patterns of ionic currents; however, they are not well suited to analyze spike-train data, because multiple
combinations of parameters give rise to the same firing patterns [18, 19]. An alternative, prominent class
of models with reduced complexity are spiking neuron models of the integrate-and-fire (I&F) type, which
implement in a simplified manner essential biophysical constraints. These models have been advanced in
recent years to accurately predict neuronal activity [20–22] and classify multiple neuron types [17, 23, 24].
They have become state-of-the-art models for describing neural activity in in-vivo-like conditions and have
been applied in a multitude of studies on neural network dynamics. Yet, while I&F models are biophysically
more faithful than abstract statistical models, fitting such models to multi-neuronal spike trains with account
of variability and latent, low-dimensional population dynamics, is a substantial challenge.

Here we consider a population of doubly-stochastic I&F neurons to model highly non-stationary, collective
spiking dynamics as typically observed in vivo. The hidden neuronal inputs, which impinge on the hidden
membrane potentials, contain fast independent fluctuations that give rise to spiking variability, and slower
shared variations that dominate the low-dimensional, latent population dynamics. Shared variability across
observed neurons, which typically reflect only a small fraction of the local population, is captured in the
model by a common, latent process rather than by putative direct coupling. We present a statistically
principled approach based on derived likelihood functions to fit this type of model to single-trial spike trains
and quantitatively compare different model variants, including simpler phenomenological models. Specifically,
we efficiently compute the likelihood of a given spike train by exploiting analytical methods for stochastic
I&F neuron models [25] combined with inference techniques for hidden Markov models [26]. This allows us
to infer the model parameters by likelihood maximization, classify the latent dynamics via likelihood-based
model selection, and estimate hidden time series from the time-varying probability density over the latent
state.

We evaluate our approach extensively on synthetic data in terms of reconstruction of the true latent
time series, classification of their dynamics, and estimation of the model parameters. We then validate our
method using in-vitro ground truth recordings of cortical neurons stimulated by current signals with additive
noise [27]. We successfully reconstruct the true dynamics of the signal and demonstrate improved fitting
performance compared to a classical inhomogeneous Poisson point process model. Finally, we apply our
approach to extracellular recordings from macaque primary visual cortex in vivo [28] to characterize the
low-dimensional population dynamics and the contributions of individual neurons.

Results

Our results are structured as follows. The model is explained in section 1. In the following two sections we
outline our inference methods and evaluate them exhaustively on synthetic data. For reasons of clarity and
comprehensibility we first focus on single neurons in section 2 and consider neuronal populations in section 3.
In section 4 we validate our approach based on in-vitro recordings. In section 5 we apply our methods to
population spike train data from extracellular recordings in vivo.

1 Statistical modeling with doubly-stochastic I&F neurons

We consider having observed cell-resolved spike trains (ordered sets of spike times) from a population of N
neurons. Such data are typically obtained from extracellular multi-electrode recordings after pre-processing
that includes spike sorting [29]. The activity of each neuron (with index i) of the population shall be described
by the classical leaky I&F model [30] with membrane time constant τm, where the compound synaptic input
is given by a Gaussian white noise process with mean

µi(t) = Cix(t) + µ̄i (1)

and standard deviation σi. This process effectively models synaptic bombardment impinging on the neuronal
membrane voltage (see, e.g., [31–34]). The input includes shared, slow variations x(t) which may be caused by
a common component in the external drive or by network interactions, and independent, rapid fluctuations
with strength σi. µ̄i is a cell-specific offset. Ci quantifies the extent to which neuron i is affected by x(t).
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Notably, in the context of inferring x(t) from observed activity data, Ci measures how much the activity of
neuron i contributes to the shared variations. In the following, we simply refer to it as coupling strength (for
the coupling between the individual activity of a neuron and the shared dynamics).

Since the dynamics of the common input are not known we describe x(t) by a stochastic process. In
particular, we consider two qualitatively different Markov models, an Ornstein-Uhlenbeck process (OUP) and
a Markov jump process (MJP), which gives rise to two model variants. For the OUP x(t) varies continuously
with time constant τ , whereas for the MJP x(t) is piece-wise constant intermittently jumping to different
values with rate τ−1. The stationary probability density of both processes is standard normal and their
autocorrelation functions are identical. For further details on the generative model see Methods section 1. In
Results sections 4 and 5 below we also consider a simpler, classical model for comparison, which describes
the spike train of neuron i by a Poisson point process with rate exp(µi(t)), where µi(t) is given by Eq (1).

It is important to point out that not all model parameters need to be estimated. The membrane voltage
can be scaled such that the remaining parameters of interest for inference are those for the input together with
the membrane time constant (see Methods section 1). Moreover, a change of τm can be well compensated for
in terms of spiking dynamics by appropriate changes of µ̄i and σi [25]. Therefore, we focus on the following
parameters for inference Ci, µ̄i, σi for i ∈ {1, . . . , N} and τ , with particular interest on the coupling strengths
(Ci) and the time constant (τ).

2 Inference for single neurons

Outline of inference approach

It is instructive to first consider a single neuron. For improved readability we omit the neuron index i and
group the parameters as ϑ := {C, µ̄, σ, τm} and τ . We collect the measured spike-train data in the increasing
sequence of spike times t0:K := (t0, . . . , tK) and define the k-th interspike interval (ISI) by sk := tk − tk−1.
K is the number of observed ISIs. For notational ease below we use that sk, the duration of the k-th ISI,
implicitly contains information about the start time and end time of the interval. As spike emission in
the leaky I&F model is a renewal process the likelihood of observing a given spike train from the model is
completely determined by the likelihoods of observing the constituent ISIs. To tackle the inference problem
we approximate the time series of the process x(t) for each ISI by one value, xk for ISI sk, which is justified by
the assumption that x(t) varies slowly, i.e., τ is large compared to the average ISI. Defining x0 as the value of
the process at t = 0 and xk as the value at t = tk for k ≥ 1 we obtain a hidden Markov model with sequence
of latent states x0:K := (x0, . . . , xK). The observations are contained in the sequence s1:K := (s1, . . . , sK).
The joint likelihood of observing a given spike train and realization of x(t), approximated by sequence x0:K ,
is given by

p(s1:K , x0:K |ϑ, τ) =
K∏
k=1

p(sk|µk, ϑ)p(xk|xk−1, τ)p(x0) (2)

with effective mean input µk = Cxk + µ̄. p(sk|µk, ϑ) is the ISI probability density of the leaky I&F neuron
exposed to Gaussian white noise input (with mean µk and standard deviation σ), evaluated at ISI sk. This
density can be accurately computed by solving a Fokker-Planck partial differential equation, which can be
achieved numerically in efficient ways [25]. p(xk|xk−1, τ) is the transition probability density for x(t), from
state xk−1 to state xk, which depends on the time constant τ and on the time duration between states
xk−1 and xk. For uncluttered notation this duration is not explicitly indicated. The transition densities
for both model variants (OUP and MJP) are known (for details see Methods section 2). p(x0) is the prior
probability density of the process at t = 0 < t0 (prior to t0) for which we assume its stationary distribution,
a standard normal. Note that in Eq (2) we have used the renewal property of leaky I&F neurons. We obtain
the likelihood of the observations by marginalizing Eq (2) with respect to x0:K ,

p(s1:K |ϑ, τ) =

∫
p(s1:K , x0:K |ϑ, τ) dx0:K , (3)

which is efficiently performed by an iterative procedure known as forward filtering (see Methods section 3).
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Parameter estimates ϑ̂, τ̂ are determined by maximizing the likelihood, ϑ̂, τ̂ := argmaxϑ,τp(s1:K |ϑ, τ).
For this purpose it is an important advantage that we can evaluate p(s1:K |ϑ, τ) with high accuracy and low
computational effort. For maximization we use an established simplex-based method [35] (for details see
Methods section 3).

After having inferred the parameter values we compare the fitting performance of both model variants
(OUP and MJP) to identify the best model and thereby classify the dynamics of the slow input variations.
Specifically, we use the log-likelihood ratio (LLR) for comparison, equivalently expressed as the difference

LLR(OUP,MJP) := log pOUP(s1:K |ϑ̂, τ̂)− log pMJP(s1:K |ϑ̂, τ̂), (4)

where subscripts OUP and MJP indicate the respective process. Positive values of the LLR indicate that the
OUP model variant is favored, while negative values indicate that the MJP model variant better describes
the data.

We further compare the doubly-stochastic I&F model to a Poisson point process whose principal parameter,
the rate, is given by λ(t) = exp(µ(t)) with µ(t) = Cx(t) + µ̄ (cf. Eq (1)) and x(t) is described by an OUP
or MJP as specified above. The exponential function is a typical choice for the mapping between input
and output rate in Poisson models of this type, see e.g. [10,14,36]. We infer the parameters of this model
similarly as for the I&F model, the only two differences are that for the Poisson model the ISI density is
explicitly expressed by p(sk|µk, ϑ) = λ−1k exp(−skλk) with λk = exp(µk), µk = Cxk + µ̄, and ϑ contains two
parameters, C and µ̄, instead of four. For model comparison we use the Akaike information criterion (AIC),
which takes into account both goodness of fit and complexity of a model (for details see Methods section 4).

Finally, to reconstruct the time series of the process x(t) and estimate the instantaneous spike rate

of the neuron we infer p(xk|s1:K , ϑ̂, τ̂), the probability density of the state xk during the ISI sk given
the observations s1:K and the inferred parameter values, for each k. We compute this density using an
iterative technique known as backward smoothing, which in addition to the above-mentioned forward filtering
method constitutes the established forward-backward algorithm for hidden Markov models [26] (see Methods
section 5). Our estimate for the time series of x(t) is then obtained by the sequence of expected values
(〈x0〉, . . . , 〈xK〉) calculated using these densities. Additionally, we estimate the spike rate time series by the
sequence (r0, . . . , rK) of expected inverse mean ISIs, where the mean ISI for the k-th interval is calculated
using p(s|µk, ϑ) and the expectation is with respect to p(xk|s1:K , ϑ, τ) (for details see Methods section 5).
Note that rk represents the instantaneous spike rate at the time that corresponds to xk.

Evaluation on synthetic data

For evaluation we consider synthetic spike-train data from numerical simulations of the underlying generative
model. We assess the performance of the proposed method to reconstruct the time series of x(t), classify its
dynamics and estimate the parameters (Fig 1). Example spike trains and true time series of x(t) together
with the inferred sequences of conditional density over the latent state are shown in Fig 1A,B. The evolution
of the density inferred from the spike train well resembles the true time series. Using the incorrect model
variant for inference leads to an approximation that appears slightly less accurate.

A systematic quantification of classification accuracy for a wide range of parameter values and amount of
observed data is presented in Fig 1C-E. Classification according to the LLR is correct throughout the tests.
The decision becomes more obvious as the coupling strength C, the time constant τ or the length of the spike
train increases. Intuitively, it is challenging to classify the dynamics if the neuron is only weakly affected by
x(t) (small C) or if x(t) varies rapidly (small τ). Surprisingly, a few hundred observed spikes are already
sufficient to identify the latent process. Note the small bias towards the MJP, which may be caused by the
piece-wise constant approximation of the process in our inference method.

Accuracy of parameter inference is visualized in Fig 1F-H. The true values of the parameters µ̄, C, σ
and τ are well recovered, and estimation errors decrease with increasing spike train length. Note that the
membrane time constant τm was not estimated here, but set to the true value. Setting τm instead to a wrong
value within a biologically plausible range affects the maximal likelihood only very little (see Fig S1), because
a change of τm can be well compensated for in terms of spiking dynamics by suitable changes of the input
parameters (cf. [25]). We, therefore, keep τm fixed for the rest of this study.
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Figure 1. Inference results for single neurons using synthetic data. A: Example spike train from the
doubly-stochastic I&F model with OUP x(t) (red traces below) together with sequence of estimated density over the
latent variable (color map) when using the OUP (center) or MJP (bottom) for inference. B: Example as in A with
true x(t) given by a MJP (blue traces). C: Log-likelihood ratio (LLR, cf. Eq (4)) for different values of µ̄ and C with
true x(t) given by an OUP (top) or by a MJP (bottom). We considered all µ̄, C-pairs, for which the expected spike
rate remains in the interval [1, 110] Hz for at least 98 % of the simulation time. This was analytically determined
from the steady-state spike rate and the quantiles of the stationary distribution of µ(t). Results represent averages
over 10 realizations. In D–H red color indicates that the true x(t) is given by an OUP, blue color indicates that it
is a MJP. For each parametrization results from 10 realizations are shown, colored areas denote mean ± standard
deviation. D: LLR as a function of time constant τ . E: LLR as a function of number of observed spikes. F: Difference
between maximal log-likelihood for different values of σ and the one obtained for the true value. G: Estimated versus
true parameter values of µ̄ (left), C (center) and τ (right). The results for µ̄ and C correspond to the fits in C, the
results for τ correspond to the fits in D. H: Relative and absolute errors between estimated and true parameter
values as a function of number of observed spikes, respectively. The results correspond to the fits in E. If not stated
otherwise, parameter values for generating the data were µ̄ = −4.7 mV

ms
, C = 0.6 mV

ms
, σ = 4 mV√

ms
and τ = 500 ms;

5× 103 observed spikes were used for fitting.
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In sum, our method allows for accurate parameter inference and characterization of the latent dynamics
based on synthetic data of single neurons. Even relatively short spike trains lead to satisfactory results.

3 Inference for neuronal populations

Outline of inference approach

We now turn to a larger population of neurons as described in Results section 1. We collect the observed data
in terms of (cell-resolved) ISIs of all N neurons in the single sequence s1:K := (s1, . . . , sK) which is ordered
according to the last spike time of each ISI. Similarly as for single neurons we effectively approximate the
time series of x(t) for each neuron and each ISI by one value, which is justified by the slowness of the process.
Specifically, we define the sequence of latent states x0:K := (x0, . . . , xK) where x0 = x(0) and xk = x(tk) is
the value of the process at the k-th spike time across the population for k ≥ 1. Let ik indicate the neuron
that corresponds to the k-th ISI sk in the sequence s1:K , ending at spike time tk. The mean input for neuron
ik across ISI sk is thus approximated by µk,ik = Cikxk + µ̄ik . That is, each neuron “samples” the latent
state sequence x0:K (which can contain multiple values within an ISI) in a distinct way according to its spike
times. This approximation allows us to extend the approach for a single neuron (cf. Results section 2) to a
neuronal population in a straightforward way. We express the joint likelihood of the observed data and the
latent state sequence for this hidden Markov model as

p(s1:K , x0:K |ϑ, τ) =

K∏
k=1

p(sk|µk,ik , ϑik)p(xk|xk−1, τ)p(x0), (5)

where ϑi := {Ci, µ̄i, σi, τm} summarizes neuron-specific parameters, ϑ := {ϑ1, . . . , ϑN}. Note that the three
probability density functions on the right hand side of Eq (5) are identical to those of Eq (2) explained in
Results section 2. To obtain the likelihood of observing the data from the model we marginalize Eq (5) with
respect to x0:K , and then continue analogously to the single neuron case for inference of model parameters,
classification of the dynamics of x(t), reconstruction of its time series and estimation of the time-varying
population spike rate (for details see Methods sections 3–5). Notably, although we can accurately and rapidly
evaluate the (marginalized) likelihood using numerical methods (cf. Methods sections 2 and 3), maximization
with respect to 3N + 1 parameters becomes a serious challenge for a large population. Therefore, we use an
efficient, approximate technique for optimization (see Methods section 3).

Evaluation on synthetic data

We now evaluate our method using simulated data from the doubly-stochastic I&F population model (Fig 2).
Example population spike trains, spike rate histograms, hidden time series of x(t), and the results from our
method are shown in Fig 2A-D. In all cases the inferred sequences of conditional density over the latent state
capture well the true time series and the population rate estimates match with the empirical rate histograms.

Classification performance (OUP vs. MJP) in terms of LLR for different values of population size,
recording time, and process time constant is presented in Fig 2E. The dynamics of x(t) are correctly classified
in all tests. An increased amount of observed data, either by population size or recording time, facilitates
classification. Small values of the time constant for x(t) impede the decision, similarly as in the single neuron
case (cf. Fig 1D, but note the difference in magnitude of the LLR).

Accuracy of parameter inference from multiple tests is shown in Fig 2F-I. The true values of µ̄i, Ci, and τ
are well approximated, and errors between true and estimated values increase only mildly as recording time
is reduced from 10 min to 2.5 min.

Computation times for parameter inference are visualized in Fig 2J. From the tests considered in this
section computation time appears to increase linearly with the number of neurons in the population due to
the efficient optimization scheme that allows for parallelization over observed neurons.

We next examine whether our inference method serves to capture qualitatively distinct shared dynamics.
For this purpose we consider synthetic data from simulations of the population model where x(t) is described
by a sine wave instead of the OUP or MJP (Fig 3). The results from these examples demonstrate that
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Figure 2. Inference results for neuronal populations using synthetic data. A, top: Spike trains from the
doubly-stochastic I&F population model with OUP x(t) for N = 10 and τ = 500 ms (6 s shown). Center: Population
spike rate histogram and sequence of estimated instantaneous population spike rate (red trace). Bottom: True time
series of x(t) (red trace) and sequence of the estimated density over this latent variable (color map). B: Example
as in A with true x(t) given by a MJP (blue trace, bottom). C and D: Examples as in A and B, respectively, for
N = 20 and τ = 250 ms. In E–J red color indicates that the true x(t) is given by an OUP, blue color indicates that it
is a MJP. For each parametrization results from 5 realizations are shown. E: LLR as a function of number of neurons
N (left), recording duration T (center), and time constant τ (right). Colored areas denote mean ± standard deviation.
F–H: Estimated versus true parameter values of µ̄i and Ci for i ∈ {1, . . . , N}, and τ . The results for τ correspond to
the fits in E, right. I: Relative and absolute errors between estimated and true parameter values for two recording
durations. Colored bars and black error bars indicate mean ± standard deviation. J: Computing time for parameter
estimation as function of number of neurons. If not stated otherwise, parameter values were N = 10, τ = 250 ms,
σi = 4 mV√

ms
and T = 300 s. µ̄i, Ci-pairs were drawn uniformly from the parameter space defined for Fig 1C. Here, σi

was assumed to be known.
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Figure 3. Inference results for neuronal populations driven by oscillating common input. From top to
bottom: Spike trains of an I&F population with shared input component x(t) described by a sine wave, population
spike rate histogram and estimates from our method using the OUP (red line) or MJP (blue line), true time series of
x(t) (grey line) and sequence of the inferred density over x using the MJP or OUP (below). Oscillation frequency
was 2.5 Hz (A), 5 Hz (B) and 10 Hz (C). The amplitude of x(t) was chosen such that the signal has unit standard
deviation. The values for µ̄i, Ci and σi were generated as in Fig 2, other parameter values were N = 20, T = 300 s.
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the oscillatory dynamics of x(t) can be well recovered from a population of N = 20 neurons using our
method based on either the OUP or MJP. Reconstruction accuracy deteriorates with increasing oscillation
frequency; furthermore, the task becomes increasingly challenging for small populations and small neuronal
spike rates. In sum, our method allows for accurate parameter inference, reconstruction and classification of
the shared input dynamics, and spike rate estimation based on synthetic population data. It further serves to
reconstruct oscillatory dynamics of the shared input, which demonstrates the dynamical flexibility of the
doubly-stochastic I&F model.

4 Validation based on in-vitro ground truth recordings

We validate our method using ground truth data from patch-clamp recordings of cortical pyramidal neurons [27].
The cells received an injected current composed of a weak sinusoidal signal with strong additive noise such
that neuronal spike rates oscillated roughly between 2 and 6 spikes/s (for details see Methods section 6).
We fitted the doubly-stochastic I&F model using only the spike times and compared the inferred oscillatory
dynamics of the mean input with the true oscillation of the current signal (Fig 4). The available data from
three example recordings with different oscillation period and the corresponding results from our method
are shown in Fig 4A-C. The magnitude of the rapid additive fluctuations (noise) dominates the oscillation
amplitude of the injected current, so that spiking activity is only weakly modulated in an oscillatory manner.
We measured the strength of this modulation by the resultant vector length (RVL) for the distribution of
phases of the signal at spike times (Fig 4A-C right). The RVL quantifies the degree of concentration of that
circular distribution; a large value of the RVL close to 1 indicates a strongly peaked, narrow distribution.
Our inferred sequences of conditional density over the mean input clearly exhibit oscillatory dynamics.
Importantly, the respective amplitude-normalized oscillations we extracted from these inferred sequences
match well with the (amplitude-normalized) true signals (for details see Methods section 6).

We next quantified the synchronization between the extracted and true oscillatory signals using the
synchrony index (SI), a complex number whose radius (magnitude) indicates the strength of locking and the
angle represents the average phase shift between the oscillations (for details see Methods section 6). The SI
for all cells is shown in Fig 4D. The angle values are concentrated around 0 and most magnitudes are large,
close to 1, which means that the oscillations are aligned locking is strong for most cells. The locking strength,
which measures the quality of signal reconstruction, clearly depends on the extent of oscillatory structure in
the spiking activity, as quantified by the RVL (Fig 4E). Those few cells for which locking is weak exhibit
small RVL values, for RVL values & 0.1 signal reconstruction is excellent. Weak locking is further reflected
by a small value of inferred coupling strength C (Fig 4F).

Finally, we compared the fitting performance of the I&F model with that of an inhomogeneous Poisson
process using the AIC on these data (Fig 4G, cf. Results section 2). The preferred model is indicated by the
lower AIC value. For all recordings the I&F model outperforms the Poisson model according to this measure.

In this section we used the OUP for the latent process x(t) (in the I&F and Poisson models); using instead
the MJP did not significantly change the results. Note that the models do not include any prior information
about oscillatory dynamics.

In sum, our method allows to accurately recover the ground truth dynamics of hidden, weak input signals
from spike trains of cortical neurons and outperforms a classical model-based approach on these data.

5 Application to in-vivo multi-electrode recordings

We now apply our method to extracellular recordings from primary visual cortex of a macaque monkey under
anaesthesia [28]. The data consist of spontaneous spiking activity of a population of N = 20 single units over
a duration of 10 minutes, which was split into two sets of 5 minutes each (one for fitting and one for testing;
for details on preprocessing see Methods section 7). We fitted both I&F model variants, with either OUP or
MJP for the shared input dynamics, to these spike trains and compared their fitting performance on the test
set. The MJP is favored according to the LLR evaluated on the test data (LLRtest = −443.0). Notably, a
benchmark test against a Poisson point process model demonstrates a clear preference for the I&F population
(LLRtest = −1514.9, using the MJP in both models). A 30 s segment of the spike-train data from the test
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Figure 4. Inference results using in-vitro ground truth data. A–C, from top to bottom: Injected current,
spike times and membrane voltage trace of a recorded neuron, evolution of the inferred density over the mean input,
amplitude-normalized true (gray curve) and extracted (red curve) oscillatory signal (for details see Methods section 6).
Inset: circular histogram of phases of the sinusoidal (true) input signal at spike times; the white line indicates the
circular mean, its magnitude defines the resultant vector length (RVL). Oscillation period was 16 s (A), 8 s (B) and
4 s (C). D Synchrony index (SI) between inferred and true oscillatory signals, each dots corresponds to a recording.
E: Synchronization strength |SI| (measuring the quality of signal reconstruction) versus RVL (measuring the locking
strength between spikes and the oscillatory input signal). F: |SI| versus estimated value of coupling strength C.
G: Difference between Akaike information criterion (AIC) for the I&F model and the Poisson model. In D–G all
recordings with oscillation period of 16 s were used: 40 datasets from 13 different neurons. For inference the OUP was
used to describe x(t) (also in the Poisson model).
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set and the results from our method are shown in Fig 5A-C. The spike trains are ordered according to the
inferred value of coupling strength Ci (Fig 5A). Units which strongly couple to the shared input component
exhibit coordinated spiking activity whereas spiking of units with weak coupling appears more disordered.
Using the inferred coupling strength Ci, which quantifies the neuronal contribution to the low-dimensional
population dynamics, we can thus separate “chorister” from “soloist” neurons [37] in a statistically principled
way.

Population rate estimates versus empirical rate histograms are depicted in Fig 5B,C. Surprisingly, the
OUP model variant yields a slightly better match in this respect despite its inferior fitting performance.
Note, however, that approximating the population rate histogram is not an explicit objective of the fitting
procedure.

Histograms over the sequence of expected values of x across the entire recording (which we refer to as
latent state distributions) are shown in Fig 5B,C right. Note that the distributions differ from a standard
normal, which is the stationary distribution of x as expected from the generative model. This indicates that
the inferred low-dimensional dynamics deviate from both pure model variants for x, and it shows that our
model flexibly captures different dynamics (as clearly demonstrated above, cf. Figs 3 and 4). Using only
the values of the sequence of expected x at the observed spike times of a neuron we obtain N = 20 distinct
histograms (one for each unit). This allows us to measure the extent to which individual neurons are tuned
to the estimated shared dynamics in a way that does not directly depend on the inferred coupling strengths.
Comparison between that measure of tuning and the coupling strengths enables another (indirect) validation.
Indeed, units with a large value of C exhibit strong tuning, shown by distributions that are skewed towards
large values of x (and clearly differ from the latent state distribution), while units with weak coupling also
exhibit weak tuning, shown by distributions that are indistinguishable from the latent state distribution
(Fig 5D,E).

In sum, our method allows to characterize the low-dimensional population dynamics and the contribu-
tion/coupling of individual neurons to those dynamics in a principled way.

Discussion

We presented a statistically principled approach to fit an I&F population model with doubly-stochastic input
to spike-train data. The input contains neuron-specific white noise fluctuations and a shared Markovian
component that dominates the low-dimensional overall population dynamics. We extensively evaluated our
methodology on synthetic data, validated it using ground truth in-vitro and in-vivo recordings, and compared
the I&F population to a classical Poisson point process model in terms of fitting performance. Altogether,
the results demonstrated the benefits of our approach to identify and classify the latent low-dimensional
population dynamics, and quantify how individual neurons couple to those dynamics.

Related Work

At the core of our methodology we exploit efficient numerical schemes to compute the ISI probability density
of an I&F neuron exposed to Gaussian white noise input with high precision. The ability to rapidly compute
this density allows to evaluate the likelihood of observed spike trains, which has been previously used for
inference purposes using single stochastic I&F neurons [25, 38] and networks [25]. The nonstationarity
considered here (doubly-stochastic population model) constitutes a relevant and highly nontrivial extension.

A related approach on the level of single neurons has been introduced in [33], which uses a diffusion
process for the dynamics of the mean input and involves an approximation of the ISI probability density
to avoid its numerical computation. An advantage of our approach in this regard is that it allows for the
application of various, reasonable processes for the mean input, as demonstrated using the OUP and MJP.
Note that the variance of these processes remains fixed over time, whereas that of a diffusion process increases
without bounds. Importantly, we further considered neuronal populations.

Methodologically related work previously focused on the latent dynamics that underlie the spiking activity
of single neurons, using Poisson point process models with continuous or jumping dynamics of the underlying
rate, similar to those considered here [39,40]. In our comparisons the doubly-stochastic I&F model clearly
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Figure 5. Inference results using in-vivo population data. A: Spike trains of 20 single units sorted according to
the inferred coupling strength Ci (right). B and C, top: Population spike rate histogram and estimated instantaneous
rate (colored line) using the MJP (B) or the OUP (C). Bottom: evolution of the inferred density over the common
latent variable x. Right: Normalized histogram of expected values of x summed across the entire test set duration
(latent state distribution). D: Normalized histogram of expected values of x at spike times (grey) with large (left),
intermediate (center), and small estimated Ci (right). The latent state distribution is shown in blue (same as B right).
E: Cumulative distribution functions corresponding to the histograms D for all single units, color-coded according to
the value of estimated coupling strength. The Blue curve indicates the latent state distribution.
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outperformed such Poisson point process models with latent rate dynamics. Whether and in what way this
could affect classification results [40] is currently not clear.

Abstract models with larger complexity, in particular, generalized linear point process models that
account for the dynamics of latent variables can be designed and optimized to fit well observed spike train
data [9, 41–44]. However, the dynamical flexibility of these models is typically associated with large numbers
of parameters that need to be optimized; hence, this approach is prone to overfitting unless strong contraints
and/or parameter regularization are enforced [7, 36, 45–47]. An advantage of our approach in this regard
is that the parameter space for optimization is comparably low-dimensional, which diminishes the risk of
overfitting, without sacrificing essential aspects of neuronal spiking dynamics. Furthermore, the variables
and parameters of I&F models can be interpreted in a straightforward way.

Limitations & potential extensions

In our inference method the mean input is approximated by one value for each neuron and each ISI. This
approximation leads to an “event-based” (spike-based) temporal binning of the inferred sequences, as was
previously used for single neurons [33]. It implies that the latent dynamics cannot be captured precisely
across extended intervals without spikes.

We aimed to capture the latent low-dimensional collective dynamics using a stochastic process for the
variations of shared inputs. This process describes the dynamics of the external drive and picks up effects due
to synaptic interactions on the population-average level. Detailed effects of synaptic coupling between the
observed neurons are not explicitly included. The assumption that inputs from unobserved neurons dominate
the collective population dynamics is well justified as long as the observed neurons make up only a small
fraction of the local population (which is a typical scenario) [10]. Nevertheless, the model we considered
could be extended to a doubly-stochastic I&F circuit with an explicit description of synaptic interactions
between observed neurons. In particular, a combination of our approach with recent inference methods for
I&F circuits [25] – for example, using the inferred (sequences of) parameters of our population model for
subsequent estimation of connectivity – may be beneficial for the estimation of synaptic couplings.

We used the classical leaky I&F model to describe the dynamics of the neuronal membrane voltage (with
focus on spiking). Our methodology, however, can be easily extended to other I&F model variants for which
spike emission is a renewal process, such as the exponential I&F model [48]. Furthermore, an absolute
refractory period can be included in a straightforward way.

We considered two qualitatively different Markov processes (OUP and MJP) for the shared input
fluctuations. Other processes may be used instead: for example, a differentiable process whose temporal
correlation-function is described by a Matérn kernel or periodic kernel (see, e.g., [49]).

Here we considered a one-dimensional process for the dynamics of shared input variations, which dominate
the population dynamics. Depending on the size of the observed population and application it may be
relevant to account for multi-dimensional latent dynamics; our framework can be extended accordingly in a
similar way as for generalized linear models [9].

Applicability

Using in-vitro ground truth data we have demonstrated that our approach accurately extracts the latent
dynamics of input signals that are masked by strong noise, outperforming a more classical model-based
method. These results support the validity of our method for application to in-vivo data that typically do
not entail ground truth about the properties to be inferred. For such a scenario, using spike train data from
extracellular recordings, we have shown that the inferred coupling strengths allow to distinguish between
cells which clearly participate in coordinated population activity and those which spike rather independently.
Such a characterization of “chorister” and “soloist” neurons has recently been shown to correlate with the
underlying synaptic connectivity [37]. In future applications our method may serve, for example, to relate
classification results (between model variants) and inferred parameter values across different experimental
conditions.
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Materials and methods

1 Generative model

We consider a population of N leaky I&F neurons driven by fluctuating inputs. The dynamics of the
membrane voltage Vi of neuron i (i ∈ {1, . . . , N}) are governed by the stochastic differential equation

dVi
dt

= − Vi
τm

+ µi(t) + σiξi(t), (6)

where τm denotes the membrane time constant. The input variations are described by the time-dependent
mean µi(t) and Gaussian white noise process ξi(t) scaled by σi, where 〈ξi(t)ξj(t + ∆)〉 = δi,jδ(∆) for
i, j ∈ {1, . . . , N} with expectation 〈·〉. The neuron fires a spike when the membrane voltage reaches the spike
threshold value Vs, subsequently Vi is reset to the value Vr.

The dynamics of the mean input µi(t) are determined by a common process x(t) through

µi(t) = Cix(t) + µ̄i, (7)

where Ci denotes the strength of coupling of neuron i to x(t) and µ̄i is the offset for neuron i. We separately
consider two processes with qualitatively different dynamics for x(t): an Ornstein-Uhlenbeck process (OUP),
described by

dx

dt
= −1

τ
x(t) +

√
2

τ
ξ(t), (8)

with time constant τ and Gaussian white noise process ξ(t), 〈ξ(t)ξ(t + ∆)〉 = δ(∆); alternatively, x(t) is
described by a Markov jump process (MJP) which is piece-wise constant across intervals with exponentially
distributed duration of mean τ and takes values drawn from a standard normal distribution N (0, 1),

x(t) = xl for t ∈

[
l−1∑
l′=0

γl′ ,

l∑
l′=0

γl′

)
,

xl ∼ N (0, 1), γl ∼ Exp(τ−1) for l ∈ N.

(9)

This process is also known as marked (homogeneous) Poisson point process. For both processes the stationary
distribution is standard normal, limt→∞ x(t) ∼ N (0, 1), and the autocorrelation function is given by

〈x(t)x(t+ ∆)〉 = exp

(
−|∆|

τ

)
. (10)

Hence, our doubly-stochastic model incorporates fast independent input fluctuations by σiξi(t) in Eq (6)
with Gaussian white noise process ξi(t) and slower shared input variations by µi(t) via Eq (7) with common
OUP or MJP x(t).

It is not meaningful to estimate all parameters of this model. A change of Vs or Vr can be completely
compensated in terms of spiking dynamics by appropriate changes of Ci, µ̄i and σi, which can be seen using
the change of variables Ṽi := (Vi − Vr)/(Vs − Vr). Consequently, we exclude Vs and Vr from the parameters to
be inferred and instead set them to reasonable values. Furthermore, we fix τm for most of our results, since a
change of that parameter can also be well compensated for by appropriate changes of the input parameters
(see Results section 2). The parameter values were τm = 10 ms, Vs = −40 mV and Vr = −65 mV.

2 Statistical modeling

Spike-based discretization

We consider having observed the spike trains of N neurons and collect these data in a sequence of ISIs
s1:K := (s1, . . . , sK) that are ordered increasingly according to the last spike time of each ISI. Under the
assumption that the process x(t) evolves slowly compared to the duration of the ISIs we approximate the
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mean input for each neuron across each ISI effectively by one value: µik(t) ≈ µk,ik = Cikxk + µ̄ik for all
times t within the k-th ISI sk in the sequence s1:K , where xk is the value of x(t) at the end spike time of sk
and ik indicates the neuron that corresponds to that ISI. Note that in order to simplify notation we use that
sk, explicitly the duration of the k-th ISI, informs also (implicitly) about the start and end times of the ISI.

Hence, for the inference problem x(t) is replaced by the sequence x0:K := (x0, . . . , xK) with x0 := x(0)
and xk := x(tk) for k ≥ 1, tk being the k-th spike time across the population, which greatly facilitates the
task.

Markov property

Due to the fact that both processes, OUP and MJP, are Markovian we can factorize the probability density
of the sequence given the time constant parameter as

p(x0:K |τ) =
K∏
k=1

p(xk|xk−1, τ)p(x0), (11)

where p(x0) is the probability density for the initial process value (prior). We assume p(x0) ∼ N (0, 1) which
corresponds to the stationary distribution of the process. The transition probability density for the OUP is
given by

p(xk|xk−1, τ) = N
(
xk−1 exp

[
−∆k

τ

]
, 1− exp

[
−2∆k

τ

])
, (12)

where ∆k = tk − tk−1. For notational convenience we do not explicitly indicate ∆k in p(xk|xk−1, τ) and
instead use that xk also contains information about the corresponding time point. For the MJP, on the other
hand, we have

p(xk|xk−1, τ) = (1− Pjump)δxk,xk−1
+ PjumppN , (13)

where the probability of jumping is Pjump = 1−exp(−∆k/τ), δxk,xk−1
is the Kronecker delta and pN ∼ N (0, 1).

Note that Pjump denotes the probability that at least one jump occurs during an interval of duration ∆k.

Conditional likelihood

Since spike emission for an I&F neuron is a renewal process, the likelihood of the observed data s1:K
conditioned on the sequence x0:K (which approximates the process x(t)) and neuron-specific parameter values
can be factorized as

p(s1:K |x0:K , ϑ) =
K∏
k=1

p(sk|µk,ik , ϑik) (14)

with µk,ik = Cikxk + µ̄ik . ϑ = {ϑ1, . . . , ϑN} contains the parameters for each neuron, where ϑi =
{Ci, µ̄i, σi, τm}. Each factor on the right hand side is the ISI probability density of an I&F neuron ex-
posed to Gaussian white noise input with constant parameter values, evaluated at one point. We can
compute the ISI density p(sk|µk,ik , ϑik) efficiently with high precision for a range of values s ≥ 0 at once.
This is achieved by solving a Fokker-Planck partial differential equation that describes the so-called first
passage time problem for the stochastic I&F model [25, 38, 50]. Here we apply the finite volume solution
method described in [25]. In practice, we pre-compute p(sk|µk,ik , ϑik) on a sufficiently fine grid of values
for sk and µk,ik , which is then used as a look-up table in the optimization procedure described below. For
values of the mean input µk,ik encountered during the inference procedure that are not on the grid we
use linear interpolation. For additional details we refer to our Python implementation available at Github:
https://github.com/neuromethods/inference for doubly stochastic IF models
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Joint and marginal likelihoods

By combining Eqs (11) and (14) we obtain the joint likelihood of the observed data and the process sequence
as

p(s1:K , x0:K |ϑ, τ) =
K∏
k=1

p(sk|µk,ik , ϑik)p(xk|xk−1, τ)p(x0) (15)

with µk,ik = Cikxk + µ̄ik . For the marginal likelihood of observing the data from the model, integration over
x0:K is required:

p(s1:K |ϑ, τ) =

∫
p(s1:K , x0:K |ϑ, τ)dx0:K . (16)

Note the difference between this marginal likelihood and the likelihood in Eq (14) which is conditioned on
knowledge of the process sequence.

3 Parameter estimation

Estimates for a particular set of parameters are obtained by maximizing the marginal likelihood with respect
to those parameters (maximum likelihood estimation). In the following we describe how we evaluate this
likelihood from Eq (16) and how we maximize it with respect to the parameters of interest. For additional
details we refer to our code available at Github.

Evaluation of the marginal likelihood

Integration over x0:K in Eq (16) can be efficiently performed by an iterative procedure. Knowing p(xk−1|s1:k−1, ϑ, τ)
allows for the prediction step using the Chapman-Kolmogorov (forward) equation

p(xk|s1:k−1, ϑ, τ) =

∫
p(xk|xk−1, τ)p(xk−1|s1:k−1, ϑ, τ)dxk−1. (17)

The iteration is initialized for k = 1 and p(x0|s1:0, ϑ, τ) = p(x0). In the following step we incorporate the
next observation sk by the filtering

p(sk, xk|s1:k−1, ϑ, τ) = p(sk|µk,ik , ϑik)p(xk|s1:k−1, ϑ, τ) (18)

with µk,ik = Cikxk + µ̄ik . By marginalizing out xk we obtain

p(sk|s1:k−1, ϑ, τ) =

∫
p(sk, xk|s1:k−1, ϑ, τ)dxk (19)

and calculate in the last step

p(xk|s1:k, ϑ, τ) =
p(sk, xk|s1:k−1, ϑ, τ)

p(sk|s1:k−1, ϑ, τ)
, (20)

which completes the iteration k − 1→ k. After K iterations the marginal likelihood is given by

p(s1:K |ϑ, τ) =
K∏
k=1

p(sk|s1:k−1, ϑ, τ). (21)

Practically, the steps of the iteration described above are performed using a reasonable discretization for
x; here we used bins of width 0.05 in the range [−3.5, 3.5]. Consequently, the step in Eq (17), for example,
involves a square matrix for the transition probability density and a sum for the integral.

Likelihood maximization for a single neuron

We maximize the logarithm of the likelihood from Eq (21) with respect to the parameters C, µ̄ and τ using a
simplex optimization method [35]. Note that our approach is not restricted to the simplex method, other
(e.g. gradient-based) techniques may also be applied. The parameter σ is estimated via an outer loop, where
we iterate over a range of values for σ and maximize the likelihood for each of those. The membrane time
constant τm is not optimized as justified in Results section 2.
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Likelihood maximization for a population

The parameter space for optimization has 3N + 1 dimensions, where N is the number of neurons. To
reduce computational efforts and obtain parameter estimates in reasonable time we applied the following
approximate optimization scheme. First, we estimate the noise amplitude σi for i ∈ {1, . . . , N} by fitting
a doubly-stochastic I&F model with independent process xi(t) to each spike train separately, as described
in the previous paragraph. Then, we re-estimate the offset µ̄i by fitting a model neuron with Ci = 0 and
σi from the previous step for each neuron. Note that these two steps can be performed in parallel across
neurons. Next, we use the full population model and maximize the likelihood with respect to all coupling
strengths C1:N := (C1, . . . , CN ) given τ and vice versa in an alternating way, keeping σ1:N and µ̄1:N fixed.
The optimization with respect to C1:N is done in parallel across neurons: for optimizing Ci the couplings for
other neurons are fixed to the values found in the previous optimization step. Finally, after convergence of the
previous iteration procedure for C1:N and τ , our estimates for the parameters C1:N and µ̄1:N are improved by
maximizing the likelihood with respect to Ci and µ̄i using the previously determined values as starting points,
keeping all other parameters fixed, for i ∈ {1, . . . , N}. This last step is performed again in parallel. Although
this scheme appears rather approximate it yields accurate parameter estimates (cf. Results section 3).

4 Classification of latent dynamics and model comparison

To classify the dynamics of the slow (shared) input variations we compare both fitted model variants, one
using the OUP and one using the MJP, by applying the log-likelihood ratio (LLR). This quantity can be
expressed as the difference

LLR(OUP,MJP) := log pOUP(s1:K |ϑ̂, τ̂)− log pMJP(s1:K |ϑ̂, τ̂), (22)

where the subscripts OUP and MJP indicate the considered process, and ϑ̂, τ̂ denote the parameter estimates
determined prior to model comparison. Note that the LLR does not take into account the model complexity,
which is not needed because both compared models have the same number of estimated parameters.

To compare models with different complexities in terms of number of parameters to be estimated,
specifically the I&F and the Poisson models considered here, we apply the Akaike information criterion
(AIC) [51]. This measure is given by 2Nϑ̂,τ̂ − 2 log p(s1:K |ϑ̂, τ̂), where Nϑ̂,τ̂ is the number of estimated
parameters. The preferred model is indicated by the smallest AIC value.

5 Reconstruction of time series

To estimate the latent state sequence x0:K we compute the probability density of the hidden process sequence
given all observed ISIs and the model with inferred parameters ϑ̂ and τ̂ , p(x0:K |s1:K , ϑ̂, τ̂). Specifically, we

calculate the marginal densities conditioned on the observations and the fitted model, p(xk|s1:K , ϑ̂, τ̂) for
k ∈ {1, . . . ,K}, using

p(xk|s1:K , ϑ̂, τ̂) =
p(sk+1:K |xk, ϑ̂, τ̂)p(xk|s1:k, ϑ̂, τ̂)

p(sk+1:K |s1:k, ϑ̂, τ̂)
. (23)

The probability density p(xk|s1:k, ϑ̂, τ̂) on the right hand side of Eq (23) is already known from the forward

(filtering) iteration (cf. Eq (20)) at this point. We calculate the probability density p(sk+1:K |xk, ϑ̂, τ̂)
iteratively by backward smoothing,

p(sk:K |xk−1, ϑ̂, τ̂) =

∫
p(sk+1:K |xk, ϑ̂, τ̂)p(xk|xk−1, τ̂)p(sk|µ̂k,ik , ϑ̂ik)dxk (24)

with µ̂k,ik = Ĉikxk + ˆ̄µik . We initialize p(sK+1:K |xK , ϑ̂, τ̂) = 1 (uniform distribution), since sK is the last
observed ISI. The denominator in Eq (23) is obtained by numerical marginalization. In this way we obtain

the sequence (p(x1|s1:K , ϑ̂, τ̂), . . . , p(xK |s1:K , ϑ̂, τ̂)) that we visualize in Figs 1–5. Using the elements from
this sequence we estimate x0:K by the sequence of expected values (〈x0〉, . . . , 〈xK〉), where 〈x0〉 is calculated
with respect to p(x0).
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The sequence of marginal densities further allows us to estimate the (instantaneous) population spike rate
time series by the sequence (r0, . . . , rK),

rk :=
1

N

N∑
i=1

〈(∫ ∞
0

s p(s|µ̂k,i, ϑ̂i)ds
)−1〉

(25)

with µ̂k,i = Ĉixk + ˆ̄µi, where the expectation 〈·〉 is calculated with respect to p(xk|s1:K , ϑ, τ). Each summand
in Eq (25) is the expected inverse mean ISI a neuron at the time that corresponds to xk.

6 In-vitro data

For validation purposes we considered recorded activity of cortical pyramidal neurons from mouse brain
slices [27]. Each recorded neuron was stimulated by a fluctuating current with

I(t) = I0 + ∆Is sin

(
2πt

T

)
+ ∆InN(t), (26)

where I0 denotes the offset, ∆Is the amplitude of the sinusoidal component with period T , and ∆In is
the magnitude of the noise component N(t), which is an Ornstein-Uhlenbeck process with zero mean, unit
variance and correlation time 3 ms. The parameters I0, ∆Is and ∆In were tuned such that the neuronal spike
rate oscillated between 2 and 6 spikes/s. We considered recordings that resulted in an average spike rate of at
least 4 spikes/s. Oscillation period was T ∈ {4, 8, 16} s. Each recording lasted 68 s: for the first 4 s the input
current was constant, for the remaining 64 s it was described by Eq (26). For each of these 64 s segments we
fitted a doubly-stochastic I&F model using the OUP variant. We aimed to capture the oscillatory dynamics
by the OUP x(t) and approximated the fast fluctuations of the true input (note the small correlation time)
by the Gaussian white noise process in the model. We determined the optimal noise amplitude σ in the
model by maximizing the likelihood for a range of values of σ in the interval [0.1, 3] mV/

√
ms.

To quantify oscillations in the inferred input and compare them with the true signal we first computed the
time series of the expected mean input 〈µ(t)〉 = C〈x(t)〉+ µ̄ using the density p(xk|s1:K , ϑ̂, τ̂) (cf. Methods
section 5) and linear interpolation for values of the time series between spike times. Due to strong onset
transients in the spiking activity we disregarded the first 8 s of the time series and linearly detrended 〈µ(t)〉
(using the function signal.detrend from the Python package scipy) for these comparisons.

The instantaneous phase of this time series, φest(t), was then obtained using the Hilbert transform.
Analogously, the instantaneous phase of the true signal, φtrue(t), was calculated using the Hilbert transform
of the sinusoidal input component. To visualize the oscillations in the true and inferred time series we used
sin(φtrue(t)) and sin(φest(t)), respectively (Fig 4A-C). We next computed the synchrony index (SI) [52] as

SI =
1

L

L∑
l=1

exp(i (φtrue(tl)− φest(tl))), (27)

where t1, . . . , tL are the time points of experimental measurements. The radius (or magnitude) of the SI
measures the strength of locking and the angle indicates the average phase shift between the two oscillations.

To measure the strength of locking of neuronal spiking to the (true) oscillatory signal we calculated the
resultant vector length (RVL) of the circular mean of phase at spike times t0, . . . , tK ,

RVL =

∣∣∣∣∣ 1

K + 1

K∑
k=0

exp (iφtrue(tk))

∣∣∣∣∣ . (28)

7 In-vivo data

We applied our method to extracellular recordings from primary visual cortex of an anaesthetized monkey
[28, 53]. Extracellular potentials were recorded using an implanted multi-electrode array. After spike sorting,
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the data consisted of spike times of several single and multi-units. Following [53], we discarded units with
signal-to-noise ratio < 2.75 (average wave form amplitude divided by the standard deviation of the wave
form noise) as multi-units. We further excluded units with average spike rate > 100 Hz and omitted
unphysiologically short ISIs < 3 ms. This resulted in 26 single units that we used for fitting. To account for
potential spike sorting errors in this dataset we replaced the factors of the conditional likelihood in Eq (14)
by Perroru(sk) + (1− Perror)p(sk|µk,ik , ϑk), where Perror is the probability of a spike sorting error and u(s) is
the density of a uniform distribution over a reasonably bounded interval. We set Perror = 0.05 in consistency
with experimental observations [54]. We first fitted a doubly-stochastic I&F neuron for each of these units
and determined the optimal value of σi using the OUP and MJP separately. For population analyses we then
considered the 20 single units with the slowest inferred processes (i.e., those with the largest time constant τ ,
using averages across the results from the OUP and MJP model variants). We continued the fitting procedure
for that population as described in Methods section 3.
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Supporting information

Figure S1. Dependence of maximal likelihood on membrane time constant and noise intensity. Differ-
ence between maximal log-likelihood for different values of τm and σ, and the one obtained for the true parameter
values using the OUP (A) or the MJP (B). Colored stars mark the true parameter values of τm and σ. Other
parameter values were N = 1, µ̄ = −4.7 mV/ms, C = 0.6 mV/ms, τ = 500 ms, and 5× 103 spikes are in the data.
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