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ABSTRACT 

Alternative splicing is widely acknowledged to be a crucial regulator of gene 

expression and is a key contributor to both normal developmental processes and disease 

states. While cost-effective and accurate for quantification, short-read RNA-seq lacks the 

ability to resolve full-length transcript isoforms despite increasingly sophisticated 

computational methods. Long-read sequencing platforms such as Pacific Biosciences 

(PacBio) and Oxford Nanopore (ONT) bypass the transcript reconstruction challenges of 

short-reads. Here we describe TALON, the ENCODE4 pipeline for analyzing PacBio 

cDNA and ONT direct-RNA transcriptomes. We apply TALON to three human ENCODE 

Tier 1 cell lines and show that while both technologies perform well at full-transcript 

discovery and quantification, each technology has its distinct artifacts. We further apply 

TALON to mouse cortical and hippocampal transcriptomes and find that a substantial 

proportion of neuronal genes have more reads associated with novel isoforms than 

annotated ones. The TALON pipeline for technology-agnostic, long-read transcriptome 

discovery and quantification tracks both known and novel transcript models as well as 

expression levels across datasets for both simple studies and larger projects such as 

ENCODE that seek to decode transcriptional regulation in the human and mouse 

genomes to predict more accurate expression levels of genes and transcripts than 

possible with short-reads alone.  
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INTRODUCTION 

Differences in gene expression are essential for shaping the wide variety of cell 

phenotypes present in an organism, both during development and in later life. While 

humans have around 20,000 protein coding genes, these are thought to produce over 

100,000 splice isoforms through alternative splicing, and potentially many more1. 

Alternative splicing controls which exons are included in the mature mRNA, thus 

expanding the number of possible transcripts that a single gene can code for. These 

isoforms can have vastly different functions and may be very specific to a particular tissue 

or temporal stage2–4. For instance, alternative splicing of the transcription factor erbAα in 

rats gives rise to one isoform which acts as a transcriptional activator, while a second 

isoform acts as a repressor5. Furthermore, isoforms of the Mapt gene are known to be 

differentially expressed in various human neural lineages, and their relative proportions 

change during progression of Alzheimer’s disease, ultimately leading to the formation of 

the tangles that kill neurons6.  

 

Alternative splicing is tightly regulated, relying on highly conserved splicing motifs 

and complex networks of RNA binding protein interactions to function properly7. 

Disruptions to the splicing process frequently lead to disease, whether in the form of 

genetic mutations that directly affect splice sites and splicing factors, or more subtle 

changes that alter the balance between different isoforms6,7. As a result, alternative 

splicing and exon usage in RNA transcripts have long been the subject of great interest 

in the context of development and disease. In early studies, the preferred methods for 

characterizing and measuring isoforms were RT-PCR, Sanger sequencing of expressed 
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sequence tags (ESTs), and isoform-specific microarrays8. This changed with the 

availability of next-generation short-read RNA sequencing, which revolutionized 

genomics by allowing gene expression to be profiled quantitatively in a high-throughput 

manner9. The ENCODE consortium has been a leader in this field, releasing hundreds of 

RNA-seq datasets from a variety of human and mouse cell types along with other projects 

such as GTEx and FANTOM10–12. In the cancer community, the Cancer Genome Atlas 

(TCGA) serves as a massive source of RNA-seq data from patient samples13.  

 

With the widespread availability of RNA-seq, efforts in the alternative splicing field 

have focused on studying isoforms using short read data14. However, this is intrinsically 

challenging, as short-read protocols require cDNA transcripts to be sheared into 50-300 

bp pieces prior to sequencing. These pieces are far smaller than typical mammalian 

transcripts, which can be multiple kilobases in length15. This means that it is not possible 

to know the exact combination of exons originally present in each transcript molecule. To 

get around this, computational methods have been developed to reconstruct the transcript 

models present in a sample and to quantify their abundance. Here, we use the term 

‘transcript model’ to describe a distinct set of splice junctions paired with variable 5’ and 

3’ ends. Bioinformatics software packages such as Kallisto use expectation-maximization 

to pseudo-align short reads to a transcriptome reference, generating abundance 

estimates for transcript and gene models16. These algorithms are effective in broadly 

identifying which transcripts the reads are compatible with, but they cannot tell exactly 

which ones were present. An additional drawback is that these methods depend heavily 

on the choice of reference annotation and, as such, cannot identify novel transcript 
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models. Another widely used approach to quantifying alternative splicing is to compute 

short read coverage of specific splice junctions or exons, and compare the resulting 

counts across samples using statistical tests17,18. While these methods are useful for 

detecting alternative exon usage, they do not overcome the fundamental limitations of 

short-read data with respect to assembling and assigning exactly which exons made up 

the source transcript. 

 

Since 2012, third-generation sequencing platforms such as PacBio and Oxford 

Nanopore (ONT) have pioneered the use of long reads in genomics19,20. With read lengths 

of up to 60 kb for PacBio and up to 1 Mb for Oxford Nanopore, these reads can capture 

entire transcripts from end to end. They also offer the advantage of representing single 

molecules rather than amplified clusters, making them ideal for sequencing isoforms. 

Historically, the major drawbacks of long read technologies have been their relatively low 

throughput and high indel and mismatch error rates ranging up to 15-20%19. In the case 

of PacBio, the stochastic error rate is  mitigated by using circular consensus sequencing, 

in which multiple sequencing passes over the same molecule are used for error 

correction21. The exact error rate depands largely on the number of passes that a 

molecule receives. Computational methods have also been developed to correct errors 

in long reads, including hybrid approaches that incorporate short reads, and other 

methods that make use of reference annotations22–25.  

 

Due to the low throughput of the original platforms, the conventional long-read 

transcriptome sequencing approach was to first catalog isoforms using the long reads 
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and then map short reads to the resulting transcriptome references for the purpose of 

quantification26–28. PacBio popularized this method in mammals, plants, and beyond 

under the name “Iso-seq”. Recently, PacBio yields have increased substantially, 

producing up to 8 million reads per SMRT cell on the Sequel 2 compared to 150,000 on 

the older RSII machines. Similar yield increases have been reported for Oxford Nanopore. 

This increased throughput means that long-read quantification of gene and transcript 

expression is increasingly practical. Unfortunately, most existing tools for analyzing long-

read transcriptome data were not explicitly designed for this purpose. PacBio-affiliated 

software packages such as ICE-Quiver/Arrow and Cupcake ToFU generate de novo 

transcript models by clustering long reads and then merging them to generate one 

transcript model per cluster26,29. This is a particularly useful approach in species that lack 

a reference genome; however, it comes with disadvantages. ICE-Quiver has been known 

to merge together transcripts from highly similar genes and to smooth over real sequence 

differences such as variants and RNA editing events30. In addition, the algorithm is 

stochastic by nature, and cluster assignments for individual reads can vary substantially 

across different runs. All existing programs for transcriptome-wide PacBio annotation and 

quantification rely on the ICE-Quiver or Cupcake ToFU outputs. For instance, SQANTI 

uses post-ToFU transcript models and their estimated abundances as the input to its 

annotation, quantification, and quality control pipeline23. This means that SQANTI cannot 

currently be applied to long read data from other platforms such as Oxford Nanopore.  

 

Here, we present TALON, the official ENCODE4 pipeline for simultaneous 

transcript discovery and quantification of long-read RNA-seq data regardless of platform. 
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This pipeline is designed to explicitly track known and novel transcripts across different 

bio-samples to allow for annotation and use of new isoforms. The full TALON pipeline is 

available on GitHub through the ENCODE4 Data Coordinating Center (DCC) at ENCODE-

DCC/long-read-rna-pipeline. We first analyze the transcriptomes of three different human 

ENCODE Tier 1 cell lines using the PacBio and ONT platforms to quantify the relative 

performance of both platforms. The TALON pipeline allows us to process PacBio and 

ONT data in a uniform fashion and make direct comparisons between the two. We 

evaluate the resulting transcriptomes relative to available CAGE, poly(A), and RNA-PET 

annotations in these cells and find that each long-read technology is affected by different 

artifacts. We then sequence the transcriptomes of adult mouse hippocampus and cortex 

to show the applicability of our pipeline for the analysis of complex tissues. Overall, we 

demonstrate that current long-read platforms are suitable for quantifying and 

characterizing isoform-level expression of genes. 

 

RESULTS 

Tracking transcript novelty and quantification using TALON 

To compare long read platforms side by side and to track isoforms consistently 

across multiple datasets, we developed a technology-agnostic long read pipeline called 

TALON (Figure 1A). This pipeline is designed to annotate full-length reads as known or 

novel transcripts and also to report abundance for these transcripts in a technology 

agnostic way. Starting from reads mapped to the reference genome, reference-based 

error correction is performed using TranscriptClean as a pre-processing step to remove 

microindels, mismatches, and noncanonical splice junctions in a variant-aware manner25. 
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Noncanonical splice junctions 

are permitted in the final output 

only if they are supported by the 

annotation. Corrected reads are 

passed into the TALON program, 

which is built around an SQLite 

database initialized to contain 

known genes, transcripts, and 

exon models from a GTF 

transcriptome annotation. In a 

TALON run, each input SAM 

transcript is compared to the 

existing transcript models in the 

database on the basis of its 

splice junctions, start, and end 

points. This allows us to not only 

assign a novel gene or transcript 

identity where appropriate, but to 

incorporate new transcript 

models in the TALON database 

while characterizing how they 

differ from known transcript 

models.  

Figure 1. Overview of TALON. a) Full-length reads are 
mapped to the reference genome using Minimap2. 
Reference-based error correction is performed using 
TranscriptClean. Corrected reads are passed into TALON, 
where they are assigned a gene and transcript label 
based on comparisons with existing gene and transcript 
models. If no transcript match is found, a novel model is 
created to be used in future comparisons. The TALON 
output can be used for visualization and further analyses. 
b) TALON characterizes types of transcript novelty. 
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We adopted the nomenclature introduced by SQANTI to characterize the different 

types of transcript novelty in our datasets23. Query transcripts with splice junctions that 

perfectly match an existing model are deemed ‘full splice matches’ (FSMs) and are simply 

referred to as ‘known’ (Figure 1B). In cases where a transcript matches a subsection of 

a known transcript model and has a novel putative start or endpoint, it is considered an 

‘incomplete splice match’ (ISM). This category is useful as a means of quality control as 

libraries with a higher proportion of ISMs relative to known transcripts tend to be less than 

complete in terms of length. We further subdivide the ISM category into prefix ISMs and 

suffix ISMs. The former refers to ISMs that match along the 5’ end of an existing transcript 

model, and the latter describes ISMs that match to the 3’ end. It is possible for a transcript 

to belong to more than one ISM category if it matches to different parts of several existing 

transcript models.  

 

The next category, novel in catalog (NIC), encompasses transcripts that have 

known splice donors and acceptors, but new connections between them. This category 

also includes transcripts that were ISMs with respect to their splice junction use, but had 

start and endpoints supported by the annotation. Novel not in catalog (NNC) transcripts 

contain at least one novel splice donor or acceptor. Genomic transcripts overlap an 

existing gene, but they do not contain any of its splice donors or acceptors. We typically 

classify genomic transcripts as artifacts. The antisense category consists of transcripts 

that overlap an existing gene, but are oriented in the opposite direction. If a transcript 

lacks any overlap with a known gene, then it is deemed intergenic. Taken together, the 
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novelty categories allow us to examine the types of transcripts that we detect in our long-

read datasets, to perform quality control, and to stratify or filter by category.  

 

Biological replicates serve as an important means of verifying novel transcript 

discoveries. TALON streamlines this process by tracking transcript annotations and 

abundance across different datasets in one place, where the information can be easily 

accessed and compared. Our filtering process uses the novelty labels assigned to each 

observed transcript model in order to remove likely artifacts. Observed transcripts that 

fully match counterparts in the GENCODE annotation are accepted immediately, but we 

require that novel transcripts must be reproducibly detected in at least two biological 

replicate samples in order to be included in the downstream analysis. If additional cell 

types have been sequenced, it is also possible to cross-reference novel transcripts across 

these datasets.  

 

Some novel categories are more likely to harbor artifacts than others. For instance, 

genomic transcripts mostly come from DNA contamination in the samples, and are 

therefore discarded by the filter, reproducible or not. Incomplete splice match (ISM) 

transcripts are more ambiguous. Since ISMs are shorter versions of existing transcript 

models, it is possible that they are the product of RNA degradation or incomplete reverse 

transcription, particularly if they match the 3’ end of one or more long transcript models. 

However, this is not always the case. To differentiate between a truly novel ISM transcript 

and one that is artifactual, it is useful to test against additional genomics data such as 
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CAGE, RNA-PET, or poly(A) annotations. This can provide external validation to support 

or reject a new 5’ or 3’ end seen in an ISM transcript.  

 

The TALON approach to quantification relies on the premise that each long read 

represents an individual transcript molecule sequenced. That allows us to quantify 

expression by simply counting the number of individual reads that were assigned to a 

particular transcript or gene and then converting these values into units of transcripts per 

million (TPM). For gene-level expression values, we then include all reads assigned to a 

locus except for genomic transcripts, since even incomplete transcripts (ISMs) that did 

not meet the threshold to become a new transcript model are informative for the overall 

gene expression level. On the transcript level, however, we apply our TALON filters in 

order to avoid quantifying transcript models with insufficient evidence.  

 

Performance of TALON on human ENCODE Tier 1 PacBio data 

We first applied our long-read analysis pipeline to cDNA from ENCODE 

Consortium Tier 1 human cell lines sequenced on the PacBio Sequel platform (Table S1). 

These included lymphoblastoid cell line GM12878, chronic myelogenous leukemia cell 

line K562, and hepatocellular carcinoma cell line HepG2. A minimum of two biological 

replicates were sequenced for each, consisting of at least 1 million raw reads per 

replicate. After running the TALON pipeline, we obtained gene and transcript counts for 

each sample. The TALON N50 read lengths for the datasets ranged from 1,556 bp at the 

lowest (HepG2 Rep1) to 1,776 bp at the highest (GM12878 Rep2) (Fig S1a-f). Overall, 

13,742 known GENCODE genes and 19,072 GENCODE transcripts were detected in 
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GM12878 (Table S2-S4). In HepG2, 14,968 known genes and 21,557 transcripts were 

detected (Table S5-S7). Finally, 13,913 known genes and 20,586 transcripts were 

detected in K562 (Table S8-S10). The analysis also called 1,993 unknown gene models,  

the majority of which consisted of monoexonic transcripts mapped as antisense within a 

known gene locus (Figure S2a). A much smaller set of 183 unknown gene models were 

reproducible across all three cell lines. Some of these are supported by other high-

throughput genomics data tracks, and so are unlikely to be artifacts (Figure S2b). 

 

We next computed the expression level of known GENCODE genes across the 

PacBio data. We included all long reads assigned to a locus in these counts (except 

genomic transcripts) because even incomplete transcripts are informative for the overall 

gene expression level. We found gene expression levels to be highly correlated across 

biological PacBio replicates of each cell line (Pearson r = 0.92) (Figure 2a, S3a, S3b). 

This shows that our PacBio primary data coupled with the TALON pipeline produces 

reproducible quantifications of gene expression.  

 

We next compared our PacBio results with short-read RNA-seq data from the 

same cell lines. First, we examined how often PacBio was able to detect known genes as 

a function of their short-read expression level (Figure 2b, S3c, S3d). As expected, genes 

at the lower range of expression (1-5 TPM from short reads) were less likely to be 
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Figure 2. Performance of TALON on PacBio transcripts from ENCODE human tier 1 cell 
lines. a) Expression level of known genes (GENCODE v29) in each biological replicate of 
GM12878 (Pearson r = 0.92). b) Proportion of genes expressed in Illumina RNA-seq data of 
GM12878 that are also detected in the PacBio GM12878 data, binned by Illumina expression level 
(TPM). c) Comparison of gene expression levels for known genes in the PacBio and Illumina RNA-
seq platforms (GM12878). d) Number of distinct transcript isoforms observed in each novelty 
category (GM12878) e) Expression level of known transcript models in each biological replicate of 
GM12878 (Pearson r = 0.86). f) Expression of transcript models in each biological replicate of 
GM12878, labeled by their novelty assignments. g) Comparison of known transcript expression 
levels in the PacBio and Illumina RNA-seq platforms (GM12878 Rep 1 and 2). h) Log2 of the total 
number of PacBio reads assigned to each novelty category after transcript filtering (GM12878 Rep 
1). i) Visualization of PacBio-derived custom GTF annotations in the UCSC genome browser for 
ENCODE tier 1 cell lines. Known transcript models are displayed with the GENCODE-issued 5’ 
and 3’ ends. 
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 detected by PacBio, but 80% or more of genes expressed above 5 TPM were 

reproducibly detected. Genes not detected by PacBio tended to be similar to or shorter in 

length than those that were detected, suggesting that the platform differences were not 

attributable to a length bias on the part of PacBio (Figure S4a). To examine the effect of 

increasing read depth on gene detection, we analyzed two additional PacBio replicates 

of GM12878. At a depth of ~1.5 million reads (about 1 biological replicate), PacBio 

detected up to 84% of the known genes expressed in the short read data (Figure S4b). 

Increasing the read depth to 2.5 million (pooling 2 biological replicates) raised this figure 

to 88%, and 5.5 million reads raised it to 91%. We observed no difference in GC content 

between the genes that were detected in PacBio versus those that were not (Figure S4c). 

We conducted a differential expression analysis to ask how much the gene expression 

levels vary between the platforms. The log fold change between PacBio and Illumina was 

computed using the exact test method in EdgeR, and Bonferroni correction for multiple 

testing was performed on the resulting p-values. This analysis revealed that there was no 

significant difference in expression levels for most genes (Figure 2c, S5a, S5b).   

 

Having established that our pipeline can robustly quantify gene-level expression 

on the basis of long reads, we moved on to transcript-level quantification. As expected, 

most of the transcript models identified in our analysis of the extensively-studied 

ENCODE tier 1 cell lines were known matches to the GENCODE annotation (Figure 

2d, S6a, S6b). The expression levels of these known transcripts were highly correlated 

across PacBio biological replicates (Pearson r = 0.86) (Figure 2e, S7a, S7b). Novel 

transcript models that passed the TALON filters also displayed strong expression 
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correlations (Pearson r ≥ 0.80) (Figure 2f, S7c, S7d). While transcript expression levels 

were not significantly different for 90% of the transcripts when compared to short-read 

expression levels, they were about equally higher and lower compared to Illumina for 

the remaining 10% (Figure 2g, S7e, S7f). About 95% of PacBio reads are full splice 

matches to known transcript models in GENCODE (88%) or come from NIC and NNC 

isoforms (Figure 2h, S7g, S7h). In the three cell lines, NIC and NNC transcripts 

contained a larger number of exons on average than the other novelty categories 

(Figure S8). Overall, these results indicate that we can reliably quantify transcript 

models using our long-read pipeline. 

 

GM12878 is an Epstein-Barr Virus (EBV) transformed lymphoblastoid cell line 

(LCL). We therefore used the GM12878 PacBio transcriptome to characterize the 

expression of EBV genes. We found that EBV transcripts are detectable using long-read 

sequencing, and that these transcripts can be quantified, annotated, and assessed for 

their novelty using TALON (Table S11-13). Overall, 5 known and 18 novel EBV transcript 

isoforms were detected and 10 known EBV genes were detected (Figure S9a-b). Many 

detected transcripts belong to the EBNA gene family (Figure S9c), which encode for 

proteins that are essential to the virus’ ability to transform infected cells into LCLs such 

as GM1287831, and are typically among the most highly expressed genes from the EBV 

chromosome in LCLs.32 Consistent with the many detected novel EBNA transcript 

models, the EBNA transcripts have previously identified as heavily alternatively spliced33.  
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After verifying TALON’s performance on biological replicates, we analyzed all 

three ENCODE tier 1 cell lines together, applying the TALON transcript filters and 

visualizing the resulting transcript models in the UCSC genome browser (Figure 2i, 

Table S14-16). Overall, we detected two known isoforms of the TCF3 gene and thirteen 

reproducible novel transcript models. Six of these belonged to the NIC category, and 

accordingly, most of them had 5’ end support from a FANTOM5 human CAGE peak. 

The remaining seven novel transcript models were suffix ISMs. None of these 

transcripts were supported by a CAGE peak, but one of them, ENCODEHT000314121, 

had H3K4Me3 5’ end support in the K562 cell line. In particular, the most highly 

expressed isoform of TCF3 in GM12878 was the NIC transcript 

ENCODEHT000353272, which we also detect in K562 but not HepG2. The short-read 

RNA-seq reads displayed in the track indicate which exons are present in the three cell 

lines, but cannot recapitulate full-length transcripts the way that the long reads do, 

suggesting that there is still a substantial benefit to revisiting well-studied cell-lines using 

PacBio transcriptomes. 

    

Performance of TALON on Oxford Nanopore data and comparison with PacBio 

 Oxford Nanopore represents the other major long-read sequencing platform, and 

has the added advantage of directly sequencing RNA rather than cDNA34. While the 

protocol involves one reverse-transcription step, it is primarily for the purpose of removing 

secondary RNA structure and only the RNA-strand is sequenced. In order to demonstrate 

the applicability of TALON to the Nanopore platform, we directly sequenced RNA from a 

minimum of two replicates of each ENCODE Tier 1 cell line to an average depth of at 
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470,000 raw reads per MinION flow cell, which corresponds to our usable throughput on 

the first generation of MinION RNA flow cell. After basecalling and alignment with 

Minimap235, each replicate was processed through the TALON long read pipeline as 

described for PacBio. The TALON N50 read lengths for the datasets ranged from 1,159 

bp at the lowest (HepG2 Rep3) to 1,305 bp at the highest (GM12878 Rep1) (Fig S10a-

h). Although the starting number of reads was lower than in our PacBio transcriptomes, 

we detected 12,086 known GENCODE genes and 10,926 known isoforms in GM12878. 

Gene and transcript expression levels across the two most deeply sequenced GM12878 

ONT replicates were correlated (Pearson r = 0.68 and 0.38, respectively), but far less so 

than their PacBio counterparts (Figure 3a, 3b compared to Figure 2a, 2b; Table S17-

19). When we labeled the transcripts by their novelty type, it became apparent that 

differences in isoform-level expression between ONT replicates are largely driven by 

overrepresentation of novel ISM transcript models (Figure 3c, 3d). This leads us to 

believe that ONT is more sensitive to degradation events or is prone to stopping mid-

transcript during sequencing, which may explain the high ISM numbers in our data 

(Figure S11a).  The ONT-ONT gene and transcript correlations were similar in K562 and 

HepG2 (Figure S11b-e; Table S20-25). 

 

Next, we compared gene and transcript expression levels across the PacBio and 

ONT platforms in each cell line (Figure 3e, S12a-d; Table S26-28). These were 

correlated overall, but there were some interesting differences. For instance, a number of 

unannotated antisense transcripts that were called in PacBio transcriptomes were not 

detected at all in ONT (Figure 3f). This likely means that the antisense transcripts were 
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in fact artifacts of the reverse transcription steps required for PacBio, demonstrating a 

drawback of conversion to cDNA before sequencing, at least by the standard methods 

used for PacBio. However, the ONT direct-RNA sequencing was prone to a different set 

of issues. As an example of a gene measured differently by the two technologies, we 

looked at XRCC5, which is involved in DNA repair (Figure 3g; Table S29-31). More novel 

transcripts models were detected for XRCC5 than known ones. While most of these 

transcripts met the reproducibility requirement, many of the novel ISM and NIC isoforms 

captured are consistent with incomplete sequencing of highly expressed genes between 

replicates (Figure S13). In support of this, our matching PacBio transcriptome, which is 

sequenced deeper, does not detect as many ISMs as ONT (including some that have 

CAGE support for the TSS) and detects substantially more known transcripts of the same 

gene. 
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Figure 3. Comparison of Oxford Nanopore direct RNA-seq transcriptome with Pacbio 
transcriptome in GM12878. a-b) 2 GM12878 replicates were sequenced using the MinIon 
platform and analyzed using TALON pipeline with a) gene expression (Pearson r = 0.68).  and 
b) transcript expression (Pearson r = 0.38). c) Log2 of the total of read count per novelty 
category. There is a substantially larger fraction of ISM reads than full-length known compared 
to PacBio (Fig 2h). d) Number of distinct isoforms by novelty category. e-f) Correlations 
between ONT direct RNA-seq and PacBio with e) gene expression (Pearson r = 0.62) and f) 
transcript expression (Pearson r = 0.44). g) Isoform annotation and visualization for XRCC5. 
Transcript models and TPM expression is representative of 3 different cell lines (GM12878, 
HepG2, and K562). Novel transcripts that pass the TALON filtering criteria are starred. While 
FANTOM 5 peaks support shorter isoforms detected by ONT direct RNA-seq, TPMs for PacBio 
detection of the same isoforms is included for reference. The full-length isoform is substantially 
more highly expressed in the PacBio transcriptome. 
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Assessing completeness of TALON transcript models using CAGE, poly(A) motifs, and 

RNA-PET 

The exonuclease treatment of our samples at the RNA stage and the full-length 

classification step in silico are intended to ensure that the transcripts at the end of our 

pipeline have intact 5’ and 3’ ends. To verify completeness, we performed an integrative 

analysis comparing our TALON transcript models with data from the CAGE and RNA-

PET assays, as well as computationally identified poly(A) motifs. For known transcript 

models, the annotated GENCODE 5’ and 3’ sites were used. 

 

Figure 4. 5’ and 3’ completeness by novelty category. a) Percentage of TALON transcript 
models with CAGE support for their 5’ end by novelty category (GM12878 PacBio). b 
Percentage of TALON transcript models with a poly(A) motif identified at their 3’ end 
(GM12878 PacBio). c) Percentage of TALON transcript models with RNA-PET support for 
their 5’-3’ end pair (GM12878 PacBio). d) Percentage of TALON transcript models with 
CAGE support for their 5’ end by novelty category (GM12878 ONT). e) Percentage of 
TALON transcript models with a poly(A) motif identified at their 3’ end (GM12878 ONT). f) 
Percentage of TALON transcript models with RNA-PET support for their 5’-3’ end pair 
(GM12878 ONT). 
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CAGE is a genome-wide method of annotating transcription start sites that works 

by trapping the 5’ end cap of a mature mRNA transcript and then sequencing its 5’ end. 

To validate the 5’ ends of our long-read transcript models, we compared them to CAGE-

derived TSSs from the FANTOM5 project. 84% of known GENCODE transcripts had 

CAGE support in our GM12878 PacBio transcriptome, and the results were similar in the 

other cell lines (Figure 4a, S14a-b). Transcripts in the prefix ISM category were 

overwhelmingly supported (97%), whereas suffix ISMs were not (24%). 84% of NIC and 

91% of NNC transcripts were supported by CAGE, indicating that their 5’ ends were at 

least as reliable as those of the known transcripts. However, the antisense PacBio 

transcripts had scant support, lending credence to the idea that they are largely reverse-

transcription artifacts. We observed similar CAGE trends in our ONT transcriptome 

(Figure 4b, S14c-d), although notably, most transcript categories tended to have lower 

rates of support than in the corresponding PacBio transcriptome.  

 

To examine transcript completeness at the 3’ end, we conducted a computational 

poly(A) motif analysis of our long-read transcript models. This entailed scanning the last 

35 bases of each transcript sequence to look for the presence of a known poly(A) motif. 

In PacBio, 71% of known transcripts contained such a motif (Figure 4c, S15a-b). Rates 

of support were also high in the suffix ISM, other ISM, NIC, and NNC categories (83%, 

73%, 79%, and 84% respectively). As expected, only 40% of the prefix ISMs contained a 

poly(A) motif, indicating that many of these transcripts may be the product of internal 

priming. Overall, the results were similar for the ONT transcripts (Figure 4d, S15c-d). 
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Finally, we sought to validate the 5’-3’ pairings in our transcript models using 

publicly available RNA-PET data from the ENCODE consortium for our PacBio and ONT 

transcriptomes (Figure 4e-f, S16a-d). This assay marks the start and endpoints of 

individual cDNA transcripts by circularizing and sequencing them with paired-end tags. 

This data is lower-throughput in nature than the more recently generated CAGE data, 

which helps explain the lower rates of RNA-PET support for known transcripts. We 

nevertheless observed strong RNA-PET support for NIC and NNC transcripts in both 

PacBio and Oxford Nanopore. Of the three ISM categories, prefix ISMs were the most 

likely to have RNA-PET support for their 5’-3’ end pairing. Antisense transcripts had 

extremely high rates of RNA-PET support. Again, this is likely an artifact of reverse 

transcription early in the protocol. 

 

Taken together, the results of our CAGE, poly(A), and RNA-PET analyses 

indicated that most NIC and NNC transcript models derived from long reads have intact 

5’ and 3’ ends, indicating that they are full-length. This was true for both human transcripts 

and EBV (Figure S17a-b). However, transcripts in the ISM novelty category require more 

scrutiny. As expected based on the category definition, prefix ISMs had reliable 5’ sites, 

but their 3’ ends were potentially incomplete in many cases. The reverse was true of suffix 

ISMs, suggesting that many are artifacts. In general, the PacBio platform did a better job 

of capturing complete transcripts than direct-RNA ONT, and offered the additional benefit 

of higher throughput.  
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Comparison of PacBio transcriptomes of mouse cortex and hippocampus 

After demonstrating TALON’s reproducibility and robustness on PacBio data from 

homogeneous cell lines, we decided to apply the pipeline to study isoforms in the complex 

tissues of mouse cortex and hippocampus. The cortex and hippocampus are critical 

regions of the brain for learning because of their functions of neural integration and 

memory, respectively36. Therefore, these regions have been characterized exhaustively 

under different conditions and models in order to understand the cell subtypes involved37. 

Regulation of cell diversity is key during processes such as development, aging and 

disease and it is carefully orchestrated by multiple factors that generate changes in gene 

and isoform-level expression37.  

 

We sequenced two PacBio replicates each of cortex and hippocampus to a 

minimum depth of 2.5 million reads per replicate and ran TALON on them (Table S32-

38). Gene expression was highly correlated across biological replicates (Pearson r > 0.9) 

(Figure S18a-d) and on average, we detected 10,000 known genes and 14,000 known 

transcripts for each tissue. The diversity of the isoform categories was similar between 

cortex and hippocampus (Figure 5a, 5b). We focused our analysis on genes that had 

more reads assigned to NIC and NNC novel isoforms than known transcript models for 

both areas and found a shared set of 1,393 genes with an additional 442 and 429 being 

specific to cortex and hippocampus, respectively (Figure 5c; Table S34-36). In order to 

understand the gene categories that had more novel than known transcripts in our 

transcriptomes, we performed a GO analysis using Metascape38 and REVIGO39 for 

visualization and semantically arranged the terminology. We found that key genes 
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involved in locomotor behavior, long-term synaptic potentiation, and behavior are 

enriched in the cortex-specific set, which is the main center of knowledge integration and 

movement (Figure 5d; Table S37). The hippocampus was enriched for terms associated 

with synaptic vesicles and neuron projection (Figure 5e; Table S38). Not surprisingly, the 

shared terms for cortex and hippocampus are related to synaptic terms, mostly because 

there is significant set of ATPase and GTPase metabolism genes as well as cell to cell 

adhesion molecules (Figure 5f; Table S39). Interestingly, RNA splicing GO terms are 

associated with this group of under-annotated transcript models. Since the brain is known 

to have a high alternative splicing ratio when compared to other tissues, this is 

unsurprising, but it may also suggest that alternative splicing of these particular RNA-

splicing factors play a role in increasing transcript diversity in these tissues40. 

 

Mef2a is a widely expressed transcription factor that is most highly expressed in 

muscle and brain tissues. In particular, Mef2a plays a crucial role in the differentiation and 

maturation of neural cells41. In regions such as the hippocampus, the Mef2 family can 

control the number of synapses and dendrite remodeling42. We find 13 novel isoforms 

that pass platform-specific filtering from a total of 20 isoforms, all of which contain the 

DNA binding domain (Figure 5g). We then predicted protein sequences for these novel 

transcripts using TransDecoder43 and performed protein domain analysis searches on the 

resultant sequences using Hmmer44 and Pfam45. This analysis revealed that all but 3 of 

the novel transcript isoforms are predicted to include the DNA binding domain, and those 

that lack the DNA binding domain have incomplete predicted ORFs. Other notable protein 

domain changes in predicted ORFs from novel Mef2a transcripts include a protein isoform 
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predicted to lack the beta-sandwich domain (ENCODEM00000394337) that is present in 

all known Mef2a protein isoforms except one. Overall, the diversity of novel isoforms that 

we detect even in well-studied tissues such as cortex and hippocampus suggest that we 

will detect even more novel isoforms in less well-studied samples using long reads. 
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Figure 5. PacBio transcriptomes of 6-month male adult mouse cortex and 
hippocampus. a-b) Isoform diversity isoform for one representative dataset of cortex and 
hippocampus. c) 2262 genes with higher novelty read counts (NIC + NNC) than known of 
which 442 are only higher in cortex and 428 higher in hippocampus. d-f) GO semantic maps 
for d) cortex genes, e) hippocampus, and f) shared. g) Example of Mef2a isoforms 
expression in cortex and hippocampus.  
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DISCUSSION 

Here, we demonstrate that with sufficient sequencing depth (> 1 million reads), 

long reads are able to reproducibly quantify gene and transcript expression in 

homogeneous cell lines and in complex tissues. We introduce a technology-agnostic 

long-read pipeline, TALON, that simplifies the process of comparing long-read 

transcriptomes across different datasets and that allows PacBio and ONT 

transcriptomes to be directly compared. We find that PacBio is reasonably well-

correlated with Illumina, particularly for gene expression levels above 5 TPM. We further 

found that current PacBio captures more complete transcript models than current direct-

RNA ONT, but that the former is prone to antisense transcript artifacts that apparently 

stem from the reverse transcription step to cDNA. It is likely that many of the ISM 

transcripts that we detect more prominently in ONT are false positives due to a pore 

ceasing to sequence midway through. While most of the transcript models we detect in 

the well-studied human ENCODE tier 1 cell lines are already known, we nonetheless 

found evidence of a number of new transcripts with 5’ and 3’ ends that are 

independently supported by other genomics assays. In contrast to the much-measured 

and homogeneous cell lines, we found that a substantial number of genes in mouse 

cortex and hippocampus had more reads from novel (NIC and NNC) isoforms than 

known ones. Not surprisingly, this suggests that we are still underestimating the overall 

contributions of alternative-splicing for tissues that are both more complex in terms of 

cell composition and also less-comprehensively assessed. At this time, the goal of 

producing a reference-level annotation transcriptome for any given cell type or tissue, is 

well served by the PacBio platform, our results also make it clear that any platform that 
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provides RNA modification data by direct RNA sequencing, as the RNA ONT platform 

now does, is very important.  As iterative advances are made on these platforms, and 

as possible new long-read systems are added to the mix, the ability to process and 

compare the outputs from all versions of all systems in a platform agnostic way will be 

increasingly important.     

  

In addition to the technology-specific challenges of each platforms, there are 

some shared issues. While both technologies could sequence most of the transcripts 

expressed in the cells, some very long transcripts were conspicuously missing or under-

represented in our data. In particular, both GM12878 and K562 are female cell lines, but 

we only detected the highly expressed XIST transcript as a “full splice match” in a single 

PacBio GM12878 replicate. Even this one match lacked several kb from the 5’ end of 

the GENCODE model. More generally, while NIC and NNC transcript models looked 

identical or better than known transcripts in terms of CAGE, poly(A), and RNA-PET 

validation, ISMs represent a challenge for both technologies. This is particularly 

pressing as we detect more such ISMs in our brain tissue biosamples than in cell lines. 

We expect that ISMs will be a challenge in the human post-mortem tissue samples,  

including reference collection efforts for ENCODE4, because RNA quality is typically 

lower than what can be obtained from cell lines and fresh mouse tissue sources.The 

“Iso-seq” approach to this has been to collapse ISM reads onto known transcripts. 

However our results show that a subset of ISMs have CAGE and 3’ end support. They 

are currently difficult to distinguish from truncated reads without at least CAGE support. 

Interestingly, the XIST locus is crowded with CAGE peaks throughout its longest 
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transcript model, potentially suggesting that there are many “shorter” isoforms produced 

than previously appreciated, with evidence of them ignored due to the lack of resolution 

using short-reads alone. ISMs are in any case useful as we incorporate them in our 

gene quantification. With additional datasets and evidence, we anticipate that machine 

learning techniques will allow us to distinguish real ISMs from artifacts. Until then, it 

seems prudent to ignore ISMs for transcript discovery in the absence of CAGE (or 

similar) support. 

 

A large and compelling biological question about RNA splicing, still unanswered, 

is brought to the fore as more long-read RNA data accumulate and produce evidence 

for more isoforms: is it that the ever-increasing number of novel isoforms that we detect 

are simply the natural consequence of the underlying combinatorial nature of alternative 

splicing? If a “typical” gene has 10 independent alt-splicing locations and we observed 

every combination, we would expect 1024 models.  While there might be one (or even a 

few) dominant isoform in a given cell type or tissue, it is possible that the dominant 

isoform could switch based on the cell-type specific expression of RNA splicing factors. 

From a bioinformatics perspective, this presents a challenge as to whether we should 

represent the full set of 1024 possible isoform entries in a GTF file or as graphical 

model such as a Hidden Markov Model is an issue that the field will have to face sooner 

or later. These models may be particularly useful for capturing the 5’ and 3’ differences 

that are clearly there but can lead to a different type of functional novelty than changes 

to ORFs. Last but not least, there is the issue of what downstream consequences arise 

from novel isoforms, particularly for protein-coding genes.  Once again, this is 
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challenging for ISMs as they would predict truncated ORFs, whereas NIC and NNC 

transcripts are more likely to produce a functional product. 

 

While challenges remain to generating perfect long-read transcriptomes from 

imperfect RNA and still relatively noisy sequencing, there is no longer a good 

justification for doing “pooled” short-read RNA-seq for reference-annotation-level 

transcriptomics using high-quality (i.e. not degraded) mRNA other than the cost of a 

study. While the cost of sequencing using long reads is about an order of magnitude 

higher than using short reads, they are now comparable to the cost of short-read RNA-

seq 10 years ago and we can expect this to continue dropping. The field of single-cell 

RNA-seq is currently thriving on techniques that use short-read single-read for molecule 

counting, but even here, switching to long reads will have a beneficial impact46. Short-

read sequencing will still have a place for quantifying short RNAs, degraded mRNAs 

from otherwise unavailable samples, or where thousands of samples need only be 

compared to a reference transcriptome likely produce from a few long-read 

transcriptomes. However, switching to long reads will finally allow us to accurately 

characterize and quantify mRNA in the actual functional form used by the cell to run the 

transcriptional programs that drive developmental decisions and responses to its 

environment.  
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METHODS 

Sample collection and RNA extraction 

GM12878, K562 and HepG2 were grown and harvested as described in the ENCODE 

consortium protocols (encodeproject.org). Total RNA was extracted using the QIAGEN 

RNAEasy Plus kit (Cat. No. 74134). All animal experimental procedures were approved 

by the Institutional Animal Care and Use Committee of University of California, Irvine, and 

performed in accordance with the NIH Guide for the Care and Use of Laboratory Animals. 

Mice were anesthetized with isoflurane and perfused with phosphate buffered saline 

(PBS). Hippocampus and Cortex from two 6-month male C57BL/6 mice were dissected 

and collected in HBSS no calcium no magnesium solution (cat. No. 14170112). Tissues 

were dissociated with syringes while in lysis buffer included in the QIAGEN RNAEasy 

Plus kit (Cat. No. 74134). Total RNA extraction was done following the vendor 

instructions. To degrade mRNA without a 5’ cap, total RNA was exposed to an 

exonuclease treatment using Terminator™ 5´-Phosphate-Dependent Exonuclease (Cat. 

No. TER51020). 

 

PacBio Library Preparation and Sequencing 

Starting from the depleted RNA, we followed a modified version of the SMART-seq2 

protocol to synthesize cDNA47. 500 ng of cDNA were used as input for the PacBio library 

prep following the SMRTbell Template Prep Kit 1.0 instructions. Sequencing was done 

on the Sequel platform, with at least 2 SMRT cells per cell line and 4 SMRT cells per 

tissue. Raw PacBio subreads were processed into circular consensus reads using the 

Circular Consensus step (CCS) from the SMRTanalysis 6.0 software suite. Next, full-
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length non-chimeric (FLNC) reads were identified using the SMRTanalysis Classify step. 

Reads were considered FLNC if they contained the expected arrangement of 5’ and 3’ 

PacBio primers in addition to a poly-(A) tail. Poly-A tails and adapters were removed at 

this stage. FLNC reads were mapped to the reference genome using Minimap2 version 

2.15 (GRCh38 assembly for human cell types, and mm10 for mouse) with parameters 

recommended by Pacific Biosciences. Reads that did not map to the main chromosomes 

were removed. 

 

ONT Library Preparation and Sequencing 

Starting from 3 μg of depleted RNA, we proceeded to the direct-RNA library prep following 

the RNA-001 kit instructions. Reverse transcription was used to get rid of secondary RNA 

structures. We used 1 flowcell (R9.4) per replicate and MinKNOWN 2.0 was used to run 

the samples. We sequenced at least 2 biological replicates per cell line.  Live basecalling 

was performed on the direct RNA ONT reads using ONT Albacore Sequencing Pipeline 

Software (version 2.3.1). ONT reads were mapped to the reference genome using 

Minimap2 version 2.15 (GRCh38 assembly for human cell types, and mm10 for mouse). 

We used parameters recommended for ONT by the Minimap2 documentation. Reads that 

did not map to the main chromosomes were removed. 

 

TALON pipeline       

Following alignment to the genome, reference-based error correction was performed on 

the PacBio FLNC and ONT reads using TranscriptClean v1.0.7 (available on GitHub at 

https://github.com/dewyman/TranscriptClean). Reference splice junctions were derived 
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from the GENCODE annotations using TranscriptClean accessory script 

get_SJs_from_gtf.py. For the human runs, we used common variants from dbSNP Build 

150 (April 2017 release) in the VCF format to run TranscriptClean in variant-aware mode. 

After TranscriptClean, any reads that still contained one or more un-annotated 

noncanonical splice junctions were removed using a custom Python script.  

Human and mouse TALON databases were initialized from the GENCODE v29 

and GENCODE vM21 comprehensive GTF annotations (reference chromosomes only). 

During initialization, transcript models were required to be at least 300 nt long. TALON 

(version 4.1) was run on the PacBio and ONT reads in order to annotate them. The 

resulting TALON database was used for downstream analysis. TALON is available from 

https://github.com/dewyman/TALON. 

 To perform long read quantification, transcript abundances were extracted from 

the database using the TALON create_abundance_file_from_database.py utility. For 

gene quantification, unfiltered abundance files were used (with the exception of genomic 

transcripts, which were removed). For transcript-level quantification, post-TALON filtering 

was performed to remove novel transcripts that were not reproducibly detected across 

biological replicates. For the joint analysis of Tier 1 cell lines on the same platform, 

transcripts were required to appear in at least two datasets to pass the filters (different 

cell lines permissible). These filters were also applied when generating custom GTF-

formatted transcriptomes using the create_GTF_from_database.py TALON utility.  

 Further details and custom scripts for data visualization are available on GitHub 

(dewyman/ TALON-paper-2019).  
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PacBio vs. Illumina short read comparison 

Illumina short-read RNA-seq reads from GM12878, K562, and HepG2 were 

downloaded from the ENCODE portal in the fastq format (accessions ENCSR000AEH, 

ENCSR000AEQ, and ENCSR000EYR). Quantification against the GENCODE v29 

annotation was performed on each biological replicate using Kallisto16. Prior to 

comparisons with PacBio, the Kallisto results were filtered to remove mitochondrial 

genes, transcripts less than 300 basepairs in length, and genes/transcripts expressed at 

< 1 TPM. The log fold change between PacBio and Illumina was computed using the 

exact test method in EdgeR following normalization, and Bonferroni correction for multiple 

testing was performed on the resulting p-values. Genes/transcripts were considered 

significantly different in the two platforms if p ≤ 0.01 and abs(logFC) > 1. 

 

Comparison of PacBio and ONT transcriptomes 

We calculated gene quantification using the unfiltered TALON abundance files with 

genomic transcripts removed. For transcript quantification, we used the filtered 

abundance files, where we kept novel transcripts that were reproducible. Scatter plots in 

Figure 3 were done using the most deeply sequenced ONT replicate compared to 

replicate 1 from PacBio. 

 

CAGE analysis 

Robust human CAGE peaks were downloaded from FANTOM5 in the BED 

format12.  The genomic coordinates were mapped from hg19 to hg38 using the UCSC 

genome browser LiftOver tool48. We obtained the start site of each long-read transcript 
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model from our GTF transcriptomes, then used Bedtools to ascertain whether any CAGE 

peak overlapped the 100 bp region immediately up or downstream of each TSS49. 

A similar analysis was also conducted using CAGE IDR peaks for GM12878, K562, 

and HepG2 from the ENCODE portal (accessions ENCFF853HOH, ENCFF698DQS, and 

ENCFF246WDH). In this case, long-read transcripts were matched to CAGE data from 

the same ENCODE cell line.  

 

Computational Poly(A) motif analysis 

Each GTF transcript model was converted to BED format. We extracted the DNA 

sequence of the last 35 bp in each transcript using the reference genome (GRCh38 

assembly for human cell types, and mm10 for mouse), then searched for the presence of 

a known 6-mer poly(A) motif as described in Anvar et al., 201850. 

 

RNA-PET analysis 

RNA-PET clusters for GM12878, K562, and HepG2 were downloaded in the BED format 

from the ENCODE portal (accessions ENCFF001TIL, ENCFF001TJA, and 

ENCFF001TIR ). The genomic coordinates were mapped from hg19 to hg38 using the 

UCSC genome browser LiftOver tool48. We obtained the start and end site of each long-

read transcript model from our GTF transcriptomes, then used Bedtools to check whether 

any pair of RNA-PET clusters was located within 100 bp of the start and end49.  

 

Mouse Hippocampus and Cortex data analysis 
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Gene and transcript abundances were calculated as described above. We used a custom 

script to identify genes that had higher novelty counts (NIC+NNC) separately for cortex 

and hippocampus and identified the overlapping genes. To assess the function of these 

genes and their biological process roles we input it into metascape (http://metascape.org) 

using an express analysis for mouse. We extracted the Metascape GOterm IDs along 

with their p-value to use as input for REVIGO(http://revigo.irb.hr) and created a semantic 

plot to summarize the GO terms. ORF prediction for Mef2a was performed using 

TransDecoder43, and subsequent predicted amino acid sequences were BLASTed 

against known Mef2a protein sequences to determine similarity of novel transcript 

predicted protein sequences to known protein sequences51. The predicted protein 

sequences were also run through Hmmer against the Pfam database to determine 

domain content44,45. 
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Supplementary Figure Legends 
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Figure S1. TALON read length distributions for PacBio ENCODE Tier 1 datasets. a) 

GM12878 Rep 1. b) GM12878 Rep 2. c) K562 Rep 1. d) K562 Rep 2. e) HepG2 Rep 1. 

f) HepG2 Rep 2. 

 

Figure S2. Characterization of unknown genes detected by PacBio in ENCODE tier 

1 cell lines. a) Fraction of unknown genes belonging to various subcategories of novelty.  

b) UCSC genome browser visualization of a novel gene that was reproducibly detected 

in GM12878, K562, and HepG2.  

 

Figure S3. PacBio gene expression in K562 and HepG2. a-b) Expression level of 

known genes in each biological replicate of a) HepG2 (Pearson r = 0.92), and b) K562 

(Pearson r = 0.92). c-d) Proportion of genes expressed in Illumina RNA-seq data of c) 

HepG2 and d) K562 that are also detected in the corresponding PacBio data, binned by 

Illumina expression level (TPM).  

 

Figure S4. Further characterization of gene detection in GM12878 by short reads 

and PacBio long reads. a) Length of known genes binned by short-read expression level 

in GM12878 and colored by PacBio detection status. Gene length was computed by 

taking the median length of all known transcripts per gene. b) Detection of known genes 

as a function of PacBio read depth in GM12878. The number of short-read genes that 

were detected in PacBio is shown cumulatively for each possible ordering of four PacBio 

datasets. c) GC content of known genes that were detected in at least one of four PacBio 

replicates, versus those that were detected in short reads only.  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/672931doi: bioRxiv preprint 

https://doi.org/10.1101/672931
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure S5. Comparison of known gene expression levels across the PacBio and 

Illumina RNA-seq platforms. a) HepG2, and b) K562.  

 

Figure S6. Number of distinct transcript isoforms observed per novelty category in 

PacBio datasets. a) HepG2, and b) K562. 

 

Figure S7. PacBio transcript expression in K562 and HepG2. a-b) Expression level 

of known transcript models in each biological replicate of a) HepG2 (Pearson r = 0.86) 

and b) K562 (Pearson r = 0.86). c-d) Expression of transcript models in each biological 

replicate of c) HepG2 (Pearson r = 0.85) and d) K562 (Pearson r = 0.85), labeled by their 

novelty assignments. e-f) Comparison of known transcript expression levels across the 

PacBio and Illumina RNA-seq platforms in e) HepG2 and f) K562. g-h) Log2 of the total 

number of PacBio reads assigned to each novelty category after transcript filtering in g) 

HepG2 rep 1 and h) K562 rep 1.  

Figure S8. Number of exons per transcript model detected in PacBio ENCODE tier 

1 cell line transcriptomes. Transcripts are grouped by novelty type assignment. 

 

Figure S9. Epstein-Barr Virus transcriptome characterization in GM12878. a) Gene 

expression levels in GM12878 from the EBV chromosome and from the human 

chromosomes, labelled by gene novelty. b) Transcript expression levels in GM12878 from 

the EBV chromosome and from the human chromosomes, labelled by transcript novelty. 

Novel transcripts have been filtered for reproducibility between GM12878 biological 
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replicates. c) Visualization of TALON GTF annotations in the UCSC genome browser for 

EBV transcripts in GM12878. 

 

Figure S10. TALON read length distributions for Nanopore ENCODE Tier 1 cell line 

datasets. a) GM12878 Rep 1. b) GM12878 Rep 2. c) GM12878 Rep 3. d) K562 Rep 1. 

e) K562 Rep 2. f) HepG2 Rep 1. g) HepG2 Rep 2. h) HepG2 Rep 3. 

 

Figure S11. Characterization of ENCODE tier 1 cell lines by Oxford Nanopore direct-

RNA sequencing. a) Expression level of known transcript models and reproducible ISMs 

in PacBio vs. ONT for GM12878 (Pearson r = 0.21). b-c) Expression levels of known 

genes in two biological replicates of b) HepG2 (Pearson r = 0.84) and c) K562 (Pearson 

r = 0.73). d-e) Expression level of known GENCODE v29 transcript models and 

reproducible ISMs in two ONT biological replicates of d) HepG2 (Pearson r = 0.60) and 

e) K562 (Pearson r = 0.51).  

 

Figure S12. Comparison of ONT and PacBio platforms in HepG2 and K562. a-b) 

Expression levels of known genes and reproducible antisense genes in PacBio vs. ONT 

for a) HepG2 (Pearson r = 0.75) and b) K562 (Pearson r = 0.75). c-d) Expression level of 

known transcript models and reproducible ISMs in PacBio vs. ONT for c) HepG2 

(Pearson 0.27) and d) K562 (Pearson r = 0.34).  

 

Figure S13. PacBio and ONT GM12878 post-TranscriptClean reads mapping to the 

XRCC5 locus. 
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Figure S14. CAGE support by novelty category in HepG2 and K562. a-d) Percentage 

of TALON transcript models with CAGE support for their 5’ end by novelty category in a) 

HepG2 PacBio, b) K562 PacBio, c) HepG2 ONT, and d) K562 ONT.  

 

Figure S15. Poly(A) motif support by novelty category in HepG2 and K562. a-d) 

Percentage of TALON transcript models with a computationally predicted poly(A) motif 

within 35 nt of the 3’ end by novelty category in a) HepG2 PacBio, b) K562 PacBio, c) 

HepG2 ONT, and d) K562 ONT.  

 

Figure S16. RNA-PET support by novelty category in HepG2 and K562. a-d) 

Percentage of TALON transcript models with RNA-PET support for their 5’-3’ end pair by 

novelty category in a) HepG2 PacBio, b) K562 PacBio, c) HepG2 ONT, and d) K562 

ONT.  

 

Figure S17. 5’ and 3’ end completeness of PacBio Epstein-Barr Virus transcripts. a) 

Percentage of TALON EBV transcript models with CAGE support for their 5’ end by 

novelty category. b) Percentage of TALON EBV transcript models with a computationally 

predicted poly(A) motif within 35 nt of the 3’ end by novelty category. 

 

Figure S18. Reproducibility of PacBio gene and transcript expression in mouse 

cortex and hippocampus. a) Expression level of known genes in each cortex biological 

replicate. b) Expression level of known transcripts in each cortex biological replicate. c) 
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Expression level of known genes in each hippocampus biological replicate. d) Expression 

level of known transcripts in each hippocampus biological replicate.   

 

 

Supplementary Tables 

Table S1 ENCODE/GEO IDs for generated data 
Table S2 GM12878 PacBio GTF transcriptome annotation 
Table S3 GM12878 PacBio unfiltered abundance file 
Table S4 GM12878 PacBio filtered abundance file 
Table S5 HepG2 PacBio GTF transcriptome annotation 
Table S6 HepG2 PacBio unfiltered abundance file 
Table S7 HepG2 PacBio filtered abundance file 
Table S8 K562 PacBio GTF 
Table S9 K562 PacBio unfiltered abundance file 
Table S10 K562 PacBio filtered abundance file 
Table S11 EBV PacBio GTF transcriptome annotation 
Table S12 EBV PacBio unfiltered abundance file 
Table S13 EBV PacBio filtered abundance file 
Table S14 Combined Tier 1 PacBio GTF transcriptome annotation 
Table S15 Combined tier 1 PacBio unfiltered abundance file 
Table S16 Combined tier 1 PacBio filtered abundance file 
Table S17 GM12878 ONT GTF transcriptome annotation 
Table S18 GM12878 ONT unfiltered abundance file 
Table S19 GM12878 ONT filtered abundance file 
Table S20 HepG2 ONT GTF 
Table S21 HepG2 ONT unfiltered abundance file 
Table S22 HepG2 ONT filtered abundance file 
Table S23 K562 ONT GTF 
Table S24 K562 ONT unfiltered abundance file 
Table S25 K562 ONT filtered abundance file 
Table S26 Combined Tier 1 PacBio/ONT GTF 
Table S27 Combined Tier 1 PacBio/ONT unfiltered abundance file 
Table S28 Combined Tier 1 PacBio/ONT filtered abundance file 
Table S29 Combined Tier 1 ONT GTF 
Table S30 Combined Tier 1 ONT unfiltered abundance file 
Table S31 Combined Tier 1 ONT filtered abundance file 
Table S32 Mouse brain GTF 
Table S33 Mouse brain abundance filtered 
Table S34 Mouse brain abundance no filter 
Table S35 Cortex and Hippocampus genes with more NIC+NNC than known 

reads filtered 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/672931doi: bioRxiv preprint 

https://doi.org/10.1101/672931
http://creativecommons.org/licenses/by-nd/4.0/


Table S36 Cortex and Hippocampus genes with more NIC+NNC than known 
reads filtered by category in Fig 5c 

Table S37 Go terms enriched in cortex specific genes from Table S36 
Table S38 GO terms enriched in hippocampus-specific genes from Table S36 
Table S39 GO terms enricjed in common genes from Table S36 
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