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Abstract

In large-scale disease etiology studies, epidemiologists often need to use multiple
imperfect binary measures of the unobserved true causes of disease to estimate the
cause-specific case fractions, or “population etiologic fractions” (PEFs). Despite re-
cent advances in statistical methods, the scientific need of estimating the effect of
explanatory variables upon the PEFs in the presence of control data remains unmet.
In this paper, we start with and extend the nested partially-latent class model (npLCM,
Wu et al., 2016b) to a general framework for etiology regression analysis in case-control
studies. Data from controls provide requisite information about measurement specifici-
ties and covariations to correctly assign cause-specific probabilities for each case given
her measurements. We estimate the distribution of the controls’ diagnostic measures
given the covariates via a separate regression model and a priori encourage simpler
dependence structures. We use Markov chain Monte Carlo for posterior inference of
the PEF functions, cases’ latent classes and the overall PEFs of policy import. We
illustrate the regression analysis via simulations and show less biased estimation and
more valid inference of the overall PEFs than an npLCM analysis omitting covari-
ates. Regression analysis of data from a childhood pneumonia study site reveals the
dependence of pneumonia etiology upon season, age, disease severity and HIV status.

Keywords: Bayesian methods; Case-control studies; Disease etiology; Latent class regression
analysis; Measurement errors; Pneumonia; Semi-supervised learning.
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1 Introduction

In epidemiologic studies of disease etiology, one important scientific goal is to assess the

effect of explanatory variables upon disease etiology. Based on multiple binary non-gold-

standard diagnostic measurements made on a list of putative causes with different error rates,

this paper develops and demonstrates a regression analytic approach for drawing inference

about the cause-specific fractions among the case population that depend on covariates. We

illustrate the analytic needs raised by a study of pediatric pneumonia etiology.

Pneumonia is a clinical condition associated with infection of the lung tissue, which can

be caused by more than 30 different species of microorganisms, including bacteria, viruses,

mycobacteria and fungi (Scott et al., 2008). Knowing which pathogen has caused a pneu-

monia case is crucial for choosing effective treatment. Knowing the distribution of infecting

pathogens in a pneumonia population in each region and stratum informs prioritizing vaccine

development and manufacture.

The Pneumonia Etiology Research for Child Health (PERCH) study is a seven-country

case-control study of the etiology of severe and very severe pneumonia and has enrolled more

than 4, 000 hospitalized children under five years of age and more than 5, 000 healthy controls

(Levine et al., 2012). The goal of the PERCH study is to estimate the population fractions

of cases due to the pathogen causes, referred to as “population etiologic fractions” (PEFs)

and to assign cause-specific probabilities for each pneumonia child given her measurements,

termed as “individual etiologic fractions” (IEFs). The PERCH study aims to understand

the variation of the PEFs as a function of factors such as region, season, a child’s age, disease

severity, nutrition status and human immunodeficiency virus (HIV) status.

The cause of lung infection cannot, except in rare cases, be directly observed (Hammitt

et al., 2017). The PERCH study samples and tests peripheral compartments including the

blood, sputum, pleural fluid and nasopharyngeal (NP) cavity and determines the presence or

absence of a list of pathogens in each sample (Crawley et al., 2017). In this paper, we focus

on measurements obtained from two specimen-test pairs: NP Polymerase Chain Reaction

(NPPCR) results from cases and controls and blood culture (BCX) results from cases only.

Valid inference about the population and individual etiologic fractions must address three

characteristics of the measurements. First, imperfect diagnostic specificities may result in
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the detection of multiple pathogens. For example, NPPCR may detect multiple coloniz-

ing pathogens in the nasal cavity that are not causes of a case’s pneumonia. Determining

the primary causative agent(s) among the detected pathogen(s) requires statistical controls.

Second, multiple specimens are tested among the cases with only a subset available from

controls. Third, tests with imperfect sensitivity such as NPPCR and BCX may miss true

causative agent(s) which if unadjusted may underestimate the PEFs. Other large-scale dis-

ease etiology studies have raised similar analytic needs and challenges of integrating multiple

sources of imperfect measurements to draw inference about complex disease etiology (e.g.,

Saha et al., 2018; Kotloff et al., 2013).

Wu et al. (2016a) introduced a partially-latent class model (pLCM) as an extension to

classical latent class models (LCMs Lazarsfeld, 1950; Goodman, 1974) for using case-control

data to estimate the PEFs. This prior work shows the capacity of the multivariate speci-

men measurements to inform the distribution of unobserved, or “latent” health status for

an individual and the population. PLCM is a finite mixture model with L + 1 compo-

nents for multivariate binary data {Mi = (Mi1, . . . ,MiJ)>} where a case observation is

drawn from a mixture of L components each representing a cause of disease, or “disease

class”; Controls have no infection in the lung hence are assumed drawn from an observed

class. Let Ii ∈ {1, . . . , L} represent case i’s disease class which is categorically distributed

with probabilities equal to the PEFs π = (π1, . . . , πL)> in the (L − 1)-dimensional simplex

SL−1 = {π :
∑L

`=1 π` = 1, 0 ≤ π` ≤ 1}. A case class can represent a single- or multiple-

pathogen cause of pneumonia, or pathogen causes not targeted by the assays which we refer

to as “Not Specified (NoS)”. PLCM specifies the control distribution using J “false pos-

itive rates” (FPRs) because controls have no lung infection (Ii = 0). Given a case class

` = 1, . . . , L, a pLCM lets the conditional distribution of the diagnostic measures be com-

pletely characterized by a vector of J response probabilities, a subset of which may differ

from the controls: each causative pathogen is observed with a higher probability in case

class ` (sensitivity or true positive rate, TPR) than among the controls and a non-causative

pathogen is observed with the same probability as in the controls (1 - specificity or FPR).

Under pLCM, a higher observed marginal positive rate for pathogen j among cases than

controls indicates etiologic importance.

In a Bayesian framework, measurements of differing precisions can be optimally combined
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under a pLCM to generate stronger evidence about π. The pLCM is able to estimate π

using case-control measurements with imperfect sensitivities and specificities, referred to as

“bronze-standard” (BrS) data. Case-only measurements from sterile sites with imperfect

sensitivity but perfect specificity (“silver-standard”, SS) can also be incorporated. The

pLCM is partially-identified (Jones et al., 2010; Gu and Xu, 2019b). There exist two sets of

values of a subset of model parameters (here the TPRs) that the likelihood function alone

cannot distinguish even with infinite samples, although bounds on the parameters may be

available (e.g., Wu et al., 2016a, Equation 6). Informative prior distributions for the TPRs

elicited from laboratory experts or estimated from vaccine probe studies for a subset of

pathogens (Feikin et al., 2014) can be readily incorporated to improve inference (Gustafson,

2015).

The pLCM makes a “local independence” (LI) assumption that the BrS measurements

are stochastically independent given a subject’s class membership. This classical assump-

tion is central to mixture models for multivariate data, because the estimation procedures

essentially find the optimal partition of observations so that the LI approximately holds in

each subgroup. However, we observed pairwise correlations among the NPPCR measures

from the controls. Deviations from LI, or “local dependence” (LD) can be directly modeled

by an extension of pLCM, called nested partially-latent class model (npLCM, Wu et al.,

2016b). The npLCM is motivated by the capacity of the classical LCM formulation to de-

scribe the complex dependence among discrete data (Dunson and Xing, 2009). It assumes

the within-class correlations among BrS tests are induced by unobserved heterogeneity in

subjects’ propensities for pathogens colonizing their nasal cavities. In particular, LD is in-

duced in an npLCM by nesting a small number of latent subclasses Z = 1, . . . , K, within

each class ` = 0, 1, ..., L, where subclasses respond with distinct vectors of probabilities. In a

Bayesian framework with stick-breaking process priors for Z that encourages few important

subclasses, the npLCM reduces the bias in estimating π, retains estimation efficiency and

offers more valid inference under substantial deviation from LI.

Extensions to incorporate covariates in an npLCM are critical for two reasons. Firstly,

covariates such as season, age, disease severity and HIV status may directly influence π.

Secondly, in an npLCM without covariates, the relative probability of assigning a case sub-

ject to class ` versus class `′ depends on the FPRs (Wu et al., 2016a), which can be directly
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estimated from the control data. However, the FPRs may vary by covariates which if not

modeled will bias the assignment of cause-specific probabilities for each case subject. For

example, pathogen A found in a case’s nasal cavity is more likely a colonization than indi-

cating the cause of lung infection during seasons with high background colonization rates,

and much less so when the pathogen is rarely found in controls.

Adapting existing no-covariate methods to account for discrete covariates, one may per-

form a fully-stratified analysis by fitting an npLCM to the case-control data in each covariate

stratum. Like pLCM, the npLCM is partially-identified in each stratum (Wu et al., 2016b),

necessitating multiple sets of independent informative priors across stratum. There are two

primary issues with this approach. First, sparsely-populated strata defined by many dis-

crete covariates may lead to unstable PEF estimates. Second, it is often of policy interest

to quantify the overall cause-specific disease burdens in a population. Let the overall PEFs

π∗ = (π∗1, . . . ,π
∗
L)> be the empirical average of the stratum-specific PEFs. Since the in-

formative TPR priors are often elicited for a case population and rarely for each stratum,

reusing independent prior distributions of the TPRs across all the strata will lead to overly-

optimistic posterior uncertainty in π∗, hampering policy decisions. Correct assessment of

the posterior uncertainty then must “spread” a set of informative priors across strata or

adjust up the posterior standard deviations of π∗ obtained from a fully-stratified analysis.

Neither is ideal given their ad hoc nature.

Estimating disease etiology across discrete and continuous epidemiologic factors needs

new methods in a general modeling framework. In this paper, we extend the npLCM to

perform regression analysis in case-control disease etiology studies. The proposed approach

1) allows users to specify parsimonious (e.g., additive on the linear predictor scale) functional

dependence of π upon covariates, and 2) correctly assesses the posterior uncertainty of the

PEF functions and the overall PEFs π∗ by applying the TPR priors just once.

We fit the model using Markov chain Monte Carlo (MCMC) which simulates correlated

samples of the unknown parameters to approximate their posterior distributions (Gelfand

and Smith, 1990). The inferential algorithms for the family of npLCMs with or without

covariates are implemented in a free and publicly available R package baker at https:

//github.com/zhenkewu/baker.

The rest of the paper is organized as follows. Section 2 overviews the npLCM with-
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out covariates. Section 3 builds on the npLCM and makes the regression extension. We

demonstrate the estimation of disease etiology regression functions π`(·) through simulation

studies in Section 4; We also show superior inferential performance of the regression model

in estimating the overall PEFs π∗ relative to an analysis omitting the covariates. In Section

5, we characterize the effect of seasonality, age, HIV status upon the PEFs by applying

the proposed npLCM regression model to the PERCH data. The paper concludes with a

discussion.

2 Overview of npLCMs without Covariates

Let binary measurements Mi = (Mi1, ...,MiJ)> indicate the presence or absence of J

pathogens for subject i = 1, . . . , N . Let Yi indicate a case (1) or a control (0) subject.

If Yi = 1, let Ii ∈ {1, . . . , L} represent case i’s unobserved disease class; Otherwise, let Ii = 0

because a control subject’s class is known (in PERCH, no lung infection). In this paper, we

simplify the presentation of models by focusing on single-pathogen causes where each tested

pathogen corresponds to a cause (hence L = J). The npLCM readily extends to L > J for

including additional pre-specified multi-pathogen and/or “Not Specified” (NoS) causes (Wu

et al., 2016b).

The likelihood function for an npLCM has three components:

• PEFs π = (π1, . . . , πL)> = {π` = P(I = ` | Y = 1), ` = 1, . . . , L} ∈ SL−1: cause-

specific case fractions;

• P1` = {P1`(m)} = {P(M = m | I = `, Y = 1)}: a table of probabilities of making J

binary observations M = m in a case class ` 6= 0;

• P0 = {P0(m)} = {P(M = m | I = 0, Y = 0)}: the probability table above but for

controls.

Since cases’ disease classes are unobserved, the distribution of cases’ measurements P1 =

P(M | Y = 1) is a finite-mixture model with weights π for L disease classes:

P1 =
L∑
`=1

π`P1`. (1)

6

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2019. ; https://doi.org/10.1101/672808doi: bioRxiv preprint 

https://doi.org/10.1101/672808
http://creativecommons.org/licenses/by-nc/4.0/


P0, P1` and P1 are three different probability tables with 2J rows where each row specifies

the probability of making binary observations M = m among controls, `-th case disease

class and among all cases, respectively. We write the likelihood function as a product of case

(L1) and control (L0) likelihood functions

L = L1 · L0 =
∏
i:Yi=1

P1(Mi;π,Θ,Ψ,η)×
∏

i′:Yi′=0

P0(Mi′ ; Ψ,ν) (2)

and seek to infer π from data {(Mi, Yi), i = 1, . . . , N} (Wu et al., 2016b); Here Θ and Ψ are

sensitivity and specificity parameters necessary for modeling the imperfect measurements.

The rest of parameters ν = (ν1, . . . , νK)> in L0 and η = (η1, . . . , ηK)> in L1 are used to

induce residual measurement correlations given a control or disease class.

Existing methods for estimating π in the framework of npLCM can be classified by

whether or not P0 and P1` assumes local independence (LI) which means measurements are

independent of one another given the class (Ii = ` = 0, 1, . . . , L). In the following, under

ν1 = η1 = 1 under LI; ν1, η1 ∈ (0, 1) otherwise.

PLCM. The original pLCM (Wu et al., 2016a) assumes LI so that any P0(m) is a product

of J probabilities: P0(m) =
∏J

j=1{ψj}mj{1− ψj}1−mj . The parameters ψ = {ψj} represent

the positive rates absent disease and are termed “false positive rates” (FPRs). For example,

in the PERCH data, Respiratory Syncytial Virus (RSV) has a low observed FPR because

of its rare appearance in controls’ NPs; Other pathogens such as Rhinovirus (RHINO) have

higher observed FPRs.

The pLCM makes a key “non-interference” assumption that disease-causing pathogen(s)

are more frequently detected among cases than controls and the non-causative pathogens

are observed with the same rates among cases as in controls (Wu et al., 2016b). The

“non-interference” assumption says that P1`(m) in a case class ` 6= 0 is a product of the

probabilities of measurements made 1) on the causative pathogen `, P(M` | I = `, Y =

1,θ) = {θ`}M`{1− θ`}1−M` , where θ = (θ1, . . . , θL)> and 2) on the non-causative pathogens

P(Mi[−`] | Ii = `, Yi = 1,ψ[−`]) =
∏

j 6=`{ψj}Mj{1 − ψj}1−Mj , where ψ = (ψ1, . . . , ψL)>, and

a[−`] represents all but the `-th element in a vector a. The parameter θ` is termed “true

positive rate” (TPR) and may be larger than the FPR ψ`; ψ[−`] are a subset of the FPRs

ψ that specify P0. Under the single-pathogen-cause assumption, pLCM uses J TPRs θ for
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L = J causes and J FPRs ψ.

The posterior inferential algorithm based on the pLCM optimally clusters cases into L

subgroups so that LI approximately holds in each subgroup. Relative to the controls, the

causative pathogens are observed with higher positive rates in each subgroup. We estimate

each case’s individual etiologic fractions (IEFs) by the empirical frequencies with which a

case’s disease class indicator Ii = `, ` = 1, . . . , L, in the posterior samples; The PEFs are

approximately an average of the IEFs.

NPLCM. To reduce estimation bias in π under deviations from LI, the “nested pLCM ”

or npLCM extends the original pLCM to describe residual correlations among J binary

pathogen measurements in the controls (Ii = 0) and in each case class (Ii = `, ` 6= 0) (Wu

et al., 2016b). The extension is motivated by the ability of the classical LCM formulation

(Lazarsfeld, 1950) to approximate any joint multivariate discrete distribution (Dunson and

Xing, 2009).

The npLCM introduces K subclasses for the controls and for each of the L disease classes

among cases; The original pLCM results if K = 1. Given a subclass k, the probability of

observing J binary measurements M = m among controls is P
(k)
0 (m) = P(M = m |

Z = k, I = 0, Y = 0, {ψ(j)
k }) =

∏J
j=1{ψ

(j)
k }mj{1 − ψ(j)

k }1−mj ; We use a J by K FPR matrix

Ψ = {ψ(j)
k } to represent the FPRs. Since we do not observe controls’ subclasses, P0 is a

weighted average of P
(k)
0 according to the subclass probabilities {νk}: P0 =

∑K
k νkP

(k)
0 .

The model specification for a case subclass in the npLCM follows the pLCM by assuming

P
(k)
1l = P(M | Z = k, I = `, Y = 1), ` 6= 0, the probability of observing M in subclass k

in disease class `, to be a product of the probabilities of making an observation 1) on the

causative pathogen `: P(M` | Y = 1, Z = k, I = `, θ
(`)
k ) = {θ(`)k }M`{1 − θ

(`)
k }1−M` and 2)

on non-causative pathogens P(M[−`] | Y = 1, Z = k, I = `,Ψ
([−`])
k ) =

∏
j 6=`{ψ

(j)
k }mj{1 −

ψ
(j)
k }1−mj . We denote the TPRs by a J by K TPR matrix Θ = {θ(j)k }. To simplify nota-

tion, we summarize the preceding specification by letting P
(k)
1l = Π(M ;pk`), ` 6= 0, where

Π(m; s) =
∏J

j=1{sj}mij{1−sj}1−mij is the probability mass function for a product Bernoulli

distribution given the success probabilities s = (s1, . . . , sJ)>, 0 ≤ sj ≤ 1; The column vector

pk` = {p(j)k` , j = 1, . . . , J} represents the positive rates for J measurements in subclass k of

disease class `: p
(j)
k` =

{
θ
(j)
k

}I{j=`}
·
{
ψ

(j)
k

}1−I{j=`}
which equals the TPR θ

(j)
k for a causative

pathogen or the FPR ψ
(j)
k otherwise; Here I{A} is an indicator function that equals 1 if the
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statement A is true and 0 otherwise. Since cases’ subclasses are unobserved, we obtain P1`

as a weighted average of P
(k)
1` according the case subclass weights {ηk}: P1` =

∑K
k=1 ηkP

(k)
1` .

Setting ν1 = η1 = 1 and νk = ηk = 0, k ≥ 2 in the npLCM likelihood function (2), the special

case of pLCM results.

Similar to the pLCM, the FPRs Ψ in the npLCM are shared among controls and case

classes over non-causative pathogens. Different from pLCM, the subclass mixing weights may

differ between the cases (η) and the controls (ν). The special case of identical subclass mixing

weights means the covariation patterns among the non-causative pathogens in a disease class

is no different from the controls. However, relative to controls, diseased individuals may

have different strength and direction of measurement dependence in each disease class. By

allowing the subclass weights to differ between the cases and the controls, npLCM is more

flexible than pLCM in referencing the cases’ measurements against controls.

3 Regression Analysis via npLCM

We extend npLCM to perform regression analysis of data D = {(Mi, Yi,XiYi,Wi), i =

1, . . . , N}, where Xi = (Xi1, . . . , Xip)
> are covariates that may influence case i’s etiologic

fractions and Wi = (Wi1, . . . ,Wiq)
> is a possibly different vector of covariates that may

influence the subclass weights among the controls and the cases; Let the continuous covariates

comprise the first p1 and q1 elements of X1 and Wi, respectively. A subset of Xi may be

available from the cases only. We let XiYi = 0p×1 if Yi = 0 so that all the covariates for

a control subject are included in Wi; XiYi = Xi for a case subject. For example, healthy

controls have no disease severity information. We let three sets of parameters in an npLCM

(2) depend on the observed covariates: 1) the etiology regression function {π`(Xi)} among

cases which is of primary scientific interest, 2) the subclass weights in the case likelihood

{ηk(Wi)}, 3) the subclass weights in the control likelihood {νk(Wi)}.

Regression model overview. Firstly, we let the PEFs {π`} vary by covariates X, e.g., through

an additive multinomial logistic regression. Secondly, controls (I = 0) provide the covariate-

dependent reference distribution [M |W , I = 0] against which we assess pathogens’ etiologic

importance (Wu et al., 2016a), where [A | B] represents the conditional distribution of a

stochastic variable or vector A conditional on B. Since [M |W , I = 0] =
∑K

k=1 νk[M | Z =
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k,W , I = 0], we let the distribution of control measurements depend onW through subclass

weight regressions νk(W ) = hk(W ; Γν
k), k = 1, . . . , K − 1, where hk(W ; ·) represents a

parameterized form for the function νk(·) and Γν
k are the parameters (K−1 sets of parameters

due to the simplex constraint). We let the subclass weights νk(W ) = P(Z = k |W , I = 0),

k = 1, . . . , K, vary with covariates according to an additive logistic stick-breaking regression.

We propose a novel prior for the logistic stick-breaking regression that a priori encourages

few subclasses of non-trivial weights uniformly over covariate values to approximate [M |

W , I = 0]. For each disease class ` 6= 0, we also assume a subclass weight regression

ηk(W ) = P(Z = k |W , I = ` 6= 0) = hk(W ; Γη
k), k = 1, . . . , K − 1, as in the controls with

the same parameterized form, the same number of subclasses and covariates but with different

regression parameters Γη
k 6= Γν

k. Finally, we assume the TPR of observing a causative

pathogen and the FPR of observing a non-causative pathogen in each subclass to be constant

across covariate values. Of note, each marginal FPR in the control class may vary by

covariates, because it is a weighted average of the subclass-specific FPRs {ψ(j)
k , k = 1, . . . , K}

with covariate-dependent weights {νk(W ), k = 1, . . . , K}; So do the marginal TPR in each

case class.

3.1 Disease Etiology Regression

π`(X) is the primary target of inference. Recall that Ii = ` represents case i’s disease being

caused by pathogen `. We assume this event occurs with probability πi` that depends upon

covariates. In our model, we use a multinomial logistic regression model πi` = π`(Xi) =

exp{φ`(Xi)}/
∑L

`′=1 exp{φ`′(Xi)}, ` = 1, ..., L, where φ`(Xi) − φL(Xi) is the log odds of

case i in disease class ` relative to L: log πi`/πiL. Without specifying a baseline category, we

treat all the disease classes symmetrically which simplifies prior specification. We further

assume additive models for φ`(x; Γπ
` ) =

∑p1
j=1 f

π
`j(xj;β

π
`j) + x̃>γπ` , where x̃ is the subvector

of the predictors x that enters the model for all disease classes as linear predictors and

Γπ
` = (βπ`j,γ

π
` ) collects all the parameters. For covariates such as enrollment date that serves

as a proxy for factors driven by seasonality, nonlinear functional dependence is expected. We

use B-spline basis expansion to approximate fπ`j(·) and use P-spline for estimating smooth

functions (Lang and Brezger, 2004). Finally, we specify the distribution of case measurements

given disease class I, covariates X and W . We extend the case likelihood L1 in an npLCM
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(2) to let the subclass weights depend on covariates W : P (M | W , I = `, Y = 1) =∑K
k=1 ηk(W ) · Π (M ;pk`) , ` = 1, . . . , L. Integrating over L unobserved disease classes, we

obtain the likelihood function for the cases:

Lreg
1 =

∏
i:Yi=1

{
L∑
`=1

[
π`(Xi; Γ

π
` )

K∑
k=1

{ηik · Π(Mi;pk`)}

]}
, (3)

where ηik = hk(Wi; Γ
η
k) and Γη

k are the regression parameters for cases’ subclass weights.

We first introduce the parameterized form hk(Wi; ·) by specifying control likelihood with

covariates Lreg
0 .

3.2 Covariate-dependent reference distribution for disease classes

The distribution of control measurements provides requisite information about the speci-

ficities and covariations at distinct covariate values, necessitating adjustment in an npLCM

analysis. For example, factors such as enrollment date is a proxy for season and may influence

the background colonization rates and interactions of some pathogens that circulate more

during winter (Obando-Pacheco et al., 2018; Nair et al., 2011). We propose a novel approach

to estimating the reference distribution of measurements that may depend on covariates

using control data.

The regression model for a control subject is a mixture model with covariate-dependent

mixing weights νk(W ): P(M | W , Y = 0) =
∑K

k=1 νk(W )Π(M ; Ψk), where FPRs Ψk =

(ψ
(1)
k , . . . , ψ

(J)
k )> do not depend on covariates and the vector ν(W ) = (ν1(W ), . . . , νK(W ))>

lies in a (K−1)-simplex SK−1. We discuss the FPRs {Ψk} and the subclass weight functions

{νk(W )} in order.

Firstly, constant FPR profiles {Ψk} enable coherent interpretation across individuals

with different covariate values (Erosheva et al., 2007). FPR profile k receives a weight of

νk(Wi) for a control subject i that depends on the covariates Wi. The marginal FPRs in the

controls P(Mj = 1 |W , Y = 0,Ψ) =
∑K

k=1 νk(W )ψ
(j)
k ∈ [mink ψ

(j)
k ,maxk ψ

(j)
k ], j = 1, . . . , J ,

also depend onW . Consequently, the degree to which the observed marginal control positive

rates depend on covariates informs how different the FPRs {Ψk} are across the subclasses.

For example, if the NPPCR measure of pathogen A shows strong seasonal trends among the

controls, the estimated FPRs will be more variable across the subclasses. And the subclass
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with a high FPR will receive a larger weight during seasons with higher carriage rates in

controls.

The control model reduces to special cases, with covariate-independent νk(W ) ≡ νk,

k = 1, . . . , K, resulting in the P0 in a K-subclass npLCM without covariates. The control

distribution P0 in the original pLCM results upon a further single-subclass constraint (K =

1).

Secondly, we parameterize the case and control subclass weight regressions ηk(W ) (Equa-

tion 3) and νk(W ) using the same regression form hk(W ; ·) but different parameters.

Control subclass weight regression. We rewrite the subclass weights νk(·), k = 1, . . . , K, using

a stick-breaking parameterization. Let g(·) : R 7→ [0, 1] be a link function. Let αik be the

linear predictor for subject i at stick-breaking step k = 1, . . . , K. Using the stick-breaking

analogy, we begin with a unit-length stick, we break a segment of length g(ανi1) and continue

breaking a fraction g(ανi2) from {1 − g(ανi1)} that is left and so on; At step k, we break a

fraction g(ανik) from what is left in the preceding k−1 breaking events resulting in a sticking

segment k of length ηik = g(ανik)
∏

s<k{1 − g(ανis)}; We stop until K sticks of variable

lengths result. In this paper, we use the logistic function g(α) = 1/ {1 + exp(−α)} which is

consistent with the multinomial logit regression for etiology regression π`(·) so that the priors

for the coefficients can be similar. Generalization to other link functions such as the probit

function is straightforward, but with a different posterior sampling algorithm involving latent

Gaussian variables (e.g., Albert and Chib, 1993; Rodriguez and Dunson, 2011). We use this

parameterization to introduce a novel shrinkage prior on a simplex of the subclass weights

{νk(W )} (see Supplementary Material A1.1) which encourages parsimonious approximation

to the conditional distribution of control measurements P(M |W , Y = 0, {νk(·)},Ψ).

In our analysis, we use generalized additive models (Hastie and Tibshirani, 1986) for

the k-th linear predictor ανik = ανk(Wi = w,Γν
k) = µk0 +

∑q1
j=1 fkj(wj;β

ν
kj) + w̃>γνk , for

k = 1, . . . , K − 1. We have parameterized the possibly nonlinear fkj(·) using B-spline basis

expansions with coefficients βνkj; w̃
>γνk are the linear effects of a subset of predictors which

can include an intercept where w̃ is a subvector of predictorsw; We let Γν
k = {µk0, {βνkj},γνk}

collect all the regression parameters. Following Lang and Brezger (2004), we constrain fkj

to have zero means for statistical identifiability. Supplementary Material A1.2 provides the

technical details about the parameterization of fkj.
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The subclass-specific intercepts {µk0} globally control the magnitudes of linear predic-

tors. We hence will propose priors on {µk0} to a priori encourage few subclass. In par-

ticular, a large positive intercept µk0 makes g(ανik) ≈ 1 and hence breaks nearly the entire

stick that is left after the (k − 1)-th stick-breaking. Since the stick-breaking parameter-

ization one-to-one maps to a classical latent class regression model formulation for the

control data, the linear predictor ανik and the sum µk0 + γνk0 are identifiable except in a

Lebesgue zero set of parameter values, or “generic identifiability” (Huang and Bandeen-

Roche, 2004). Consequently, even if the intercept µk0 is not statistically identified if w̃

includes an intercept γνk0, the MCMC samples of the statistically identifiable functions can

provide valid posterior inferences (Carlin and Louis, 2009). We write the control likelihood

as Lreg
0 =

∏
i:Yi=0

∑K
k=1 hk(Wi; Γ

ν
k)Π(Mi; Ψk).

Remark 1. The proposed model for the control data with covariates W is a generative

model where we first draw a subclass indicator Z |W ∼ CategoricalK{ν(W )}, and generate

measurements Mj | Z = k according to a Bernoulli distribution with positive rate ψ
(j)
k ,

independently for j = 1, ..., J . By assuming mutually independent measurements M1, . . . ,MJ

given subclass Z and Y = 0, we let the covariates influence the dependence structure of the

measurement only through the unobserved Z. As a result, upon integrating over Z, the

proposed model does not assume marginal independence P(M | W , Y = 0) =
∏J

j=1 P(Mj |

W , Y = 0) in contrast to a kernel-based extension of the pLCM that make this assumption

(Saha et al., 2018, Supplementary appendix).

Case subclass weight regression. The subclass weight regression for cases ηk(W ) is also spec-

ified via a logistic stick-breaking regression as in the controls but with different parameters:

ηik = g(αηik)
∏

s<k{1−g(αηis)}. Since given the TPRs and the FPRs, the subclass weights fully

determine the measurement dependence in each class, we let the case and control subclass

weight functions ηk(w) and νk(w) be different for any w.

Let the k-th linear predictor in the subclass weight regression for case subject i depend

on covariates Wi via αηik = αηk(Wi = w; Γη
k) = µk0 +

∑q1
j=1 fkj(wj;β

η
kj) + w̃>γηk , where

Γη
k = {µk0, {βηkj},γ

η
k} are the regression parameters. We use Γη

k that is different from the

regression parameters in the controls (Γν
k). In particular, we approximate fkj(·) here using

the same set of B-spline basis functions as in the controls but estimate a different set of
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basis coefficients βηkj. In addition, we have directly used the intercepts {µk0} from controls’

subclass weight regressions to ensure only important subclasses in the controls are used in

the cases. For example, absent covariates W , a large and positive µk0 effectively halts the

stick breaking procedure at step k for the controls (νk+1 ≈ 0); Applying the same intercept

µk0 to the cases makes ηk+1 ≈ 0,

Combining the case (Lreg
1 ) and control likelihood (Lreg

0 ) with covariates, we obtain the

joint likelihood for the regression model Lreg = Lreg
1 × L

reg
0 .

Remark 2. The regression model reduces to an npLCM model without covariates upon inte-

gration over a distribution of covariates X under an assumption that (A1): the case subclass

weights are constant over covariates: ηk(·) ≡ ηk, k = 1, . . . , K. The likelihood function

for cases’ measurements Lreg
1 integrates to L∗1 =

∏
i:Yi=1

∑L
`=1 π

∗
`

∑K
k=1 ηkΠ(Mi;pk`), where

π∗` =
∫
π`(X)dG(X) and G is a probability or empirical distribution of X. The integrated

control likelihood function is L∗0 =
∏

i:Yi=0

∑K
k=1 ν

∗
kΠ(Mi; Ψk), where ν∗k =

∫
νk(W )dH(W )

and H is a probability or empirical distribution of W . The product of the integrated case and

control likelihood (L∗1L
∗
0) is equivalent to an npLCM without covariates. The mathematical

equivalence means we can perform an npLCM analysis omitting covariates X and W and

obtain valid inference about the overall PEFs π∗. The equivalence is evident once we enforce

non-interference assumption (Wu et al., 2016b) by setting ηk(W ) = νk(W ) for any k and W

(or equivalently Γη
k = Γν

k for any k under the parameterization hk(W ; ·)), assumption (A1)

is equivalent to (A2): ηk(w) = νk(w) = νk, k = 1, . . . , K. Under deviations from (A1), an

npLCM analysis omitting covariates however will result in substantial estimation bias by the

posterior mean of π∗` and 95% CrIs that undercover the truth; Section 4 provides examples.

Priors. The unknown parameters include the regression coefficients in the etiology regression

({Γπ
` }), the parameters in subclass mixing weight regression for the cases ({Γη

k}) and the

controls ({Γν
k}), the true and false positive rates (Θ = {θ(j)k },Ψ = {ψ(j)

k }). With typical

samples sizes about 500 controls and 500 cases in each study site, the number of parameters in

controls likelihood L0 (> JKCp) easily exceeds the number of distinct binary measurement

patterns observed. To overcome potential overfitting and increase model interpretability, we

a priori place substantial probabilities on models with the following two features: (a) Few

non-trivial subclasses via a novel additive half-Cauchy prior for the intercepts {µk0}, and for a
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continuous variable (b) smooth regression curves π`(·), νk(·) and ηk(·) by Bayesian Penalized-

splines (P-splines) (Lang and Brezger, 2004) combined with shrinkage priors on the spline

coefficients (Ni et al., 2015) to encourage towards constant values; For example, constant

ηk(·) = ηk, νk(·) = νk, k = 1, . . . , K reduce the regression model to an npLCM without

covariates. Supplementary Material A1 provides the details of the prior specifications.

Posterior Inference. We use the Markov chain Monte Carlo (MCMC) algorithm to draw

samples of the unknowns to approximate the joint posterior distribution. The posterior

inference is flexible and provide inferences about any functions of the model parameters

and individual latent variables. For example, we may obtain the posterior distribution

of the case positive rate curve for pathogen j (see red bands, Row 1, Figure 1) by plug-

ging in the posterior samples of relevant parameters into P(M` = 1 | x,w, Y = 1) =

π`(w; Γπ
` )

∑K
k=1 hk(w; Γη

k)θ
(`)
k + {1 − π`(x; Γπ

` )}
∑K

k=1 hk(w; Γη
k)ψ

(`)
k . In the following, we fit

npLCMs with or without covariates using a free and publicly available R package baker

(https://github.com/zhenkewu/baker). It calls an external automatic Bayesian model

fitting software JAGS 4.2.0 (Plummer et al., 2003) from within R and provides functions to

visualize the posterior distributions of the unknowns (e.g., the PEFs and cases’ latent disease

class indicators) and perform posterior predictive model checking (Gelman et al., 1996).

4 Simulations

We simulate case-control bronze-standard (BrS) measurements along with observed contin-

uous and/or discrete covariates under multiple combinations of true model parameter values

and sample sizes that mimic the motivating PERCH study. In Simulation I, we illustrate

flexible statistical inferences about the PEF functions {π`(·)}. In Simulation II, we focus

on the overall PEF π∗` as an empirical average of π`(X), ` = 1, . . . , L, which quantify the

overall cause-specific disease burdens in a population and are often of health policy interest.

We assess the frequentist properties of the posterior means of π∗ = (π∗1, . . . , π
∗
L)> obtained

from analyses with or without regression. Relative to npLCM analyses without covariates,

the proposed regression analyses reduce estimation bias, retain efficiency and provide more

valid frequentist coverage of the 95% CrIs. The relative advantage varies by the true data

generating mechanism and sample sizes.
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We simulate BrS measurements made on J pathogens among N1 cases and N0 controls.

We perform two analyses for each simulated data with and without covariates. We repeat

the simulation and analyses for R = 200 independent replications to empirically assess

the frequentist performance of the Bayesian procedures (Little et al., 2011). In estimating

π∗` , we evaluate the bias π̂∗` − π0∗
` where π̂∗` = N−11

∑
i:Yi=1 π̂`(Xi) and the true overall PEF

π0∗
` = N−11

∑
i:Yi=1 π

0
` (Xi), the posterior standard deviation V−1/2{π∗` (Γπ

` ) | D}, the empirical

coverage rates of the 95% credible intervals (CrIs) with the lower and upper end points being

the 2.5% and 97.5% quantiles of the posterior distribution [π∗` (Γ
π
` ) | D].

Simulation I. We demonstrate the inferential algorithm recovers the true PEF functions

{π0
` (X)}. We simulate Nd = 500 cases and Nu = 500 controls for each of two levels of S

(a discrete covariate) and uniformly sample the subjects’ enrollment dates over a period of

300 days. In the true data generating mechanism, we let π`(·), νk(·) and ηk(·) depend on the

two covariates X = (S, T ), S and enrollment date (T ), so that regression adjustments are

necessary (see Remark 2). We simulate BrS measurements on J = 9 pathogens and assume

the number of potential single-pathogen causes L = J = 9. To specify etiology regression

functions that satisfy the constraint
∑L

`=1 π`(x) = 1, we use stick-breaking parameterization

with L = 9 segments. In particular, we let logit {g1(s, t)} = β1 I(s = 1) + sin(8π(t −

0.5)/7), logit {g2(s, t)} = β2 I(s = 1) + 4 exp(3t)/(1 + exp(3t)) − 0.5, logit(g`) = β8 I(s =

1) for ` > 2; Let the PEF functions π`(s, t) = g`(s, t)
∏

j<`{1 − gj(s, t)}, ` = 1, . . . , L(=

9), where β` = 0.1, ` = 1, . . . , 8. During model fitting, we use B-spline expansion in the

multinomial logistic regression for π`(·) for t during estimation. To let the control distribution

depend on covariates, we use K = 2 subclass weight functions for controls: ν1(s, t) =

logit−1 {γν1 I(s = 1) + 4 exp(3t)/(1 + exp(3t))− 0.5} and ν2(s, t) = 1 − ν1(s, t). We specify

case subclass weight functions that are different from the controls via ηk(s, t) = νk(s,−t), k =

1, 2, highlighting the need for using different subclass weights among cases and controls in

an npLCM fitted to the data. We set the TPRs to be θ
(j)
k = 0.95 and the FPRs to be

ψ
(j)
1 = 0.5 and ψ

(j)
2 = 0.05. In our analyses with or without covariates, we use a working

number of K∗ = 3 subclasses, with independent Beta(7.13,1.32) TPR prior distributions

which have the lower and upper 2.5% quantiles that match 0.55 and 0.99, respectively; We

specify Beta(1,1) for the FPRs. The priors for the coefficients in the regression analyses

follows the specifications in Supplementary Materials A1.
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The solid lines in the top row of Figure 1 shows the TPRs for all J = 9 pathogens.

Pathogen A has a bimodal positive rate curve mimicking the trends observed of pathogen

RSV in one PERCH site; other pathogens have overall increasing positive rate curves over

enrollment dates. We set the simulation parameters in a way that the marginal control rate

may be higher than cases for large t’s; This is the extra modeling flexibility offered by the

npLCM than the pLCM. This is an example where subclass with a low FPR (k = 2) is

more heavily weighted in the controls than the cases: ν2(s, t) > η2(s, t). We then perform

regression analysis by assuming φ`(X) in the PEF regression specification to be an additive

model of a I{S = 2} indicator and a B-spline expansion with 7 degrees of freedom for

enrollment date t; The regression formula for subclass weights νk(·) and ηk(·) are additive

models of the I{S = 2} indicator and a B-spline expansion with 5 degrees of freedom for the

enrollment date. Figure 1 visualizes for the 9 causes (by column), the posterior means (thin

black line) and 95% CrIs (gray bands) for the etiology regression curves π̂`(·) are close to

the simulation truths π0
` (·). See Supplementary Materials A3.1 for more simulation results

to assess the recovery of the truth π0
` (X) for a discrete covariate X.

Simulation II. We show the regression model accounts for population stratification by co-

variates hence reduces the bias of the posterior mean {π̂∗`} in estimating the overall PEFs

(π∗) and produces more valid 95% CrIs.

We illustrate the advantage of the regression approach under simple scenarios with a

single two-level covariate X ∈ {1, 2}; We let W = X. We perform npLCM regression

analysis of each R = 200 replication data sets simulated under each of 48 scenarios below

that characterize combinations of distinct numbers of causes, sample sizes, relative sizes

of PEF functions (rare versus popular etiologies), signal strengths (more discrepant TPRs

and FPRs indicate stronger signals, Wu et al. (2016a)), and effects of W on {νk(W )} and

{ηk(W )}. In particular, we consider L = J = 3, 6, 9 causes, under single-pathogen-cause

assumption, BrS measurements made on Nd cases and Nu controls for each level of X where

Nd = Nu = 250 or 500. The functions φ`(X) = β0` + β1` I{X = 2} take two sets of values to

reflect how variable the PEFs are across the two X levels: i) βi
0 = (0, 0, 0, 0, 0, 0) and βi

1 =

(−1.5, 0,−1.5,−1.5, 0,−1.5) where causes have uniform PEFs when X = 1 and causes B and

E dominate when X = 2, or ii) βii
0 = (1, 0, 1, 1, 0, 1) and βii

1 = (−1.5, 1,−1.5,−1.5, 1,−1.5)

to mimic the scenario where pathogens B and E have lower PEFs when X = 1 and occupy
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more fractions when X = 2. We further let the measurement error parameters take distinct

values of the TPRs θ
(j)
k = 0.95 or 0.8 and the FPRs (ψ

(j)
1 , ψ

(j)
2 ) ∈ {(0.5, 0.05), (0.5, 0.15)},

for j = 1, . . . , J . Finally, we specify control and case subclass weight regression functions to

be the same: νk(W ) = ηk(W ) = logit−1 (γk0 + γk1 I{W = 2}) where (γ10, γ11) = (−0.5, 1.5)

and (γ20, γ21) = (1,−1.5).

Based on a single data set simulated under the scenario {L = 6, Nd = 500, K = 2,

θ
(j)
k = 0.8, (ψ

(j)
1 , ψ

(j)
2 ) = (0.5, 0.05), (βii

0,β
ii
1)}, Supplemental Figure S3 shows the posterior

distribution of the stratum-specific etiology fractions π`(X = s) for (s = 1, 2) by row and

L(= J) causes (` = 1, . . . , 6) by column with the true values indicated by the blue vertical

dashed lines; The bottom row shows the posterior distribution of π∗` =
∑

swsπ`(X = s) for

L causes with empirical weights ws = N−1d
∑

i:Yi=1 I{Xi = s}, s = 1, 2.

We also observe superior performance of the regression method upon repeated applica-

tions of the posterior inferential algorithm across simulation scenarios. Figure 2(a) shows for

J = 6 that, relative to no-covariate npLCM analyses, regression analyses produce posterior

means that on average have smaller absolute relative biases (the percent difference between

the posterior mean and the truth relative to the truth) for each pathogen across simulation

scenarios. The regression analyses also produce 95% CrIs for π∗` that have more valid em-

pirical coverage rates in all combinations of the parameters than npLCM analyses omitting

covariates for which we observe undercoverage. Misspecified models without covariates re-

sult in large biases that dominate the posterior uncertainty of π∗` and become more deficient

under larger sample sizes and stronger signals. For example, contrast the more severe un-

dercoverages in the bottom two rows with higher TPRs than the top two rows with lower

FPRs in Figure 2. The regression analyses also perform evidently better in our simulations

for J = 3 and J = 9 (results not shown).

5 Regression Analysis of PERCH Data

We restrict attention in this regression analysis to 494 cases and 944 controls from one of the

PERCH study sites in the Southern Hemisphere that collected information on enrollment

date (August 2011 to September 2013), age (dichotomized to younger or older than one

year), disease severity for cases (severe or very severe), HIV status (positive or negative) and
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presence or absence of seven species of pathogens (five viruses and two bacteria, representing

a subset of pathogens evaluated) in nasopharyngeal (NP) specimens tested with polymerase

chain reaction (PCR), or NPPCR; We also include in the analysis the blood culture (BCX)

results for two bacteria from cases only. Detailed analyses of the entire data are reported in

PERCH Study Group (2019).

Table 1 shows the observed case and control frequencies by age, disease severity and HIV

status. The two strata with the most subjects are severe pneumonia children who were HIV

negative and under or above one year of age. Some low or zero cell counts preclude stratum-

specific fitting of npLCM. Regression models with additive assumptions among the covariates

can borrow information across strata and stabilize the PEF estimates. Supplemental Figure

S5 shows summary statistics for the NPPCR (BrS) and BCX (SS) data including the positive

rates in the cases and the controls and the conditional odds ratio (COR) contrasting the case

and control rates adjusting for the presence or absence of other pathogens (NPPCR only).

Pathogens RSV and Haemophilus influenzae (HINF) are detected with the highest positive

rates among pneumonia children: 29.3% and 34.1%, respectively, which are higher than the

corresponding control rates (3.1% and 21.7%). The CORs are 14 (95%CI: 9.4, 21.6) and

1.8 (95%CI: 1.3, 2.3) are large and indicate etiologic importance. Adenovirus (ADENO) also

has a statistically significant COR of 1.5 (95%CI: 1.1, 2.2). Human metapneumovirus type

A or B (HMPV A B) and Parainfluenza type 1 virus (PARA 1) have larger positive and

statistically significant CORs of 2.6 (95%CI: 1.5, 4.4) and 6.4 (95%CI: 2.3, 20.3). However,

detection of HMPV A B and PARA 1 are less frequent in cases’ nasal cavities than RSV and

HINF (HMPV A B: 6.8%, PARA 1: 2.3%) which in light of high sensitivities (50 ∼ 90)%

means non-primary etiologic roles. For the rest of pathogens, we observed similar case

and control positive rates as shown by the statistically non-significant CORs (RHINO (case:

21.4%; control: 19.9%) and Streptococcus pneumoniae (PNEU) (case: 14.4%; control: 9.9%).

Additional imperfectly sensitive but highly specific blood culture measurements are avail-

able for HINF and PNEU. Similar to Wu et al. (2016b), we incorporate such additional mea-

surements and informative priors on the sensitivities (e.g., from vaccine probe studies e.g.,

Feikin et al. (2014)) to adjust the PEF estimates in a coherent Bayesian framework. It is

expected that the extremely rare detection from blood culture of the two bacteria, 0.4% for

HINF and 0.2% for PNEU, will lower their PEF estimates obtained from an analysis that
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only uses NPPCR data.

We include in the regression analysis a cause “Not Specified (NoS)” to account for true

pathogen causes other than the seven pathogens. We incorporate the prior knowledge about

the TPRs from laboratory experts. We set the Beta priors for sensitivities by aθ = 126.8

and bθ = 48.3 the 2.5% and 97.5% quantiles match the lower and upper ranges of plausible

sensitivity values of 0.5 and 0.9, respectively. We specify the Beta(7.59,58.97) prior for the

two TPRs of SS measurements similarly but with a range of 5 − 20%. We use a working

number of subclasses K = 5. In the etiology regression model φ`(X), we use 7 degrees

of freedom for B-spline expansion of the additive function for the standardized enrollment

date at uniform knots along with three binary indicators for age older than one, very severe

pneumonia, HIV positive; In the subclass weight regression model hk(W ; ·), we use 5 degrees

of freedom for the standardized enrollment date with uniform knots and two indicators for

age older than one and HIV positive. The prior distributions for the etiology and subclass

weight regression parameters following the specification in Supplementary Materials A1.

The regression analysis produces seasonal estimates of the PEF function for each cause

that varies in trend and magnitude among the eight strata defined by age, disease severity

and HIV status. Figure 3 shows the posterior mean curve and 95% pointwise credible bands

of the etiology regression functions π`(t, age, severity,HIV) as a function of t by setting other

covariates to particular levels for two strata with the most cases: severe pneumonia, HIV

negative and younger than one (Figure 3(a)) or older than one (Figure 3(b)). Among the

younger, severe pneumonia and HIV negative children, the PEF curve of RSV is estimated

to have a prominent bimodal temporal pattern that peaked at two consecutive winters in

the Southern Hemisphere (June 2012 and 2013). Other single-pathogen causes HINF, PNEU,

ADENO, HMPV A B and PARA 1 have overall low and stable PEF curves across seasons.

The estimated PEF curve of NoS shows a trend with a higher level of uncertainty that is

complementary to RSV because given any enrollment date the population etiologic fractions

of all the causes sum to one.

The regression model accounts for stratification of etiology by the observed covariates

and assigns cause-specific probabilities for two cases who have identical measurements but

different covariates. For example, consider two pneumonia cases with negative results on

the seven pathogens (the most frequent pattern among cases’ and controls’ NPPCR mea-
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surements) but one is under one year of age and the other is not. The older pneumonia

case have a lower posterior probability of her disease caused by RSV (solid dots below the

empty dots, Supplemental Figure S6 and higher probability of being caused by NoS (solid

dots above the empty dots, Supplemental Figure S6). Indeed, comparing older and younger

children while holding the enrollment date, HIV, severity enrollment constant, the estimated

difference in the log odds (i.e., log odds ratio) of a child being caused by RSV versus NoS is

negative: −1.82 (95% CrI : −2.99,−0.77). As a result, compared with younger children, the

older children have overall lower RSV and higher NoS PEF estimates.

Given age, severity and HIV status, we quantify the overall cause-specific disease burden

by averaging the PEF estimates by the empirical distribution of enrollment dates. The

posterior means are shown along with the 95% CrIs above the etiology regression functions.

Contrasting the results in the two age-severity-HIV strata in Figure 3(a) and 3(b), since

the case positive rate of RSV among the older children reduces from 39.3% to 17.9% but

the control positive rates remain similar (from 3.0% to 4.1%), the overall etiologic fraction

of RSV decreases from 47.7 (95% CrI : 37.6, 61.5)% to 17.3 (95% CrI : 8.0, 29.1)% and

attributing a higher total fraction of cases to NoS from 37.6 (95% CrI : 20.3, 51.9)% to

56.1 (95% CrI : 29.5, 79.3)%; The overall PEFs for other causes remain similar.

6 Discussion

In disease etiology studies where gold-standard data are infeasible to obtain, epidemiologists

need to integrate multiple sources of data of distinct quality to draw inference about the

population and individual etiologic fractions. While the existing methods based on npLCM

account for imperfect diagnostic sensitivities and specificities, complex measurement depen-

dence and missingness, they do not describe the relationship between covariates and the

PEFs. This paper addresses this analytic need by extending npLCM to a general regression

modeling framework using case-control multivariate binary data to estimate disease etiology.

The proposed methods are motivated by a study of pediatric pneumonia etiology (PERCH

Study Group, 2019) and can be applied to other large-scale disease etiology studies of neona-

tal infections (Saha et al., 2018) and diarrheal diseases (Kotloff et al., 2013). Similar analytic

needs and challenges have been raised by different scientific areas such as estimating cause-
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specific mortality rates from verbal autopsy data in demography (McCormick et al., 2016),

subgrouping disease in medicine (Wu et al., 2019) and identifying the underlying mechanisms

of learning difficulties in psychology (Gu and Xu, 2019a).

The proposed approach has three distinguishing features: 1) It allows analysts to specify

a model for the dependence of the PEFs upon important covariates. And with assumptions

such as additivity, we can improve estimation stability for sparsely populated strata defined

by many discrete covariates. 2) The posterior inferential algorithm estimates a parsimonious

covariate-dependent reference distribution of the diagnostic measurements from controls,

against which the measurements made on a case with similar covariate values are compared

to assign cause-specific probabilities given her measurements. Finally, 3) the model uses

informative priors of the sensitivities (TPRs) only once in a population for which these

priors were elicited. Relative to a fully-stratified npLCM analysis that reuse these priors,

the proposed regression analysis avoids overly-optimistic etiology uncertainty estimates.

On estimating the overall PEFs π∗ that characterize the overall cause-specific disease

burdens in a population, the regression approach accounts for population stratification by

important covariates and as expected reduces estimation biases and produces 95% credible

intervals that have more valid empirical coverage rates than an npLCM analysis omitting

covariates.

Similar to an npLCM analysis without covariates, the proposed regression analysis can

readily integrate multiple sources of diagnostic measurements of distinct levels of diagnostic

sensitivities and specificities, a subset of which are only available from cases, to further

reduce the posterior uncertainty of the etiology estimates.

Future analyses of data from large scale disease etiology studies may benefit from four

improvements to the proposed method. First, although the proposed model and posterior in-

ferential algorithm accommodate a regression specification to arbitrary levels of interactions,

we chose to fit additive models to the PERCH data. In so doing, we avoid statistical insta-

bility of fully-stratified etiology estimates due to sparsely-populated strata at the expense

of introducing some bias when interaction effects truly exist. Bayesian additive regression

tree with variable selection (e.g., Linero, 2018) may provide a parsimonious alternative for

characterizing interactions; Here “additive” means a regression function is assumed to be

a random sum of decision trees each of which is flexible to capture part of the non-linear
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and interaction effects. Second, in the etiology regression model {π`(X), ` = 1, . . . , L}, this

paper assumes the predictors are commons to all the disease classes. Class-specific predictor

selection methods (Gustafson et al., 2008) may provide useful regularization in the presence

of a large number of predictors to further stabilize and improve the interpretability of the

PEF function estimates. Third, when the number of causes 1 ≤ L ≤ 2J and the subset of

pathogen-cause combinations in the population is unknown, combining the proposed method

with subset selection procedures (Wu et al., 2019; Gu and Xu, 2019a) may be fruitful. Fi-

nally, scalable posterior inference for multinomial regression parameters (e.g., Zhang and

Zhou, 2017) will likely improve the computational speed in the presence of a large number

of disease classes and covariates.
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Figure 1: For each of the 9 causes (by column) in the Simulation I, the posterior mean (thin
black curves) and pointwise 95% credible bands (gray bands) for the etiology regression
curves π`(x) are close to the simulation truths π0

` (x). The fitted case (red) and control
(blue) positive rate curves are shown with the posterior mean curves and pointwise 95%
credible bands; The rug plots show the positive (top) and negative (bottom) measurements
made on cases and controls on the enrollment dates.
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(b) Empirical coverage rates

Figure 2: The regression analyses produce less biased posterior mean estimates and more
valid empirical coverage rates for π∗` over R = 200 replications in Simulation II with J = 6.
Each panel corresponds to one of 16 combinations of true parameter values and sample
sizes. Top) Each boxplot (left: regression; right: no regression) shows the distribution of the
percent relative bias of the posterior mean in estimating the overall PEF π∗` for six causes
(A - F); The red horizontal dashed lines indicate zero bias. Bottom) Each dot or triangle
indicates the empirical coverage rate of the 95% CrIs produced by analyses with regression
(•) or without regression (N); The nominal 95% rate is marked by horizontal red dashed
lines. Since each coverage rate for π∗` is computed from R = 200 binary observations, the
truth being covered or not, a 95% confidence interval is also shown.
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(a) Age ≤ 1 year, severe pneumonia, HIV negative
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(b) Age > 1 year, severe pneumonia, HIV negative

Figure 3: Estimated seasonal PEF π̂`(date, age, severity,HIV) for two most prevalent age-
severity-HIV strata: younger (a) or older (b) than one, with severe pneumonia, HIV
negative; Here the results are obtained from a model assuming seven single-pathogen
causes (HINF, PNEU, ADENO, HMPV.A.B, PARA.1, RHINO, RSV) and an “Not Specified”
cause. In an age-severity-HIV stratum and for each cause `:
Row 2) shows the temporal trend of π̂` which is enveloped by pointwise 95% credible
bands shown in gray. The estimated overall PEF π̂∗` averaged among cases in the
present stratum is shown by a horizontal solid line, below and above which are two
dashed black lines indicating the 2.5% and 97.5% posterior quantiles. The rug plot on
the x-axis indicates cases’ enrollment dates.
Row 1) shows the fitted temporal case (red) and control (blue) positive rate curves
enclosed by the pointwise 95% CrIs; The two rug plots at the top (bottom) indicate
the dates of the cases and controls being enrolled and tested positive (negative) for the
pathogen.
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Table 1: The observed count (frequency) of cases and controls by age, disease severity
and HIV status (1: yes; 0: no). The percentages among cases and controls for each
covariate are shown at the bottom. Results from the regression analyses are shown for
the first two strata.

age ≥ 1 very severe (VS) HIV positive # cases (%) # controls (%)
(case-only) total: 524 (100) total: 964 (100)

0 0 0 208 (39.7) 545 (56.5)
1 0 0 72 (13.7) 278 (28.8)
0 1 0 116 (22.1) 0
1 1 0 33 (6.3) 0
0 0 1 37 (7.1) 85 (8.8)
1 0 1 24 (4.5) 51 (5.3)
0 1 1 25 (4.8) 0
1 1 1 3 (0.6) 0

case: 25.2% 34.5% 17.0%
control: 34.3% - 14.1%
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