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Histology provides a unique window into the cellular and molecular architecture of 

tissues and is a critical component of biomedical research and clinical practice. Highly-

multiplexed immunohistochemistry1-6 (mIHC) enables the routine staining and 

quantification of dozens of antigens in the same tissue section with single-cell 

resolution. However, the amount of cell types and states that can be simultaneously 

identified by mIHC is limited. In contrast, cells are finely disaggregated into distinct types 

in single-cell transcriptomic analyses but spatial information is lost. To bridge this gap, 

we developed an approach for enriching mIHC histology slides with single-cell RNA-seq 

data, building upon recent experimental procedures for augmenting single-cell 

transcriptomes with concurrent antigen measurements7, 8. Our approach, Spatially-

resolved Transcriptomics via Epitope Anchoring (STvEA), increases the level of detail in 

histological analyses by enabling detection of subtle cell populations, spatial patterns of 

transcription, and cell-to-cell interactions. It provides an improvement in throughput, 

resolution, and simplicity with respect to existing spatially-resolved methods for 

simultaneous proteomics and transcriptomics. We demonstrate the utility of STvEA by 

uncovering the architecture of poorly characterized cell populations in the murine spleen 

using published mIHC images. 

The most recent technologies for highly-parallelizable single-cell RNA-seq allow augmenting 

single-cell transcriptomes with concurrent protein measurements7, 8. For example, CITE-seq 

utilizes oligonucleotide-conjugated antibodies to combine multiplexed protein marker detection 

with unbiased transcriptome profiling of single cells7. We used the murine spleen as a test 

system to assess the feasibility of mapping CITE-seq data to mIHC images, since well-

established antibody panels and high-quality mIHC data are readily available for this organ. One 

such high-resolution mIHC dataset has recently been generated using the CODEX technology2. 
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CODEX employs an in-situ polymerization indexing procedure to measure the spatial 

distribution of a panel of protein markers with sub-micrometer resolution. We generated a high-

quality CITE-seq dataset of the murine spleen using the same 30-antibody panel 

(Supplementary Table 1) and mice of the same age, sex, and strain as this CODEX dataset. In 

total, we profiled the transcriptome and antigen levels of 7,097 cells using CITE-seq, with a 

median of 819 expressed genes and 3,235 antibody-derived tag (ADT) unique molecular 

identifiers (UMIs) per cell. The median Spearman correlation among the observed expression of 

mRNAs and the proteins they code for was 0.32, consistent with previous CITE-seq studies7. 

We used single-cell variational inference (scVI)9 to obtain a latent space representation of the 

mRNA data and clustered the cells in this space using an in-house consensus algorithm (see 

Online Methods). Our analysis found 17 clusters and no noticeable batch effects (Figs. 1a, 

Supplementary Fig. 1). We performed differential expression analysis to annotate the clusters 

based on the expression of known marker genes (Fig. 1b, Supplementary Table 2). Additionally, 

we utilized a spectral graph method10, 11 to characterize the transcriptional heterogeneity that 

originates from the continuous and dynamic maturation processes occurring in the spleen (Fig. 

1c, Supplementary Table 3). The results of this analysis allowed us to annotate the mRNA 

dataset beyond discrete clusters. Overall, we identified 30 cell populations (Fig. 1a), including T 

cells (helper, cytotoxic, effector memory, and regulatory), B cells (follicular, marginal zone, B-1, 

T1, and Notch2high), natural killer cells, dendritic cells (plasmacytoid, conventional CD4 and 

CD8, pre-DCs), red pulp macrophages (AP-1high and AP-1low), monocyte-derived macrophages, 

monocytes, basophils, neutrophils (IL1high and IL1low, meta-myelocytes), plasma cells, 

Langerhans cells, erythroblasts (immature and mature), and CD47- erythrocytes. These results 

represent a substantial increase in resolution with respect to previous single-cell RNA-seq 

atlases of the murine spleen12-14 and comprise most of the known splenic cell populations15, 16. 

We noticed that most of the cell populations identified in the transcriptomic analysis were also 

localized in the protein expression space spanned by the ADT data (Supplementary Fig. 2). This 

observation indicates that small differences in cellular epitope levels are often representative of 

distinct transcriptomic states, even if those differences do not lead to discrete clusters in the 

protein expression space. Consequently, we reasoned that mapping the CODEX protein 

expression space into the CITE-seq protein expression space with high-resolution would allow 

us to survey the CODEX images for the cell populations identified in the transcriptomic analysis. 

To lessen the technical differences and facilitate the integration of the two spaces, we devised a 

common approach to background removal and normalization for CODEX and CITE-seq protein 

expression measurements (Fig. 2a). In each dataset, we modeled the distribution of protein 
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levels using a two-component mixture model consisting of background and signal components 

(see Online Methods). Our approach led to improved and more consistent protein expression 

levels across the two datasets (Fig. 2a). We then employed a similar strategy to that of Stuart et 

al.17 to consolidate the signal component of the two datasets into a common protein expression 

space (see Online Methods). To that end, we identified a set of anchors (pairs of cells in the 

CITE-seq and CODEX datasets that will be mapped to each other) by computing mutual nearest 

neighbors18 in a common ambient space obtained via canonical correlation analysis (Fig. 2b). 

Anchors were filtered and weighted according to their degree of consistency with the protein 

and mRNA expression spaces. By looking at the CODEX neighbors of each CITE-seq cell in the 

consolidated protein expression space (Fig. 2b), we were able to identify cells in the mIHC 

images with a similar antigenic profile to those in the CITE-seq dataset. Using this approach, we 

predicted the spatial location of the cell populations identified in the transcriptomic analysis (Fig. 

2c). STvEA correctly recapitulated the known spatial distribution of splenic cell populations, 

including the location of plasmacytoid dendritic cells (pDCs) in T cell zones and the positioning 

of CD4 conventional dendritic cells (cDCs) along the bridging channels that connect T cell 

zones and the red pulp19 (Fig. 2c). We also observed that much of the transcriptional 

heterogeneity within B-2 cells was associated with distinct locations within B cell zones (Fig. 2c). 

The cell population assignments inferred for each cell in the CODEX dataset were consistent 

across CITE-seq replicates (median Pearson’s correlation between population assignments r = 

0.998, p-value < 10-10), with the largest uncertainties occurring between AP-1high and AP-1low red 

pulp macrophages and between erythrocytes and erythroblasts (Fig. 2d). Additionally, the 

relative spatial distributions inferred by STvEA were reproducible across multiple spleens 

profiled with CODEX (Supplementary Fig. 3).  

The mapping of single-cell transcriptomic data onto mIHC images provided by STvEA allows us 

to investigate the predicted spatial patterning of any gene in the mRNA dataset (Fig. 2e). To 

validate some of the spatially-resolved gene expression profiles predicted by STvEA, we 

performed multiplexed RNA fluorescent in situ hybridization20 (FISH) of several marker genes 

identified in the differential expression analysis (Fig. 2e, Supplementary Figs. 4 and 5). 

Specifically, we carried out hybridizations for Bhlhe41, a transcriptional repressor highly 

expressed by B-1 cells21 as they mature and migrate from B cell zones into the red pulp22; and 

Il1b, expressed by several subpopulations of cDCs, monocytes, macrophages, and neutrophils 

in the red pulp and T cell zones, but not expressed in B cell zones. In both cases, FISH correctly 

recapitulated the expression patterns predicted by STvEA (Fig. 2e, Supplementary Figs. 4 and 
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5), confirming the utility of our computational approach to label mIHC images by gene 

expression levels. 

Characterizing cell-to-cell interactions within the context of tissues is a key step towards 

understanding cell function. Having inferred the transcriptome and cell type of individual cells in 

mIHC images enabled us to survey candidate cell-to-cell interactions with cellular resolution. We 

devised a graph-based approach for assessing the spatial co-localization of cell populations 

identified in the transcriptomic analysis while accounting for mapping uncertainties (see Online 

Methods). Significant co-localization patterns recapitulated the well-established immune cellular 

architecture of the spleen, partitioned into red pulp, B cell zones, and T cell zones (Fig. 3a). T 

cells, pDCs, and CD4 cDCs were recurrently in close proximity within T cell zones. Similarly, red 

pulp macrophages, erythrocytes, neutrophils, and monocytes were recurrently in close proximity 

within the red pulp. In addition, several cell populations showed co-localization patterns that 

spanned multiple splenic compartments (Fig. 3a). Specifically, CD4 cDCs appeared recurrently 

in close proximity with T cells in T cell zones and with NK cells in the red pulp (Fig. 3a). These 

inferred relations were reproducible across multiple spleens profiled with CODEX (Fig. 3b, 

Pearson’s correlation coefficient between significance levels, 𝑟 ≥ 0.98).  

To identify molecular cues that potentially mediate the crosstalk between splenic cell 

populations, we compared differentially expressed genes to a database of receptor-ligand 

interactions23. This analysis identified 67 significant candidate interactions based on the 

expression of genes encoding for ligands and receptors by one or more cell populations 

(CellPhoneDB 𝑝-value ≤ 0.05, Supplementary Table 4). However, many of these interactions 

would not be functional if ligand- and receptor-expressing cells are not in close proximity. Thus, 

we subsequently restricted our analysis to pairs of ligand and receptor genes with significantly 

co-localized expression in the tissue section. Overall, we detected 29 significant receptor-ligand 

interactions based on the proximity of ligand- and receptor-expressing cells (Benjamini-

Hochberg adjusted 𝑞-value ≤ 0.05, median distance 5 m, Supplementary Table 4). The results 

of this analysis suggest a specialization of resident red pulp macrophages in regulating the 

homeostasis of humoral innate immune responses in the spleen (Fig. 3c). We identified the 

expression of several cues related to the positive regulation of these responses. Complement 

component 1q (C1q) can mediate phagocytosis of apoptotic cells by calreticulin/LRP1 receptor 

stimulation24. We observed the co-localized expression of genes encoding for C1q subunits and 

the receptor LRP1 in both red pulp and monocyte-derived macrophages (Fig 3c and 

Supplementary Table 4). However, the expression of C1q genes was 12-fold higher in red pulp 
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macrophages than in monocyte-derived macrophages (𝑝-value < 10-10), suggesting the 

specialization of the former in modulating C1q-dependent phagocytosis. Red pulp macrophages 

also displayed high expression levels of the Hebp1 gene, which encodes for the precursor of the 

F2L peptide that activates and chemo-attracts neutrophils by binding to the formyl peptide 

receptor Fpr225. Consistent with a function of red pulp macrophages in orchestrating neutrophil 

activation, Hebp1-expressing red pulp macrophages were in close spatial proximity to Fpr2-

expressing neutrophils (Fig. 3c, Supplementary Table 4). In contrast, monocyte-derived 

macrophages displayed low expression levels of Hebp1 (fold-change with respect to red pulp 

macrophages = 0.1, 𝑝-value < 10-10). These macrophages instead expressed annexin A1 

(Anxa1) (Fig. 3c, Supplementary Table 4), an anti-inflammatory agonist of the neutrophilic 

receptor Fpr126. Additionally, we observed high expression levels of insulin-like growth factor 1 

(Igf1) in red pulp macrophages. Various works have put forward the role of human IGF-1 in 

stimulating the activation and chemokinesis of basophils through the IGF-1R receptor27-30. 

Consistent with this hypothesis, our analysis revealed red pulp macrophages were recurrently 

adjacent to Igf1r-expressing basophils (Fig. 3c, Supplementary Table 4). The expression of Igf1 

in monocyte-derived macrophages was substantially lower (fold-change with respect to red pulp 

macrophages = 0.1, 𝑝-value < 10-10), indicating the specialization of resident red pulp 

macrophages in IGF-1 signaling. Hence, taken together these results suggest important 

differences in the immuno-regulatory function of red pulp and monocyte-derived macrophages 

in the murine spleen. More broadly, they show the utility of spatially-resolved expression data in 

the study of cell-to-cell signaling interactions. 

Several platforms have been recently developed for highly-multiplexed spatially-resolved 

transcriptomics with single-cell resolution31-38. However, these experimental approaches are 

technically challenging and costly to implement, and do not permit simultaneous measurements 

of RNA and protein levels. Although a platform for highly-multiplexed spatial profiling of proteins 

and RNA has been recently proposed, profiling more than a small number (~10) of cells in a 

tissue section with this system is currently impractical and cost-prohibitive39. STvEA provides a 

simple computational approach for enriching mIHC images with single-cell transcriptomic data 

using widely-accessible commercial platforms. Its throughput and resolution allows for the 

characterization of the expression levels of thousands of genes for tens of thousands of cells in 

a tissue slide. Furthermore, it can leverage existing CITE-seq and mIHC datasets. We have 

implemented STvEA as open source software available to the entire community (see Online 

Methods). The results of our murine spleen study can be accessed interactively through an 
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online database (see Online Methods). We expect these resources to be of great utility for 

future studies of the cellular and molecular architecture of healthy and diseased tissues. 

 

Methods 

Mouse handling 

All animal work was approved by and carried out in compliance with the animal welfare 

regulations defined by the University of Pennsylvania International Animal Care and Use 

Committee (IACUC). 15 week old female BALB/cJ (Stock #000651) mice were acquired from 

The Jackson Laboratory (Bar Harbor, ME). Mice were allowed to age at the University of 

Pennsylvania Small Animal Facility until they reached approximately 9 months, at which point 

they were euthanized using CO2 followed by cervical dislocation.  

Tissue dissection and preparation of splenic single-cell suspensions 

Spleens were removed from mice and mechanically dissociated with a syringe plunger over a 

40 um strainer while being washed with 5 ml of PBS + 10% fetal calf serum. Suspension were 

centrifuged briefly to pellet cells. Red blood cells were lysed with an RBC lysis buffer (155 mM 

NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA) for 5 minutes and centrifuged again. 2 million cells 

from the resulting pellet were re-suspended in staining buffer (2% BSA, 0.01% Tween in PBS), 

and subsequently incubated with the antibody panel as described below (see “Cell Staining”). 

CITE-seq antibody conjugation and panel preparation 

Antibodies were conjugated to 5’ amino-modified, HPLC-purified CITE-seq oligonucleiotides 

purchased from Integrated DNA Technologies. Antibodies were concentrated to 1 mg/ml in PBS 

pH 7.4 using 50 kDa cutoff spin columns (UFC505024, Millipore). Oligonucleiotides were 

resuspended to 1 mg/ml in 1x PBS pH 7.4 and were subsequently cleaned as suggested in the 

CITE-seq protocol. In brief, oligos were heated at 85C and centrifuged at 17,000g to pellet any 

debris. For each antibody, 100 ug of antibody and 100 ug of oligo were conjugated using the 

Thunder-Link PLUS Oligo Conjugation System (SKU: 425-0300, Expedeon). All conjugates 

were cleaned as described in the CITE-seq protocol and resuspended to their final 

concentration in the Antibody Resuspension Buffer provided with the kit, with the exception of 

CD16/32, which was resuspended in 1x PBS. Successful conjugation was validated by running 

1 ug of each conjugate on a 2% agarose gel which was subsequently stained with Sybr Gold 

(S11494, Thermo Fisher Scientific).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2019. ; https://doi.org/10.1101/672501doi: bioRxiv preprint 

https://doi.org/10.1101/672501
http://creativecommons.org/licenses/by-nc-nd/4.0/


To prepare the panel, 1.5 ul of each antibody-oligo conjugate (except CD16/32) were combined 

in PBS and centrifuged in a 50 kDa cutoff column. After washing, the cleaned panel was 

recovered by flipping the column upside down and centrifuging. The cleaned panel was 

resuspended in staining buffer.   

Single-cell CITE-seq library preparation and sequencing 

1.5 ug of the CD16/32 antibody-oligo conjugate was incubated with the single cell suspension 

for 10 minutes in place of the mouse seroblocker suggested in the CITE-seq protocol. The 

remaining 29 antibodies were then added to the cell suspension and incubated on ice. After 

incubation, cells were washed thoroughly, counted on a hemocytometer, and loaded into the 

10x Chromium platform (10x Genomics) for single-cell library preparation. Cells were loaded at 

1,200 cells/ul. Only samples with >80% cell viability were used, profiling a total of 2 mouse 

spleens. cDNA libraries were prepared following the standard CITE-seq and 10x protocols. The 

resulting ADT and mRNA libraries were combined at a 1:9 ratio and sequenced with an Illumina 

HiSeq 2500 at the Center of Applied Genomics, Children’s Hospital of Philadelphia. 

Multiplexed RNA FISH of splenic tissue sections 

Whole spleens were removed from euthanized mice and immediately submerged in 4% 

paraformaldehyde for 5.5 hours. They were then cryoprotected in a 30% sucrose/70% fixative 

solution at 4°C until the tissue sank (approximately overnight, ~16 hours). The tissue was 

embedded in OCT cryostat sectioning medium (OCT Compound, Sakura Finetek Inc, Supp. No. 

4583) on dry ice and frozen at -80°C. Tissue was cut using a cryostat at -20°C into 10 um-thick 

sections and frozen again at -80°C. Tissue was used for microscopy within 6 months of fixation 

and cryoprotection. 

RNA fluorescence in situ hybridization experiments were carried out with the RNAscope 

Multiplex Fluorescence Reagent Kit v2 (Advanced Cell Diagnostics, Hayward, CA, USA, Cat. 

No. 323100). The RNAscope Assay for fixed frozen samples was followed per the 

manufacturer’s protocol with the following two modifications: the post-fix incubation was carried 

out with 4% PFA at room temperature for 90 minutes and manual target retrieval with a 5 minute 

sample incubation was performed instead of the steamer method. Probes for mouse Bhlhe41 

and Il1b (Advanced Cell Diagnostics, Cat. No. 467431 and 316891) were hybridized with Opal 

520 (Akoya Biosciences, Cat. No. FP1487001KT), and probes for mouse Cd79a (Advanced Cell 

Diagnostics, 460181-C2) was hybridized with Opal 570 (Akoya Biosciences, Cat. No. 

FP1488001KT). Both dyes were diluted 1:1500 with TSA buffer provided by the RNAscope kit. 

Channel 2 was diluted in channel 1 1:50 as suggested in the RNAscope protocol. All 
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incubations were carried out using a Stratagene PersonalHyb hybridization oven. Sequential 

sections were processed alongside the positive and negative controls provided by the 

RNAscope kit. Immunofluorescence images were acquired using a Leica TCS SP8 Multiphoton 

confocal microscope. 

Single-cell CITE-seq processing 

We used Cell Ranger to de-multiplex, map to the mouse reference genome (mm10), and count 

UMIs in the mRNA libraries, and CITE-seq-Count to count UMIs in the ADT libraries. We filtered 

out cells with more than 10% UMIs from mitochondrially-encoded genes or less than 1,200 

mRNA UMIs in total. We used scVI to infer a lower dimensional latent space for visualization 

and clustering of the mRNA expression data. scVI uses a neural network to fit a zero-inflated 

negative binomial model to represent the technical variation in scRNA-seq data and create a 

latent space. We inferred an 18-dimensional latent space representation for the expression data 

of all genes expressed in at least 15 cells (training size = 0.75, number of epochs = 400, 

learning rate = 1 × 10−3). The dimensionality of the latent space was empirically chosen based 

on the stability of the resulting representations and was consistent with the elbow of the scree 

plot. To visualize the mRNA expression, we further reduced the latent space to 2 dimensions 

using UMAP with Pearson’s correlation distance. 

Clustering and differential expression analysis of single-cell mRNA data 

We clustered the cells in the latent space using HDBSCAN and an in-house consensus 

algorithm. Prior to clustering, we used UMAP to establish a metric in the 18-dimensional latent 

space, as suggested by the UMAP Python documentation. Then we scanned across the 

min_cluster_size and min_sample parameters of HDBSCAN (min_cluster_size ∈ {5,9,13,17}, 

min_sample ∈ {10,13,16,19,22,25,28,31,34,37}) and used cluster-based similarity partitioning to 

build a consensus matrix, 

𝑀𝑖𝑗 =  ∑ 𝑠𝑖𝑗𝑠 ∈ 𝑆  ,                  𝑠𝑖𝑗 = { 
0, 𝑐𝑠𝑖 = 𝑐𝑠𝑗

1, otherwise
 

where 𝑆 is the set of indicator functions for all parameter configurations that gave rise to clusters 

with a silhouette score > 0.114, and 𝑐𝑠𝑖 is the cluster ID of cell 𝑖 in 𝑠. We used this consensus 

matrix as a dissimilarity matrix among cells to produce a consensus clustering using average 

linkage agglomerative clustering (inconsistent value ≤ 0.1).  

We ran edgeR’s general linear model (GLM) on the mRNA count data to identify differentially 

expressed genes between each cluster and all the other cells (fold change threshold > 2). 

Laplacian score analysis of single-cell mRNA data 
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We utilized the Laplacian score to more accurately annotate the mRNA data by identifying 

genes that have expression patterns within a cluster which cannot be explained by random 

variation. For each cluster, we built a graph where nodes represent cells and edges connect 

pairs of cells that are within ɛ distance, as defined by Pearson’s correlation in the latent space. 

We took ɛ to be given by the median pairwise distance among cells. For large clusters, we 

randomly sampled 1,000 cells. The Laplacian score of a gene with expression vector 𝑓 is 

defined as 

𝐿 =
𝑓𝑇 ∙ 𝐿 ∙ 𝑓

𝑓𝑇 ∙ 𝐷 ∙ 𝑓
 

where 

𝑓 = 𝑓 −
𝑓𝑇 ∙ 𝐷 ∙ 𝟏

𝟏𝑇 ∙ 𝐷 ∙ 𝟏
𝟏,         𝐷 = diag(𝐴 ∙ 𝟏), 𝟏 = [1, … ,1]𝑇 , 𝐿 = 𝐷 − 𝐴 

and 𝐴 is the adjacency matrix of the graph. We computed the Laplacian score of the log (1 +

𝑇𝑃𝑀 ∙ 10−2) expression values for all genes expressed in at least 2% and at most 90% of the 

cells. To assess the significance of the Laplacian score as compared to random variation, we 

performed a permutation test by randomizing the cell labels 1,000 times. 

Normalization of ADT libraries 

We fit the distribution of ADT counts for each antibody with a two-component negative binomial 

mixture model, 

𝑃𝑟𝑜𝑏(𝑟 = 𝑘ℎ𝑖) ~ 𝑏ℎ ∙ 𝑁𝐵 (𝑘ℎ𝑖 ;  𝑟ℎ
(1)

, 𝑝ℎ
(1)

) + (1 − 𝑏ℎ) ∙ 𝑁𝐵 (𝑘ℎ𝑖 ;  𝑟ℎ
(2)

, 𝑝ℎ
(2)

) 

where 𝑘ℎ𝑖 represents the observed number of ADT UMIs for antigen ℎ in cell 𝑖, and the mixing 

parameter 𝑏ℎ represents the probability of a measurement of antigen ℎ actually coming from the 

background. Upon fitting the model using least-squares estimation, we filtered out the 

background component of the data by considering the matrix 

𝑞ℎ𝑖
𝐶𝐼𝑇𝐸𝑠𝑒𝑞

≡
𝑃𝑟𝑜𝑏(𝑟 ≤ 𝑘ℎ𝑖 | 𝑘ℎ𝑖 ∈ 𝑠𝑖𝑔𝑛𝑎𝑙)

∑ 𝑘𝑔𝑖𝑔
 

where the signal component is defined as the component of the mixture model with higher 

median. We performed batch correction on the 𝑞ℎ𝑖
𝐶𝐼𝑇𝐸𝑠𝑒𝑞

 values using the mutual nearest 

neighbors approach of Haghverdi et al.18 and rescaled the resulting values to be in the [0,1] 

interval. 
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We did not consider CD169 in our analysis as it was showing expression in cell populations 

other than macrophages, possibly reflecting a lack of affinity of the conjugated antibody. In 

addition, the unimodal distribution of ERTR7 expression values was consistent with the fact that 

we did not capture stromal cells in our CITE-seq dataset (possibly because of the use of a non-

enzymatic dissociation procedure). We therefore assigned all cells to the background 

component and set 𝑞ERTR7,𝑖
𝐶𝐼𝑇𝐸𝑠𝑒𝑞

= 0. 

Processing of CODEX data 

We considered the segmented and compensated CODEX data of the three wild-type mice 

profiled by Goltsev et al.2. We filtered out artifacts using a similar gating strategy to that of the 

CODEX protocol. We removed cells smaller than 1,000 or larger than 25,000 voxels. We then 

identified maximum and minimum cutoffs for blank channels by plotting the expression of one 

blank channel versus another, as described in the CODEX protocol. We removed cells with 

intensities above the upper cutoffs in any of the blank channels or below the lower cutoffs in all 

of the blank channels. Our cutoffs fell around the 99.5 and 0.2 percentiles respectively. 

However, we checked that small variations of the specific values did not greatly affect the 

number of cells removed. 

Normalization of CODEX data 

We normalized the processed CODEX data by the total levels in each cell, 

�̂�ℎ𝑖 =
𝑀ℎ𝑖

∑ 𝑀𝑔𝑖𝑔
 

where 𝑀ℎ𝑖 is the level of antigen ℎ in cell 𝑖 before normalization. After this process, antigen 

levels are well approximated by a two-component Gaussian mixture model,  

𝑃𝑟𝑜𝑏(𝑟 = �̂�ℎ𝑖) ~ 𝑎ℎ ∙ 𝒩 (�̂�ℎ𝑖 ;  𝜇ℎ
(1)

, 𝜎ℎ
(1)

) + (1 − 𝑎ℎ) ∙ 𝒩 (�̂�ℎ𝑖 ;  𝜇ℎ
(2)

, 𝜎ℎ
(2)

) 

where the lower (higher) median Gaussian corresponds to the background (signal), and the 

mixing parameter 𝑎ℎ represents the probability of a measurement of antigen ℎ actually coming 

from the background. Upon fitting the model to the data using the EM algorithm for maximum 

likelihood estimation, we filtered out the background component of the data by considering the 

probabilities  

𝑝ℎ𝑖 ≡ 𝑃𝑟𝑜𝑏(𝑟 ≤ �̂�ℎ𝑖 | �̂�ℎ𝑖 ∈ 𝑠𝑖𝑔𝑛𝑎𝑙)  

in subsequent analysis. 
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Mapping of CODEX data into CITE-seq 

We mapped the inferred CODEX probabilities 𝑝 into the CITE-seq space 𝑞𝐶𝐼𝑇𝐸𝑠𝑒𝑞 using a 

modified version of the general strategy proposed by Stuart et al.17. Specifically, we identified a 

set of anchors using a mutual nearest neighbors approach with 𝑘anchor = 19. We found the 

nearest neighbors using Euclidean distance in a common 29-dimensional space obtained by 

canonical correlation analysis (CCA). We then filtered out anchors that do not preserve the 

structure of the original protein space. For that purpose, we kept only those for which the 

CODEX cell in the anchor was within the 𝑘filter = 99 nearest CODEX cells to the CITE-seq cell 

in the anchor, or vice versa, as measured by Pearson’s correlation distance between 𝑝 and 

𝑞𝐶𝐼𝑇𝐸−𝑠𝑒𝑞.  

Cells in the CODEX dataset were aligned into the CITE-seq protein space using the following 

transformation 

𝑞ℎ𝑖
𝐶𝑂𝐷𝐸𝑋 ≡ 𝑝ℎ𝑖 + ∑ (𝑞ℎ𝑗1

𝐶𝐼𝑇𝐸𝑠𝑒𝑞
− 𝑝ℎ𝑗2

) ∙ 𝑤(𝑗1,𝑗2),𝑖

(𝑗1,𝑗2)∈𝒜𝑖

 

where 𝒜𝑖 is the set of 𝑘weight = 99 anchors (𝑗1, 𝑗2) with smallest Pearson’s correlation distance 

between cell 𝑗2 and cell 𝑖, and 𝑤(𝑗1,𝑗2),𝑖 are weights specifying the effect size of anchor (𝑗1, 𝑗2) on 

the CODEX cell 𝑖 based on both mRNA and protein data, 

𝑤(𝑗1,𝑗2),𝑖 =
1 − 𝑒−𝑑𝑖𝑗2𝑠𝑗1𝑗2/𝑐

∑ 1 − 𝑒−𝑑𝑖𝑗2𝑠𝑗1𝑗2/𝑐
(𝑗1,𝑗2)∈𝒜𝑖

 

In this equation, 𝑑𝑖𝑗2
 denotes Pearson’s correlation distance between the vectors 𝑝𝑖 and 𝑝𝑗2

 

(with components 𝑝ℎ𝑖 and 𝑝ℎ𝑗, respectively), and 𝑐 is a parameter specifying the width of the 

Gaussian kernel. The number of shared neighbors between the two anchor cells, 𝑠𝑗1𝑗2
, is 

defined as  

𝑠𝑗1𝑗2
= |𝒩𝑗1

𝐶𝐼𝑇𝐸𝑠𝑒𝑞
∩ 𝒩𝑗2

𝐶𝐼𝑇𝐸𝑠𝑒𝑞
| + |𝒩𝑗1

𝐶𝑂𝐷𝐸𝑋 ∩ 𝒩𝑗2

𝐶𝑂𝐷𝐸𝑋| 

where 𝒩𝑗1

𝐶𝐼𝑇𝐸𝑠𝑒𝑞
 is the set of nearest CITE-seq cells to cell 𝑗1 in the mRNA latent space, 

𝒩𝑗2

𝐶𝐼𝑇𝐸𝑠𝑒𝑞
 is the set of nearest CITE-seq cells to cell 𝑗2 in the CCA space, 𝒩𝑗1

𝐶𝑂𝐷𝐸𝑋 is the set of 

nearest CODEX cells to cell 𝑗1 in the CCA space, and 𝒩𝑗2

𝐶𝑂𝐷𝐸𝑋 is the set of nearest CODEX 

cells to cell 𝑗2 in the CCA space. As before, distances in the mRNA and CCA spaces were 

measured using Pearson’s correlation and Euclidean distance respectively. In all cases, the 

number of nearest neighbors was chosen to be 𝑘score = 79. The values 𝑠𝑗1𝑗2
 were scaled such 
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that the 0.9 quantile is at 1 and the 0.01 quantile is at 0, and values above or below these 

quantiles were set to 1 or 0 respectively.  

To be able to transfer quantities between the CITE-seq and CODEX datasets, we then built a 

ℳ𝐶𝐼𝑇𝐸𝑠𝑒𝑞→𝐶𝑂𝐷𝐸𝑋 transfer matrix, 

ℳ𝑖𝑗
𝐶𝐼𝑇𝐸𝑠𝑒𝑞→𝐶𝑂𝐷𝐸𝑋

≡ {

𝑒−�̃�𝑖𝑗/𝑐

∑ 𝑒−�̃�𝑟𝑗/𝑐
𝑟∶ 𝑗∈𝒩𝑟

𝐶𝑂𝐷𝐸𝑋

       iff    𝑗 ∈ 𝒩𝑖
𝐶𝑂𝐷𝐸𝑋

0                              iff   𝑗 ∉ 𝒩𝑖
𝐶𝑂𝐷𝐸𝑋

 

where �̃�𝑖𝑗 denotes Pearson’s correlation distance between the vectors �⃗�𝑖 and �⃗�𝑗 (with 

components 𝑞ℎ𝑖
𝐴  and 𝑞ℎ𝑗

𝐵 , respectively), and 𝑐 is a parameter that specifies the width of the 

Gaussian kernel. The set 𝒩𝑖
𝐶𝑂𝐷𝐸𝑋 contains the nearest CODEX cells to the CITE-seq cell 𝑖 as 

measured by �̃�𝑖𝑗, where 𝑘transfer ≡ |𝒩𝑖
𝐵| = 0.002 × |𝐵|. These matrices can be used to transfer 

quantities across the two datasets. For instance, the inferred mRNA expression level of gene 𝑚 

in the CODEX cell 𝑖 is given by 

𝑆𝑗𝑚
𝐶𝑂𝐷𝐸𝑋 = ∑ ℳ𝑖𝑗

𝐶𝐼𝑇𝐸𝑠𝑒𝑞→𝐶𝑂𝐷𝐸𝑋
𝑆𝑖𝑚

𝐶𝐼𝑇𝐸𝑠𝑒𝑞

𝑖

 

where 𝑆𝐶𝐼𝑇𝐸𝑠𝑒𝑞 denotes the mRNA expression matrix in the CITE-seq dataset. Similarly, the 

mRNA cell populations can be mapped to the CODEX data using 

𝐶𝑗𝑚
𝐶𝑂𝐷𝐸𝑋 =  ∑ ℳ𝑖𝑗

𝐶𝐼𝑇𝐸𝑠𝑒𝑞→𝐶𝑂𝐷𝐸𝑋

𝑖

𝐶𝑖𝑚
𝐶𝐼𝑇𝐸𝑠𝑒𝑞

 

where the sum runs over all cells in the CITE-seq dataset and 𝐶𝑖𝑐
𝐶𝐼𝑇𝐸𝑠𝑒𝑞

 is the indicator function 

of cluster 𝑐. Note that due to the mapping uncertainties, the resulting feature vector is no longer 

a binary vector. To assess mapping uncertainties (Fig. 2c), we computed the Pearson’s 

correlation coefficient of the vectors 𝐶𝑗𝑐
𝐶𝑂𝐷𝐸𝑋 that result from restricting the above sum to cells in 

each of the two mice profiled with CITE-seq. 

Parameter selection  

For different values of 𝑘anchor, 𝑘filter, and 𝑘score, we evaluated the performance of the algorithm 

to accurately map a set of “gold standard” cell populations. The populations we considered were 

B cells, T cells, NK cells, dendritic cells, neutrophils, plasma cells, and red-pulp macrophages, 

as they were general enough to be clearly identifiable in both datasets by clustering and the 

expression of specific markers. We used the Louvain community detection algorithm in a 𝑘 = 49 
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nearest neighbor graph for clustering the CODEX protein data. To quantify the performance of 

the mapping, we defined the quality scores of a set of anchors 𝒜 as 

𝑄𝒜
𝑢 = |𝒜|𝑢

−1 ∑ 𝑧(𝑖,𝑗)
𝑢

(𝑖,𝑗)∈𝒜

 

𝑧(𝑖,𝑗)
anchor ≡ 𝑧(𝑖,𝑗)

filter ≡ {
1, 𝑐𝑖 = 𝑐𝑗 ∈ 𝒞

0, otherwise
,          |𝒜|anchor ≡ |𝒜|filter ≡ |𝒜| 

𝑧(𝑖,𝑗)
score ≡ {

𝑠𝑖𝑗, 𝑐𝑖 = 𝑐𝑗 ∈ 𝒞

0, otherwise
,          |𝒜|score ≡ ∑ 𝑠𝑖𝑗

(𝑖,𝑗)∈𝒜

 

where 𝑐𝑖 is the cell type of cell 𝑖 and 𝒞 is the set of “gold standard” populations. We sequentially 

chose the values of 𝑘anchor, 𝑘filter, and 𝑘score that maximized these quality scores. 

Spatial relationship among cell populations 

To assess the spatial relationship between two feature vectors 𝑓 and 𝑔 defined over the cells in 

the CODEX dataset, we built a 𝑘 = 2 nearest neighbor graph using Euclidean distance in the 

CODEX spatial dimensions expressed in nm. We then introduced the adjacency score, defined 

as 

𝐷(𝑓, 𝑔) = 𝑓𝑇 ∙ 𝐴 ∙ 𝑔 

where 𝐴 is the adjacency matrix of the nearest neighbor graph. This score takes high values 

when the features take high values in adjacent cells. The scale of the interactions is set by the 

magnitude of the nearest neighbor parameter 𝑘. Features that we have used in this paper 

include cell population assignments 𝐶𝑗𝑐
𝐶𝑂𝐷𝐸𝑋 (to assess whether two cell populations co-localize 

spatially) and mapped gene expression 𝑆𝑗𝑚
𝐶𝑂𝐷𝐸𝑋  (to assess whether genes encoding for ligands 

and receptors are expressed in adjacent cells). The significance of this score was assessed 

using a null distribution built by permuting the cell ID’s. For mutually exclusive binary features 

(such as cluster assignments) the null distribution can be computed analytically in terms of the 

hypergeometric distribution Hypergeom(𝑢; 𝑁, 𝐾, 𝑛), 

𝑃𝑟𝑜𝑏(𝐷(𝑓, 𝑔) = 𝑢) ~ Hypergeom(𝑢; 𝑣(𝑣 − 1), 2(𝑓𝑇 ∙ 𝐼)(𝑔𝑇 ∙ 𝐼), 𝑚) 

where 𝑣 and 𝑚 are the number of nodes and edges in the nearest neighbor graph, respectively, 

and 𝐼 is the identity matrix. For non-binary features, we did not find a closed form for the null 

distribution, so we approximated it using a normal distribution whose parameters were 
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estimated from 1,000 random permutations. We controlled the false discovery rate for multiple 

hypothesis testing using the Benjamini-Hochberg q-value procedure. 

To account for the effect of mapping uncertainties on the adjacency score of cell populations, 

we also computed the overlap score, 𝑓𝑇 ∙ 𝑔, and assessed its significance by randomly 

permuting the entries of one of the feature vectors. In addition, we evaluated the Pearson’s 

correlation of the adjacency score q-values across the three mice profiled with CODEX (Fig. 

3b). 

Identification of paracrine interactions 

We used CellPhoneDB23 to identify significant ligand-receptor pairs within the CITE-seq mRNA 

expression data. CellPhoneDB identifies genes encoding for ligand and receptor pairs that are 

differentially expressed in one or more cell populations using a curated database of ligands and 

receptors. Since CellPhoneDB only considers human gene pairs, we generated a mouse 

ortholog database of ligands and receptors using Ensembl40 (version 96). For simplicity, this 

analysis was restricted to only those genes which have a unique ortholog. The results of this 

analysis were then filtered using the adjacency score approach described above (see “Spatial 

relationship among cell populations”) to identify pairs of genes significantly expressed in 

adjacent cells. The expression of any complexes output by CellPhoneDB was calculated as the 

sum of the expression of their component genes.   

Online database 

The complete results of our analysis can be interactively queried through a web application 

hosted at the URL: https://camara-lab.shinyapps.io/stvea .  

STvEA software 

All algorithms have been implemented and documented in an R package. The package can be 

downloaded from the URL: https://github.com/CamaraLab/STvEA . 
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Figures 

 

Figure 1. A high-resolution CITE-seq atlas of the murine spleen. a) UMAP representation of 

the mRNA expression data of 7,097 cells from the murine spleen profiled with CITE-seq. Cell 

populations were identified by clustering (represented in different colors) and annotated by 

differential expression analysis (bold text) and a spectral graph method (italic text; see also 

panel c). b) Heatmap depicting the expression of some of the top differentially expressed genes 

in each cluster. c) Analysis of the cellular heterogeneity within the clusters of B-2 cells using a 

spectral graph approach. Genes were ranked according to their Laplacian score and the 

statistical significance was assessed for each gene by randomization. In the figure, the 

expression levels of some of the significant genes is depicted in the UMAP representation. The 

complete results are provided for all clusters in Supplementary Data 4. d) mRNA expression 

levels of Cr2, Ighm, and Trac (top) and the expression levels of the proteins they code for 

(bottom). 
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Figure 2. Mapping of the splenic CITE-seq atlas into histology sections profiled with 

CODEX. a) Normalization of CODEX data using a Gaussian mixture model. The levels of CD4 

protein determined by CODEX are shown in a splenic section after standard processing of the 

data (left). A two-component Gaussian mixture model was fit to the CD4 protein levels, where 

the lowest and highest mode components correspond to background and signal, respectively 
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(middle). Upon filtering out the background component, the CD4 signal at T-cell follicles 

becomes more evident. b) Schematics of the procedure to map the CODEX and CITE-seq 

protein expression spaces. A set of anchors are identified using a mutual nearest neighbors 

approach and weighted according to their degree of consistency with the mRNA expression 

space (left). The anchors are used to merge the CODEX and CITE-seq protein expression 

spaces into a common space (middle). The transfer matrix ℳ𝐶𝐼𝑇𝐸𝑠𝑒𝑞→𝐶𝑂𝐷𝐸𝑋 is built by looking at 

the nearest CODEX cells to each CITE-seq cell in the merged protein expression space (right). 

c) Mapping of individual cells from the splenic CITE-seq atlas into a murine splenic section 

profiled with CODEX. The figure shows the inferred locations of 6 cells from the CITE-seq atlas 

in the splenic section. For reference, the T and B cell zones in the tissue section are indicated 

with continue and dashed lines, respectively. As it can be seen in the figure, transcriptomic 

differences between cells of the same cell type often correspond to different spatial locations. 

These differences were consistent when the same cells were mapped to other murine splenic 

sections profiled with CODEX (Supplementary Fig. 3). d) Consistency between the mappings of 

two different murine spleens profiled by CITE-seq into the same CODEX dataset. A heatmap 

showing the correlation between the CODEX cell assignments for each cell population in the 

two mice profiled with CITE-seq. In an ideal scenario, diagonal entries would be perfectly 

correlated (Pearson’s r = 1) and off-diagonal entries anti-correlated (Pearson’s r < 0). 

Departures from that situation quantify mapping inaccuracies. As represented in the figure, 

STvEA has an excellent performance for most splenic cell populations, with the most notable 

inaccuracies being between AP-1high and AP-1low red-pulp macrophages, and erythrocytes and 

erythroblasts. e) mRNA expression levels predicted by STvEA (top) and measured by RNA 

FISH (middle and bottom) in murine splenic sections for the genes Il1b (left) and Bhlhe41 (right). 

Red: Cd79a, green: Il1b / Bhlhe41, blue: DAPI. T and B cell zones in the tissue sections are 

indicated with continue and dashed lines, respectively. To facilitate interpretation, the relative 

location of cells expressing Il1b and Bhlhe41 is indicated at the bottom.  
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Figure 3. Identification of cell-to-cell interactions among splenic cell populations. a) 

Heatmap showing the significance of the spatial co-localization of splenic cell populations, 

inferred by STvEA. Significant relations (q-value ≤ 0.05) that cannot be explained by mapping 

errors (95% CL) are indicated with black squares. b) Consistency of the analysis across 

different splenic sections profiled by CODEX. Three different splenic sections were 

independently mapped to the CITE-seq atlas. The inferred spatial co-localization patterns are 

highly consistent across the three sections, as indicated by the high Pearson’s correlation 

coefficients among the estimated significances. c) Some of the significant potential paracrine 

interactions among red-pulp macrophages, basophils, neutrophils, and monocyte-derived 

macrophages in the red pulp. Interactions were inferred based on the differential expression of 

the genes encoding for the ligand and receptor and on their spatial co-localization.  
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