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Abstract  9 

An ever-increasing deluge of single-cell RNA-sequencing (scRNA-seq) data has been generated, often involving 10 

different time points, laboratories or sequencing protocols. Batch effect correction has been recognized to be 11 

indispensable when integrating scRNA-seq data from multiple batches. A recent study proposed an effective 12 

correction method based on mutual nearest neighbors (MNN) across batches. However, the proposed MNN method 13 

is unsupervised in that it ignores cluster label information of single cells. Such cluster or cell type label information 14 

can further improve effectiveness of batch effect correction, particularly under realistic scenarios where true 15 

biological differences are not orthogonal to batch effect. Under this motivation, we propose SMNN which performs 16 

supervised mutual nearest neighbor detection for batch effect correction of scRNA-seq data. Our SMNN either takes 17 

cluster/cell-type label information as input, or, in the absence of such information, infers cell types by performing 18 

clustering of scRNA-seq data. It then detects mutual nearest neighbors within matched cell types and corrects batch 19 

effect accordingly. Our extensive evaluations in simulated and real datasets show that SMNN provides improved 20 

merging within the corresponding cell types across batches, leading to reduced differentiation across batches over 21 

MNN. Furthermore, SMNN retains more cell type-specific features after correction. Differentially expressed genes 22 

(DEGs) identified between cell types after SMNN correction are biologically more relevant, and the DEG true 23 

positive rates improve by up to 841%. SMNN is implemented in R, and freely available at 24 

https://yunliweb.its.unc.edu/SMNN/ and https://github.com/yycunc/SMNNcorrect.  25 

 26 

Author summary  27 

The presence of batch effects poses grand challenges to integrative analysis of scRNA-seq data from multiple 28 

resources. One powerful tool MNN corrects batch effect of scRNA-seq data based on mutual nearest neighbors 29 

across batches. However, this method makes a critical assumption that batch effect is orthogonal to true biological 30 

differences. This assumption in practice can easily be violated. When that happens, MNN suffers from biases 31 

introduced by wrongly matched pairs of cells. To overcome this shortcoming, here we present a new method, 32 

SMNN, which performs supervised mutual nearest neighbor detection for batch effect correction. We benchmark the 33 

performance of SMNN using both simulations and real data, and demonstrate that, compared to MNN, our SMNN 34 

can better mix cells of the same type/state across batches. More importantly, SMNN can more effectively retain 35 
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biologically relevant features, and thereof provide improved cell type clustering and enhanced power for detecting 36 

differentially expressed genes (DEGs) between different cell types. 37 

 38 

Introduction 39 

An ever-increasing amount of single cell RNA-sequencing (scRNA-seq) data has been generated as scRNA-seq 40 

technologies mature and sequencing costs continue dropping. However, large scale scRNA-seq data, for example, 41 

those profiling tens of thousands to millions of cells (such as the Human Cell Atlas Project [1], almost inevitably 42 

involve multiple batches across time points, laboratories, or experimental protocols. The presence of batch effect 43 

renders joint analysis across batches challenging [2,3]. Batch effect, or systematic differences in gene expression 44 

profiles across batches, not only can obscure the true underlying biology, but also may lead to spurious findings. 45 

Thus, batch effect correction, which aims to mitigate the discrepancies across batches, is crucial and deemed 46 

indispensable for the analysis of scRNA-seq data across batches [4].  47 

Because of its importance, a number of batch effects correction methods has been recently proposed and 48 

implemented. Most of these methods, including limma [5], ComBat [6], and svaseq [7], are regression-based. 49 

Among them, limma and ComBat explicitly model known batch effect as a blocking term. Because of the regression 50 

framework adopted, standard statistical approaches to estimate the regression coefficients corresponding to the 51 

blocking term can be conveniently employed. In contrast, svaseq is often used to detect underlying unknown factors 52 

of variation, for instance, unrecorded differences in the experimental protocols. svaseq first identifies these unknown 53 

factors as surrogate variables and subsequently corrects them. For these regression-based methods, once the 54 

regression coefficients are estimated or the unknown factors are identified, one can then regress out these batch 55 

effects accordingly, obtaining residuals that will serve as the batch-effect corrected expression matrix for further 56 

analyses. These methods have become standard practice in the analysis of bulk RNA-seq data. However, when it 57 

comes to scRNA-seq data, one key underlying assumption behind these methods, that the cell composition within 58 

each batch is identical, might not hold. Consequently, estimates of the coefficients might be inaccurate. As a matter 59 

of fact, when applied to scRNA-seq data, the corrected results derived from these methods widely adopted for bulk 60 

RNA-seq data might be even inferior to raw data without no correction, in some extreme cases [8]. 61 
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To address the heterogeneity and high dimensionality of complex data, several dimension-reduction approaches 62 

have been adopted.  An incomplete list of these strategies includes principal component analysis (PCA), autoencoder, 63 

or force-based methods such as t-distributed stochastic neighbor embedding (t-SNE) [9]. Through those dimension 64 

reduction techniques, one can project new data onto the reference dataset using a set of landmarks from the 65 

reference [8,10,11,12] to remove batch effects between any new dataset and the reference dataset. Such projection 66 

methods require the reference batch contains all the cell types across batches. As one example, Spitzer et al. [11] 67 

employed force-based dimension reduction and showed that leveraging a few landmark cell types from bone marrow 68 

(the most appropriate tissue in that it provides the most complete coverage of immune cell types) allowed mapping 69 

and comparing immune cells across different tissues and species. When applied to scRNA-seq data, however, these 70 

methods suffer when cells from a new batch fall out of the space inferred from the reference. Furthermore, 71 

determining the dimensionality of the low dimensional manifolds is still an open and challenging problem. To 72 

address the limitations of existing methods, a recent study proposed a new method, MNN correction, which 73 

leverages information of mutual nearest neighbors across batches. MNN has demonstrated superior performance 74 

over alternative methods [8]. MNN makes a critical assumption that true biological differences are orthogonal to 75 

batch effect. For this assumption to hold, variation from batch effect is required, at the minimum, to be much smaller 76 

than that from biological effect. Under this assumption, MNN finds, across batches, mutual nearest neighboring cells 77 

for each cell to be corrected, and then computes batch-effect correction vectors under a Gaussian kernel. However, 78 

this orthogonality assumption might not hold in real data, particularly given that different batches may easily differ 79 

in many aspects, including samples used, single cell capture method, or library preparation approach. Under non-80 

orthogonal scenarios, MNN will not be optimal using its global (ignoring cell type information) nearest neighbor 81 

search strategy, leading to undesired correction results. For example, under the scenario depicted in Fig 1b, MNN 82 

leads to cluster 1 (C1) and cluster 2 (C2) mis-corrected due to mismatching single cells in the two clusters/cell-types 83 

across batches.  84 

To address the above issue, here we present SMNN, a supervised version of MNN that incorporates cell type 85 

information. SMNN performs nearest neighbor searching within the same cell type, instead of global searching 86 

ignoring cell type labels (Fig 1a). Cell type information, when unknown a priori, can be inferred via clustering 87 

methods [13,14,15,16]  .  88 

 89 
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Results 90 

SMNN Framework 91 

The motivation of our SMNN lies in the potential of single-cell cluster information to improve the accuracy of 92 

nearest neighbor (NN) identification. A preliminary clustering within each batch before any correction can provide 93 

knowledge regarding cell composition within each scRNA-seq dataset, which serves to encode the cellular 94 

correspondence across batches (Fig 1a). With this clustering information, we can refine the nearest neighbor 95 

searching space within a certain population of cells that are of the same or similar cell type(s) or state(s) in all the 96 

batches.  97 

SMNN takes a natural two-step approach to leverage cell type label information for enhanced batch effect 98 

correction (Fig 1c and S1 text). First, it takes the expression matrices across multiple batches as input, and performs 99 

clustering separately for each batch. Specifically, in this first step, SMNN uses Seurat v. 3.0 [17]  where dimension 100 

reduction is conducted via principal component analysis (PCA) to the default of 20 PCs, and then graph-based 101 

clustering follows on the dimension-reduced data with resolution parameter of 0.9 [18]. Obtaining an accurate 102 

matching of the cluster labels across batches is of paramount importance for subsequent nearest neighbor detection. 103 

SMNN requires users to specify a list of marker genes and their corresponding cell type labels to match clusters/cell 104 

types across batches. We later refer to this cell type or cluster matching as cluster harmonization across batches. 105 

Because not all cell types are necessarily shared across batches, and no prior knowledge exists regarding the exact 106 

composition of cell types in each batch, SMNN allows users to take discretion in terms of the marker genes to 107 

include, representing the cell types that, they believe, are shared across batches. Based on the marker gene 108 

information, a harmonized label is assigned to every cluster identified across all the batches according to two 109 

criteria: the percentage of cells in a cluster expressing a certain marker gene and the average gene expression levels 110 

across all the cells in the cluster. After harmonization, cluster labels are comparable across batches. This completes 111 

step 1 of SMNN. Note that this entire clustering step can be bypassed by feeding SMNN cluster labels that are 112 

consistent or comparable across batches.  113 

With the harmonized cluster or cell type label information obtained in the first step, SMNN, in the second step, 114 

searches mutual nearest neighbors only within each matched cell type between the first batch (which serves as the 115 

reference batch) and any of the other batches (the current batch), and performs batch effect correction accordingly. 116 

Compared to MNN, where the mutual nearest neighbors are searched globally, SMNN identifies each pair of 117 
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neighbors from the same cell population or state, which can provide more accurate information for downstream 118 

correction. Then, following MNN, SMNN computes batch effect correction vector for each identified pair of cells 119 

and calculates the cell-specific correction vectors by exploiting a Gaussian kernel to obtain a weighted average 120 

across all the pair-specific vectors of their mutual nearest neighbors. Each cell’s correction vector is further scaled 121 

according to the cell’s location in the space defined by the correction vector, and standardized according to quantiles 122 

across batches, in order to eliminate the “kissing effects” phenomenon. “Kissing effects” refer to the phenomenon 123 

that naïve batch effect correction brings only the surfaces of two point-clouds in contact, rather than fully merging 124 

them [8]. At the end of the second step, SMNN returns the batch-effect corrected expression matrix for each batch, 125 

as well as the information regarding nearest neighbors between the reference batch and the current batch under 126 

correction. This step is carried out for every batch except the reference batch so that all batches are corrected to the 127 

same reference batch in the end.  128 

 129 

Simulation results 130 

Since MNN has been shown to excel alternative methods [4,8], we here focus on comparing our SMNN with MNN. 131 

We first compared the performance of SMNN to MNN in simulated data. In our simulations, SMNN demonstrates 132 

superior performance over MNN under both orthogonal and non-orthogonal scenarios (Fig 2 and 3 and S1-3 Fig). 133 

We show t-SNE plot for each cell type before and after MNN and SMNN correction under both the orthogonal and 134 

non-orthogonal scenarios. Under orthogonality, the two batches partially overlapped in the t-SNE plot before 135 

correction, suggesting that the variation due to batch effect was indeed much smaller than that due to biological 136 

effect. Both MNN and SMNN successfully mixed single cells from two batches (S2 Fig). However, for cell types 1 137 

and 3, there were still some cells from the second batch left unmixed with those from the first batch after MNN 138 

correction (S2a and c Fig). Under the non-orthogonal scenario, the differences between two batches were more 139 

pronounced before correction, and SMNN apparently outperformed MNN (S3 Fig), especially in cell type 1 (S3a 140 

Fig). Moreover, we also computed Frobenius norm distance [19] for each cell between its simulated true profile 141 

before introducing batch effects and after SMNN and MNN correction. The results showed an apparently reduced 142 

deviation from the truth after SMNN correction than MNN (Fig 3). These results suggest that SMNN provides 143 

improved batch effect correction over MNN under both orthogonal and non-orthogonal scenarios.   144 

 145 
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Real data results 146 

For performance evaluation in real data, we first carried out batch effect correction on two hematopoietic datasets 147 

using SMNN and MNN, respectively. Fig 4a-c shows t-SNE plot before and after correction. Notably, both SMNN 148 

and MNN substantially mitigated discrepancy between the two datasets. Comparatively, SMNN better mixed cells 149 

of the same cell type across batches (S4 Fig), especially for CMP and MEP cells, which were wrongly corrected by 150 

MNN due to sub-optimal nearest neighbor search ignoring cell type information (S5 Fig). We also compared the 151 

distance for the cells between batch 1 and 2, and found that, compared to data before correction, both MNN and 152 

SMNN reduced the Euclidean distance between the two batches (S6 Fig). Moreover, SMNN further decreased the 153 

distance by up to 8.2% than MNN (2.8%, 4.3% and 8.2% for cells of type CMP, MEP and GMP, respectively). 154 

Regarding the overall variance in the two batches, our results show that, SMNN reduced the overall variance by up 155 

to 4.8% on top of MNN corrected results (Fig 4d-f). These results suggest improved batch effect correction by 156 

SMNN. 157 

 158 

SMNN identifies differentially expressed genes that are biologically relevant 159 

We then compared the DEGs among different cell types identified by SMNN and MNN. After correction, in the 160 

merged hematopoietic dataset, 1012 and 1145 up-regulated DEGs were identified in CMP cells by SMNN and 161 

MNN, respectively, when compared to GMP cells, while 926 and 1108 down-regulated DEGs were identified by the 162 

two methods, respectively (Fig 5a and S7a Fig). Of them, 736 up-regulated and 842 down-regulated DEGs were 163 

shared between SMNN and MNN corrected data. GO enrichment analysis showed that, the DEGs detected only by 164 

SMNN were overrepresented in GO terms related to blood coagulation and hemostasis, such as platelet activation 165 

and aggregation, hemostasis, coagulation and regulation of wound healing (Fig 5b). Similar DEG detection was 166 

carried out to detect genes differentially expressed between CMP and MEP cells. 181 SMNN-specific DEGs were 167 

identified out of the 594 up-regulated DEGs in CMP cells when compared to MEP cells (Fig 5c), and they were 168 

found to be enriched for GO terms involved in immune cell proliferation and differentiation, including regulation of 169 

leukocyte proliferation, differentiation and migration, myeloid cell differentiation and mononuclear cell proliferation 170 

(Fig 5d). Lastly, genes identified by SMNN to be up-regulated in GMP when compared to MEP cells, were found to 171 

be involved in immune processes; whereas up-regulated genes in MEP over GMP were enriched in blood 172 
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coagulation (S7e-h Fig). These cell-function-relevant SMNN-specific DEGs indicate SMNN can maintain some cell 173 

features that are missed by MNN after correction.  174 

In addition, we considered two sets of “working truth”: first, DEGs identified in uncorrected batch 1; 175 

second DEGs identified in batch 2, and we compared SMNN and MNN results to both sets of working truth. The 176 

results showed that, in both comparisons (one comparison for each set of working truth), fewer DEGs were observed 177 

in SMNN-corrected batch 2, but higher TPR in each of the three cell types than those in MNN results. When 178 

compared to the uncorrected batch 1, 3.6% - 841% improvements were observed in SMNN results than MNN (Fig 6 179 

and S8 and S9 Fig). Similarly, SMNN increased the TPR by 6.2% - 54.0% on top of MNN when compared to 180 

uncorrected batch 2 (S10-12 Fig). Such an improvement in the accuracy of DEG identification indicates that higher 181 

amount of information regarding cell structure was retained after SMNN correction than MNN. 182 

We also identified DEGs between T cells and B cells in the merged PBMC and T cell datasets after SMNN 183 

and MNN correction, respectively. Compared to B cells, 3213 and 4180 up-regulated DEGs were identified in T 184 

cells by SMNN and MNN, respectively, 2203 of which were shared between the two methods (S13a Fig). GO 185 

enrichment analysis showed that, the SMNN-specific DEGs were significantly enriched for GO terms relevant to the 186 

processes of immune signal recognition and T cell activation, such as T cell receptor signaling pathway, innate 187 

immune response−activating signal transduction, cytoplasmic pattern recognition receptor signaling pathway and 188 

regulation of autophagy (S13b Fig). In B cells, 5422 and 3462 were found to be up-regulated after SMNN and MNN 189 

correction, where 2765 were SMNN-specific (S13c Fig). These genes were overrepresented in GO terms involved in 190 

protein synthesis and transport, including translational elongation and termination, ER to Golgi vesicle−mediated 191 

transport, vesicle organization and Golgi vesicle budding (S13d Fig). These results again suggest that SMNN more 192 

accurately retains or rescues cell features after correction. 193 

 194 

SMNN more accurately identifies cell clusters 195 

Finally, we examined the ability to differentiate cell types after SMNN and MNN correction in three datasets (S1 196 

Table). In all three real datasets, ARI after SMNN correction showed 7.6 - 42.3% improvements over that of MNN 197 

(Fig 7), suggesting that SMNN correction more effectively recovers cell-type specific features. 198 

 199 

Discussion 200 
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In this study, we present SMNN, a batch effect correction method for scRNA-seq data via supervised mutual nearest 201 

neighbor detection. Our work is built on the recently developed method MNN, which has showed advantages in 202 

batch effect correction than existing alternative methods. On top of MNN, our SMNN relaxes a strong assumption 203 

that underlies MNN: that the biological differentiations are orthogonal to batch effects [8]. When this fundamental 204 

assumption is violated, especially under the realistic scenario that the two batches are rather different, MNN tends to 205 

err when searching nearest neighbors for cells belonging to the same biological cell type across batches. Our SMNN, 206 

in contrast, explicitly considers cell type label information to perform supervised mutual nearest neighbor matching, 207 

thus empowered to extract only desired neighbors from the same cell type. 208 

 A notable feature of our SMNN is that it can detect and match the corresponding cell populations across 209 

batches with the help of feature markers provided by users. SMNN performs clustering within each batch before 210 

merging across batches, which can reveal basic data structure, i.e. cell composition and proportions of contributing 211 

cell types, without any adverse impact due to batch effects. Cells of each cluster are labeled by leveraging their 212 

average expression levels of certain marker(s), thus enabling us to limit the mutual nearest neighbor detection within 213 

a smaller search space (i.e., only among cells of the same or similar cell type or status). This supervised approach 214 

eliminates the correction biases incurred by pairs of cells wrongly matched across cell types. We benchmarked 215 

SMNN together with MNN on both simulated and three published scRNA datasets. Our results clearly show the 216 

advantages of SMNN in terms removing batch effects. For example, our results for the hematopoietic datasets show 217 

that SMNN better mixed cells of all the three cell types across the two batches (Fig 4a-c), and reduced the 218 

differentiation between the two batches by up to 8.2% on top of MNN corrected results (Fig 4d-f and S6 Fig), 219 

demonstrating that our SMNN method can more effectively mitigate batch effect.  220 

More importantly, the wrongly matched cell pairs may wipe out the distinguishing features of cell types. 221 

This is mainly because, for a pair of cells from two different cell types, the true biological differentiations between 222 

them would be considered as technical biases and subsequently removed in the correction process. Compared to 223 

MNN, SMNN also appears to more accurately recover cell-type specific features: clustering accuracy using SMNN-224 

corrected data increases substantially in all the three real datasets (by 7.6 to 42.3% when measured by ARI) (Fig 7). 225 

Furthermore, we observe power enhancement in detecting DEGs between different cell types in the data after 226 

SMNN correction than MNN (Fig 5 and 6 and S7-12 Fig). Specifically, the true positive rates of the DEGs 227 

identified by SMNN were improved by up to 841% and 54.0% than those by MNN when compared to the two set of 228 
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working truth, respectively (Fig 6c and d and S8-12 Fig). Moreover, GO term enrichment results show that, the up-229 

regulated DEGs identified only in SMNN-corrected GMP and MEP cells were involved in immune process and 230 

blood coagulation, respectively (S7f and h Fig), which accurately reflect the major features of these two cell types 231 

[20]. Similarly, DEGs identified between T and B cells after SMNN correction are also biologically more relevant 232 

than those identified after MNN correction (S13b and c Fig). These results suggest that SMNN can eliminate the 233 

overcorrection between different cell types and thus maintains more biological features in corrected data than MNN. 234 

Efficient removal of batch effects at reduced cost of biological information loss, manifested by SMNN in our 235 

extensive simulated and real data evaluations, empowers valid and more powerful downstream analysis.  236 

 In summary, extensive simulation and real data benchmarking suggest that our SMNN can not only better 237 

rescue biological features and thereof provide improved cluster results, but also facilitate the identification of 238 

biologically relevant DEGs. Therefore, we anticipate that our SMNN is valuable for integrated analysis of multiple 239 

scRNA-seq datasets, accelerating genetic studies involving single-cell dynamics. 240 

 241 

Materials and methods 242 

Simulation Framework 243 

We simulated two scenarios, orthogonal and non-orthogonal, to compare the performance of MNN and SMNN. The 244 

difference between the two scenarios lies in the directions of the true underlying batch effect vectors with respect to 245 

those of the biological effects.  246 

 247 

Baseline simulation 248 

Our baseline simulation framework, similar to that adopted in the MNN paper, contains two steps: 249 

Firstly, different batches of data are independently generated from a Gaussian mixture model to represent a 250 

low dimensional biological space, with each component in the mixture corresponding to one cell type. Specifically, 251 

we consider two batches with gene expression matrix X� and Y�, each follows a three-component Gaussian mixture 252 

model in a three-dimensional space, representing the low (here three) dimensional biological space.  253 

  ��~ � �����	��, ����

���

, ��� � ���

�

���

� 1, ���  ���, ���, ��� � 0, ��� � � 1,2, … , �� (1) 
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 ��~ � �����	��, ����

���

, ��� � ���

�

���

� 1, ���  ���, ���, ��� � 0, ��� � � 1,2, … , �� (2) 

where 	�� is the vector specifying cell-type specific means for the three cell types in the first batch, reflecting the 254 

biological effect; similarly for 	��; �� and �� is the total number of cells in the first and second batch, respectively; 255 

��� and ���  are the different mixing coefficients for the three cell types in the two batches; and �� is the three 256 

dimensional identity matrix with diagonal entries as ones and the rest entries as zeros. In our simulations, we set 257 

�� � 1000, �� � 1100 and 258 

 ����, ���, ���� � �0.3, 0.5, 0.2� (3) 

 
����, ���, ���� � �0.25, 0.5, 0.25� 

 
(4) 

Secondly, we project the low dimensional data with batch effect to the high dimensional gene expression 259 

space. We map both datasets to G = 50 dimensions by linear transformation using the same random Gaussian matrix 260 

P, to simulate high-dimensional gene expression profiles. 261 

 ��
# � $��, ��� � � 1,2, … , �� (5) 

  ��% � $��, ��� � � 1,2, … , �� (6) 

Here P is a G×3 Gaussian random matrix with each entry simulated from the standard normal distribution.  262 

 263 

Introduction of batch effects 264 

In the MNN paper, batch effects are directly introduced in the high dimensional gene expression space. Specifically, 265 

a Gaussian random vector & � �&�, &�, … , &	�
 is simulated and added to the second dataset via the following: 266 

 ��������,� � ��
# ' (�,�, ��� � � 1,2, … , �� (7) 

 ��������,� �   ��% ' & ' (�,�, ��� � � 1,2, … , �� (8) 

where ��
#  and  ��%  are projected high-dimensional gene expression profiles; (�,�  and (�,�  are independent random 267 

noises added to the expression of each “gene” for each cell in the two batches. 268 

In our simulations, we adopt a different approach: we introduce batch effects in the low dimensional 269 

biological space.  Specifically, we simulate a bias vector ) � �)�, )�, )��
 in the biological space: 270 

 ��������,� � ��
# ' (�,� � $�� ' (�,�, ��� � � 1,2, … , �� (9) 
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 ��������,� � �����,�
* ' (�,� � $��� ' )� ' (�,� � $�� ' +) ' (�,�, ��� � � 1,2, … , �� (10) 

Comparing our simulation framework with that employed in the MNN paper, we would like to note the following: 271 

1) For any vector ), there is a corresponding vector & � $) given a fixed projection matrix P. This implies that our 272 

approach generates data that are special cases of those from MNN. In particular, since �&�� � �$)�� �273 

∑ +��)�	
��� ~��0, ∑ )��	

��� �, if ∑ )��	
��� � 1, our approach becomes equivalent to generating a standard Gaussian 274 

random vector. 275 

2) Our formulation allows flexible modeling of the biological effects and batch effects in the same low 276 

dimensional biological space. Specifically,  277 

 	�� � 	�� ' ), ���  � 1,2,3. (11) 

Note that �	�� 2 	���) � 0, ���  3 4 5 61,2,37 in the orthogonal case and �	�� 2 	���) 3 0, ���  3 4 5 61,2,37  in 278 

the non-orthogonal case.  279 

In summary, our simulation framework, allowing flexible manipulation of biological and batch effects in 280 

the same low dimensional space, is effectively a special case of that adopted in the MNN paper.   281 

The two scenarios 282 

As aforementioned, we consider two scenarios, orthogonal case and non-orthogonal case. Orthogonality is defined 283 

in the sense that biological differences (that is, mean difference between any two clusters/cell-types), are orthogonal 284 

to those from batch effects.  285 

Leveraging the simulation framework described before, we simulate two scenarios via the following: 286 

1) In the orthogonal case, we set   ) � �0, 0, 2�
 287 

a. 	�� � �5, 0, 0�
, 	�� � �0, 0, 0�
, 	�� � �0, 5, 0�
 288 

b. 	�� � �5, 0, 2�
, 	�� � �0, 0, 2�
, 	�� � �0, 5, 2�
 289 

2) In the non-orthogonal case, we set   ) � �0, 5, 2�
 290 

a. 	�� � �5, 0, 0�
, 	�� � �0, 0, 0�
,  	�� � �0, 5, 0�
 291 

b. 	�� � �5, 5, 2�
, 	�� � �0, 5, 2�
, 	�� � �0, 10, 2�
 292 

 293 

Performance evaluation 294 

MNN and SMNN share the goal to correct batch effects. Mathematically, using the notations introduced in baseline 295 

simulation, the goal translates into de-biasing vector ) (which would be effectively reduced to & in the orthogonal 296 
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case). Without loss of generality and following MNN, we treat the first batch as the reference and correct the second 297 

batch 8��������,�: � � 1, … , ��: to the first batch  8��������,�: � � 1, … , ��:. Denote the corrected values from 298 

MNN and SMNN as 6����,�
; <  � � 1, … , ��7 and 6�����,�

; : � � 1, … , ��7, respectively.  299 

To measure the performance of the two correction methods, we utilize the Frobenius norm [19] to define 300 

the loss function: 301 

 =>�?, �@A � BC% 2 �?B
�

� D�B��% 2 ��EB���

���

� D� �F��,�# 2 ��,�G F�	

���

��

���

 (12) 

where C% � H��% , … , ��% , … , ���# I ,  �? � H��E , … , ��E , … , ���G I . Note that C%  is the simulated true profiles introduced in 302 

equations (Error! Reference source not found.) and (Error! Reference source not found.Error! Reference 303 

source not found.Error! Reference source not found.Error! Reference source not found.) before batch effects, 304 

and noises are introduced in equations (Error! Reference source not found.) and (Error! Reference source not 305 

found.). Since MNN conducts cosine normalization to the input and the output, we use cosine-normalized C% when 306 

calculating the above loss function.  307 

 308 

Real data benchmarking 309 

To assess the performance of SMNN in real data, we applied both SMNN and MNN to two hematopoietic scRNA-310 

seq datasets, generated using different sequencing platforms, MARs-seq and SMART-seq2 (S1 Table) [10,21]. The 311 

first batch produced by MARs-seq consists of 1920 cells of six major cell types, and the second batch generated by 312 

SMART-seq2 contains 2730 of three cell types, where three cell types, common myeloid progenitor (CMP) cells, 313 

granulocyte-monocyte progenitors (GMP) cells and megakaryocyte-erythrocyte progenitor (MEP) cells, are shared 314 

between these two batches (here the two datasets). Batch effect correction was carried out using both MNN and 315 

SMNN, following the default instructions. Cell type labels were fed to SMNN directly according to the annotation 316 

from the original papers. To better compare the performance between MNN and SMNN, only the three cell types 317 

shared between the two batches were extracted for our downstream analyses. The corrected results of all the three 318 

cell types together, as well as for each of them separately, were visualized by t-SNE using Rtsne function from Rtsne 319 

package [9,22]. In order to qualify the mixture of single cells using both batch correction methods, we calculated: 1) 320 
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the distance for the cells within each cell type in batch 2 to the centroid of the corresponding cell group in batch 1; 321 

and 2) the overall variance in the two batches.  322 

To measure the separation of cell types after correction, we additionally attempted to detect differentially 323 

expressed genes (DEGs) between different cell types in both SMNN and MNN corrected datasets. The corrected 324 

expression matrices of the two batches were merged and DEGs were detected by Seurat using Wilcoxon rank sum 325 

test. Genes with an adjusted p-value < 0.01 were considered as differentially expressed. Gene ontology (GO) 326 

enrichment analysis was performed for the DEGs exclusively identified by SMNN using clusterProfiler [23]. 327 

Because there is no ground truth for DEGs, we further identified DEGs between different cell types within corrected 328 

batch 2 and then compared them to those identified in uncorrected batch 1 and uncorrected batch 2, which 329 

supposedly are not affected by the choice of batch effect correction method. True positive rate (TPR) was computed 330 

for each comparison.  331 

 Additionally, we also performed batch effect correction on another two tissues/cell lines, pancreas [24,25] 332 

human peripheral blood mononuclear cells (PBMCs) [26], again using both SMNN and MNN. Single cell clustering 333 

was applied to batch-effects corrected gene expression matrices following the pipeline described in MNN paper. 334 

Cell type labels before correction were considered as ground truth and Adjusted Rand Index (ARI) [27] was 335 

employed to measure the clustering similarity before and after correction: 336 

 ������ , ���  	  
∑ ����

2 ��,� � �∑ ���

2 ��
∑ ���

2 �� � / ��
2�

1
2 �∑ ���

2 �� � ∑ ���

2 �� � � �∑ ���

2 ��
∑ ���

2 �� � / ��
2�

 (13) 

where �� and �� are the single cell numbers in cluster J and K, respectively; �� is the number of single cells shared 337 

between clusters J and K; and � is the total number of single cells. ARI ranges from 0 to 1, where a higher value 338 

represents a higher level of similarity between the query and subject clusters. 339 

 340 

Acknowledgements  341 

This research was supported by the National Institute of Health grant R01 HL129132 (awarded to YL). 342 

 343 

Author Contributions 344 

Conceptualization: Yuchen Yang, Gang Li, Yun Li. 345 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/672261doi: bioRxiv preprint 

https://doi.org/10.1101/672261
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

Formal analysis: Yuchen Yang, Gang Li, Huijun Qian. 346 

Funding acquisition: Yun Li. 347 

Methodology: Yuchen Yang, Gang Li. 348 

Software: Yuchen Yang, Gang Li. 349 

Supervision: Yun Li. 350 

Visualization: Yuchen Yang, Gang Li, Huijun Qian. 351 

Writing – original draft: Yuchen Yang, Gang Li. 352 

Writing – review & editing: Yun Li, Kirk C. Wilhelmsen, Yin Shen. 353 

 354 

REFERENCES 355 

1. Rozenblatt-Rosen O, Stubbington MJ, Regev A, Teichmann SA (2017) The human cell atlas: from vision to 356 
reality. Nature News 550: 451. 357 

2. Stegle O, Teichmann SA, Marioni JC (2015) Computational and analytical challenges in single-cell 358 
transcriptomics. Nature Reviews Genetics 16: 133. 359 

3. Chen M, Zhou X (2017) Controlling for confounding effects in single cell RNA sequencing studies using both 360 
control and target genes. Scientific reports 7: 13587. 361 

4. Stuart T, Satija R (2019) Integrative single-cell analysis. Nature Reviews Genetics: 1. 362 
5. Smyth GK (2005) Limma: linear models for microarray data. Bioinformatics and computational biology solutions 363 

using R and Bioconductor: Springer. pp. 397-420. 364 
6. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical 365 

Bayes methods. Biostatistics 8: 118-127. 366 
7. Leek JT (2014) Svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic acids 367 

research 42: e161-e161. 368 
8. Haghverdi L, Lun AT, Morgan MD, Marioni JC (2018) Batch effects in single-cell RNA-sequencing data are 369 

corrected by matching mutual nearest neighbors. Nature biotechnology 36: 421. 370 
9. Van Der Maaten L (2014) Accelerating t-SNE using tree-based algorithms. The Journal of Machine Learning 371 

Research 15: 3221-3245. 372 
10. Nestorowa S, Hamey FK, Sala BP, Diamanti E, Shepherd M, et al. (2016) A single-cell resolution map of mouse 373 

hematopoietic stem and progenitor cell differentiation. Blood 128: e20-e31. 374 
11. Spitzer MH, Gherardini PF, Fragiadakis GK, Bhattacharya N, Yuan RT, et al. (2015) An interactive reference 375 

framework for modeling a dynamic immune system. Science 349: 1259425. 376 
12. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, et al. (2019) Comprehensive Integration of Single-377 

Cell Data. Cell 177: 1888-1902 e1821. 378 
13. Duò A, Robinson MD, Soneson C (2018) A systematic performance evaluation of clustering methods for single-379 

cell RNA-seq data. F1000Research 7. 380 
14. Kiselev VY, Andrews TS, Hemberg M (2019) Challenges in unsupervised clustering of single-cell RNA-seq 381 

data. Nature Reviews Genetics: 1. 382 
15. Zhu L, Lei J, Klei L, Devlin B, Roeder K (2019) Semisoft clustering of single-cell data. Proceedings of the 383 

National Academy of Sciences 116: 466-471. 384 
16. Sun Z, Chen L, Xin H, Jiang Y, Huang Q, et al. (2019) A Bayesian mixture model for clustering droplet-based 385 

single-cell transcriptomic data from population studies. Nature communications 10: 1649. 386 
17. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across 387 

different conditions, technologies, and species. Nature biotechnology 36: 411. 388 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/672261doi: bioRxiv preprint 

https://doi.org/10.1101/672261
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

18. Yang Y, Huh R, Culpepper HW, Lin Y, Love MI, et al. (2019) SAFE-clustering: Single-cell aggregated (from 389 
ensemble) clustering for single-cell RNA-seq data. Bioinformatics 35: 1269-1277. 390 

19. Van Loan CF, Golub GH (1983) Matrix computations: Johns Hopkins University Press. 391 
20. Lieu YK, Reddy EP (2012) Impaired adult myeloid progenitor CMP and GMP cell function in conditional c-392 

myb-knockout mice. Cell Cycle 11: 3504-3512. 393 
21. Paul F, Arkin Ya, Giladi A, Jaitin DA, Kenigsberg E, et al. (2015) Transcriptional heterogeneity and lineage 394 

commitment in myeloid progenitors. Cell 163: 1663-1677. 395 
22. Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. Journal of machine learning research 9: 2579-2605. 396 
23. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among 397 

gene clusters. Omics: a journal of integrative biology 16: 284-287. 398 
24. Grün D, Muraro MJ, Boisset J-C, Wiebrands K, Lyubimova A, et al. (2016) De novo prediction of stem cell 399 

identity using single-cell transcriptome data. Cell stem cell 19: 266-277. 400 
25. Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, et al. (2016) A single-cell transcriptome atlas of the 401 

human pancreas. Cell systems 3: 385-394. e383. 402 
26. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, et al. (2017) Massively parallel digital transcriptional 403 

profiling of single cells. Nature communications 8: 14049. 404 
27. Hubert L, Arabie P (1985) Comparing partitions. Journal of classification 2: 193-218. 405 
 406 

  407 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2019. ; https://doi.org/10.1101/672261doi: bioRxiv preprint 

https://doi.org/10.1101/672261
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

Figure Legend 408 

 409 

 410 

Fig 1. Overview of SMNN. Schematics for detecting mutual nearest neighbors between two batches under a non-411 

orthogonal scenario (a) in SMNN; and (b) in MNN. (c) Workflow of SMNN. Single cell clustering is first 412 

performed within each batch using Seurat; and then SMNN takes user-specified marker gene information for each 413 

cell type to match clusters/cell types across batches. With the clustering and cluster-specific marker gene 414 

information, SMNN searches mutual nearest neighbors within each cell type and performs batch effect correction 415 

accordingly.  416 

 417 
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 418 

Fig 2. Heatmap of gene expression matrices for simulated data under non-orthogonal scenario. (a), (b), (c) and 419 

(d) show the 3-dimensional biological space with rows of each heatmap representing biological factors and columns 420 

corresponding to single cells. (e), (f), (g) and (h) show the high dimensional gene expression profiles with rows 421 

corresponding to genes and columns again representing single cells. (a), (e) and (i) correspond to the batch 1, and 422 

(b), (f) and (j) correspond to batch 2. (c) and (g) provide a visualization for the direction of batch effects in low-423 

dimension biological space and high-dimension gene expression spaces, respectively. (d) and (h), sum of (b) and (c) 424 

and sum of (f) and (g) respectively, are “observed” data for cells in batch 2 in low and high dimensional space 425 

respectively. (i) and (j) are the cosine-normalized data for batch 1 and original batch 2. Note “original” is in the 426 

sense that no batch effects have been introduced to the data yet. (k) and (l) are the MNN and SMNN corrected 427 

results, respectively. 428 

 429 
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 430 

Fig 3. Frobenius norm distance between two batches after SMNN and MNN correction in simulation data 431 

under orthogonal (left) and non-orthogonal scenarios (right). 432 

  433 
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 434 

Fig 4. Performance comparison between SMNN and MNN in two hematopoietic datasets. (a-c) t-SNE plots for 435 

two hematopoietic datasets before and after correction with SMNN and MNN. Solid and inverted triangle represent 436 

the first and second batch, respectively; and different cell types are shown in different colors. (d-f) Variance 437 

comparisons for the three different cell types: CMP (d), GMP (e) and MEP (f), in merged data by pooling batch 1 438 

with different versions of batch 2. Specifically, we show the following three versions of batch 2 data: original 439 

observed (uncorrected), MNN-corrected (MNN) and SMNN corrected (SMNN). The SMNN corrected version 440 

resulted in variances slightly (for CMP and GMP cells) or substantially (for MEP cells) smaller than those from the 441 

MNN corrected version, suggesting improved mixing of cells across batches. 442 

 443 
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 444 

Fig 5. Comparison of differentially expressed genes (DEGs), identified in the merged dataset by pooling batch 445 

1 data with batch 2 data after SMNN and MNN correction. (a) Overlap of DEGs up-regulated in CMP over 446 

GMP after SMNN and MNN correction. (b) Feature enriched GO terms and the corresponding DEGs up-regulated 447 

in CMP over GMP. (c) Overlap of DEGs up-regulated in CMP over MEP after SMNN and MNN correction. (d) 448 

Feature enriched GO terms and the corresponding DEGs up-regulated in CMP over MEP. 449 

  450 
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 451 

Fig 6. Reproducibility of DEGs (between CMP and GMP), identified in uncorrected batch 1 and in SMNN or 452 

MNN-corrected batch 2. (a) Reproducibility of DEGs up-regulated in CMP over GMP, detected in batch 1, versus 453 

SMNN (left) or MNN-corrected (right) batch 2. (b) True positive rate (TPR) of the DEGs (between CMP and GMP) 454 

identified in batch 2 after SMNN and MNN correction. (c) Reproducibility of DEGs up-regulated in GMP over 455 

CMP, identified in the uncorrected batch 1, and in SMNN (left) or MNN-corrected (right) batch 2. (d) TPR of the 456 

DEGs up-regulated in GMP over CMP identified in batch 2 after SMNN and MNN correction. 457 

 458 
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 459 

Fig 7. Clustering accuracy in three datasets after batch effect correction. Adjusted Rand Index (ARI) is 460 

employed to measure the similarity between clustering results before and after batch effect correction. 461 
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