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Abstract 
 
Analysis of single-cell RNA-seq data begins with the pre-processing of reads to generate count 
matrices. We investigate algorithm choices for the challenges of pre-processing, and describe a 
workflow that balances efficiency and accuracy. Our workflow is based on the kallisto and 
bustools programs, and is near-optimal in speed and memory. The workflow is modular, and we 
demonstrate its flexibility by showing how it can be used for RNA velocity analyses. 
 
Introduction 
 
The quantification of transcript or gene abundances in individual cells from a single-cell 
RNA-seq (scRNA-seq) experiment is a task referred to as pre-processing of the data 1. The 
pre-processing steps for scRNA-seq bear some resemblance to those used for bulk RNA-seq 2, 
and are in principle straightforward: cDNA reads originating from transcripts must be partitioned 
into groups according to cells of origin, aligned to reference genomes or transcriptomes to 
determine molecules of origin, and reads originating from PCR-duplicated molecules  must be 
“collapsed” so they are counted only once during quantification. The collapsing step can be 
facilitated with unique molecular identifiers (UMIs), which are sequences that serve as barcodes 
for molecules3. The challenges in pre-processing single-cell RNA-seq lie in the tradeoffs that 
must be considered in determining choices for how, and in which order, to execute the various 
steps. For example, in droplet-based scRNA-seq protocols, collapsing UMIs to account for PCR 
duplication can be performed naïvely by associating all reads that align to the same gene, with 
the same UMI, to a single molecule 4. This computationally efficient procedure is based on an 
assumption that all reads with identical UMIs that align to the same gene arise via PCR 
duplication of a single molecule. Alternatively, this assumption can be relaxed, resulting in a 
problem formulation  that is NP-complete, i.e. computationally intractable to solve optimally5. 
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Another challenge in scRNA-seq pre-processing is the amount of data that must be processed. 
A single cell experiment can generate 10 6 - 10 10 reads from 10 3 - 10 6 cells6. This is leading to 
bottlenecks in analysis: for example, the current standard program for processing 10x Genomics 
Chromium scRNA-seq, the Cell Ranger software 7, requires approximately 22 hours to process 
784M reads5. For this reason, a number of new, faster workflows for scRNA-seq pre-processing 
based on pseudoalignment8 have recently been developed 5,9. However, despite improvements 
in running time, current workflows have memory requirements that increase with data size 5, a 
situation that is untenable given the pace of improvement in technology and the corresponding 
increase in data.  
 
In recent work we introduced a new format for single-cell RNA-seq data that makes possible the 
development of efficient workflows by virtue of decoupling the computationally demanding step 
of associating reads to transcripts and genes (alignment), from the other steps required for 
scRNA-seq pre-processing 10. The new format, called BUS (Barcode, UMI, Set),  can be 
produced by pseudoalignment, and rapidly manipulated by a suite of tools called BUStools. To 
illustrate the utility, efficiency, and flexibility of this approach for scRNA-seq pre-processing, we 
describe a Chromium pre-processing workflow based on reasoned choices for the key 
pre-processing steps. While we focus on Chromium, our workflow is general and can be used 
with other technologies. We show that our pre-processing workflow is much faster and more 
memory efficient than existing methods, and we demonstrate the power of modular processing 
with the BUS format by developing a fast RNA velocity analysis workflow11. We also validate the 
design decisions underlying the Cell Ranger workflow. Our benchmarking and testing is 
comprehensive, comprising analysis of almost two dozen datasets and greatly eclipsing the 
scale of testing that has been performed for current workflows. 
 
Results 
 
In designing a scRNA-seq pre-processing workflow, we began by investigating each required 
step: correction of barcodes, collapsing of UMIs, and assignment of reads to genes. To achieve 
single-cell resolution, the Chromium technology produces barcode sequences that are used to 
associate cDNA reads with cells, and we began by considering the efficiency-accuracy tradeoffs 
involved in grouping reads with the same, or similar, barcodes to define the contents of 
individual cells. The Chromium barcodes arise from a “whitelist”, a set of pre-defined sequences 
that are included with the Cell Ranger software. Grouping reads according to barcode is 
therefore straightforward, except for the fact that barcodes may contain sequencing errors. The 
Cell Ranger workflow corrects all barcodes that are one base-pair change away (Hamming 
distance 1) from barcodes in the whitelist. An examination of a benchmark panel of 20 datasets 
revealed that this error correction approach can be expected to rescue, on average, 0.8% of the 
reads in an experiment (Figure 1a,b), a calculation based on an inferred error rate per base for 
each dataset (Methods, Supplementary Table 1). Thus, correction of barcodes Hamming 
distance 2 away from whitelist barcodes would rescue, on average, a negligible number 
(0.0038%) of reads (Methods). We therefore implemented a Hamming distance 1 correction 
method in our workflow via the bustools correct command. 
 
Next, in considering how to collapse UMIs, we first investigated the extent to which “collisions” 
occur, i.e. cases where the same UMI occurs in reads originating from two different molecules. 
While inter-gene collisions can be directly measured, intra-gene collisions cannot be 
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distinguished from PCR duplicates. To estimate the intra-gene collision rate we first calculated, 
for each cell in the benchmark panel, the effective number of UMIs in each of the associated 
droplets (Supplementary Figure 1, Supplementary Note). This estimate, along with the number 
of inter-gene collisions and distinct UMIs observed, allowed us to estimate the extent of 
intra-gene collision, and therefore the count loss due to naïve collapsing of UMIs by gene 
(Methods, Supplementary Note). We found that the average percentage of lost counts per gene 
per cell due to naïve collapsing was less than 0.003% for v2 chemistry and 0.000048% for v3 
chemistry (Figure 1c,d). Thus, we decided to apply naïve collapsing as it is computationally 
efficient and effective based on empirical evidence. This was implemented in the bustools 
count  command. Notably, the recently published Alevin collapsing algorithm5 will overestimate 
gene counts because reads with the same UMI pseudoaligned to the same gene are very likely 
to be from the same molecule even if they pseudoalign to distinct transcripts. In fact, our 
analysis suggests such situations result from missing or incorrect annotation 12 rather than from 
collisions where two distinct molecules are labeled with the same UMI. 
 
One implication of the UMI collapsing analysis is that UMI error correction is possible because 
UMIs with only one base-pair change away from an abundant UMI are likely to have resulted 
from sequencing error. To examine the benefit of such a correction we computed the expected 
number of UMIs that would be corrected with Hamming distance 1 correction, and found that for 
10bp and 12bp UMIs only 0.5% and 0.6% of reads would be recovered, respectively, at the 
error rates observed in published datasets (Methods, Supplementary Figure 2). Moreover, such 
error correction would require identification of abundant UMIs in lieu of a whitelist, adding time 
and complexity to the workflow. While we believe such error correction may be warranted in the 
case of longer UMIs (Supplementary Figure 2), we did not include it in our workflow. 
 
In most scRNA-seq pre-processing workflows, assignment of cDNAs to genes utilizes genome 
alignment4,13,14. Since detailed base-pair alignment is not necessary to generate a count matrix, 
pseudoalignment to a reference transcriptome 8 suffices. Moreover, pseudoalignment has been 
shown to be highly concordant with alignment for the purposes of quantification in bulk 
RNA-seq 15. To test this hypothesis we compared counts obtained by pseudoalignment using the 
kallisto program8 with counts produced via Cell Ranger which is based on the STAR aligner16. 
Analysis of an Arabidopsis thaliania scRNA-seq dataset (Figure 2), confirms that there is a high 
correlation between pseudoalignment and alignment based counting, however in one dataset 
(pbmc10k_v3, Supplementary Figure 3.19) we found that pseudoalignment produced more 
counts than alignment. Specifically, in the FGF23 (ENSG00000118972) gene, Cell Ranger had 
many fewer counts than kallisto. We hypothesized that the reason for this discrepancy was the 
presence of reads from unspliced transcripts crossing splice junction boundaries, and therefore 
being erroneously pseudoaligned to the transcriptome. To test this we created a modified index 
that included a 90 base-pair overlap into the exon and the intron (one base-pair less than the 
length of the reads) to capture such reads and confirmed that it resolved the discrepancy 
(Supplementary Figure 4). We observed this problem to be rare and therefore did not deem it to 
be essential in a standard processing workflow. It may be that consideration of such reads will 
be crucial for nuclear scRNA-seq analyses17, when the abundance of such intronic junction 
reads will be problematic for naïve pseudoalignment. 
 
Thus, our workflow consists of pseudoalignment of reads to a reference transcriptome to 
generate a BUS file, and subsequent processing to correct barcode errors and produce a count 
matrix (Supplementary Figure 5). To ensure that memory usage is constant in the number of 
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reads, the BUS files are sorted by barcode prior to counting using the bustools sort command. 
While this workflow is very similar to that of Cell Ranger, it is not identical. Since Cell Ranger is 
widely used, we investigated the extent to which the Cell Ranger results are concordant with our 
workflow. We processed 20 datasets (Supplementary Table 1), chosen to contain a range of 
reads depths (from 8,860,361 to 721,180,737 reads per sample and 2,243 to 201,952 reads per 
cell) and to represent scRNA-seq from a range of tissues and species (Arabidopsis thaliania18, 
Caenorhabditis elegans19, Danio rerio20, Drosophila melanogaster21, Homo sapiens22,23, Mus 
musculus24–28, Rattus norvegicus28). We found a high degree of concordance with respect to 
quality control metrics (Figure 2a—h, Supplementary Figure 3). Crucially, in all datasets, in a 
joint analysis of kallisto and Cell Ranger counts, the closest cell to a kallisto cell was its 
associated Cell Ranger cell, i.e. the Cell Ranger cell with the same barcode sequence. 
Furthermore, correlations between gene counts in individual cells that passed Cell Ranger 
filtering criteria were almost always above 90%, and frequently as high as 99%. 
 
To assess the extent to which differences between Cell Ranger and kallisto affect biological 
inferences, we also compared Cell Ranger to kallisto in a variety of typical downstream analyses 
on the 10x Genomics E18 mouse 10k brain cells dataset. The Cell Ranger analysis produces 
structures similar to that of kallisto when projected to the first two principal components (PCs) 
and to two dimensions of tSNE (Supplementary Figure 6.1). The results of Leiden clustering 29 
are similar regardless of pre-processing workflow, though while most clusters can be uniquely 
matched between Cell Ranger and kallisto, there are a few cases of cluster merging and 
splitting (Supplementary Figure 6.2). We performed differential expression (DE) analysis to 
identify marker genes of the clusters, and then performed gene set enrichment analysis (GSEA) 
on the marker genes for cell type annotation  (Supplementary Figure 6.3). The marker genes 
and their corresponding gene sets were highly correlated between the workflows. In both Cell 
Ranger and kallisto results, most clusters seem neuronal, and the clusters for erythrocytes 
(cluster 16 in both), endothelial cells (cluster 21 in kallisto, cluster 19 in Cell Ranger), and 
immune cells (clusters 20 and 22 in kallisto cluster 17 in Cell Ranger) can be clearly identified 
based on marker genes (Supplementary Figure 6.3). Correlation between the same barcodes in 
kallisto and Cell Ranger with the top cluster marker genes is very high, with both the Pearson 
and Spearman correlation coefficient above 0.9 for the vast majority of cells (Supplementary 
Figure 6.4). Pseudotime inference with Cell Ranger and kallisto resulted in concordant 
trajectories from neuronal precursor cells to two populations of neurons, with the same trajectory 
topology and similar pseudotime values along the trajectory (Supplementary Figure 6.5). In a 
separate mixed species dataset, the number and proportion of UMIs from human and mouse 
cells are similar between Cell Ranger and kallisto (Supplementary Figure 7). Overall, these 
results suggest that the Cell Ranger workflow produces results consistent with our method, not 
only at the level of dataset summary statistics, but also in downstream analyses.  
 
The modularity of our approach makes possible the rapid implementation of alternative 
workflows. To illustrate this we developed an RNA velocity workflow. By including intron 
sequences in the index for pseudoalignment we were able to identify reads originating from 
unspliced transcripts, and, using the bustools capture command, efficiently created the spliced 
and unspliced matrices needed for RNA velocity. Our RNA velocity workflow, which is 13 times 
faster than velocyto 11, is suitable for analysis of large datasets that were previously challenging 
to pre-process. To illustrate this we computed RNA velocity vectors for recently published data 
from the developing mouse retina 30 consisting 113,917 cells (Figure 3). We found that six 
pseudotime marker genes highlighted in the Clark et al. 2019 paper31 (Crx, Nrl, Otx2, Pax6, 
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Rbpms, Rlbp1) displayed patterns consistent with the RNA velocity vectors, and with the 
pseudotime analysis of Clark et al.31 (Supplementary Figure 8). The velocity analysis reveals 
new information, namely it identifies developmental states when velocity is changing 
(Supplementary Figure 8 middle column). We verified the fidelity of our workflow by computing 
RNA velocity vectors on a dataset from La Manno et al. 2018 11 and comparing our results to 
those of the paper (Methods, Supplementary Figure 9). We were able to identify many more 
counts in the unspliced matrix (Supplementary Figure 10), and our resultant velocity figure was 
concordant with that of La Manno et al. 2018 11.  
 
Discussion 
 
Our scRNA-seq workflow is up to 51 times faster than Cell Ranger and up to 4.75 times faster 
than Alevin. It is also up to 3.5 times faster than STARsolo: a recent version of the STAR aligner 
adapted for scRNA-seq (Figure 1e, Supplementary Table 2). Importantly, unlike these other 
programs, our workflow requires a small fixed amount of constant memory that is independent 
of the number of reads being pre-processed (Figure 1f). It is therefore suitable for low-cost and 
environmentally conscious cloud computing. Moreover, the workflow is scalable and can in 
principle be used for pre-processing arbitrary numbers of reads. In benchmarks on the panel 
described in this paper, kallisto’s running time was comparable to that of the word count (wc) 
command applied to the FASTQ files, suggesting that kallisto is near-optimal in efficiency 
(Supplementary Figure 11). Our speed and constant memory requirements make RNA velocity 
tractable for datasets of any size for the first time. 
 
Our UMI collapsing analysis suggests that UMI sequences can be short; even just 5 base-pairs 
of sequence suffice for identifying molecules thanks to the cell barcode and gene identification 
for each read serving as auxiliary barcodes (Supplementary Figure 12). Furthermore, the fact 
that identical UMIs associated with distinct reads from the same gene are almost certainly reads 
from the same molecule, makes it possible, in principle, to design efficient assignment 
algorithms for multi-mapping reads. Reads could be assigned with an expectation-maximization 
algorithm which is based on estimating the copy number of each molecule in the library using a 
model as described in the Supplementary Note, and this is a promising direction for future work. 
An initial attempt at such assignment5 appears to improve concordance between single-cell 
RNA-seq gene abundance estimates and those from bulk RNA-seq. Importantly, the current 
implementation of our approach can produce transcript compatibility counts which have 
information about read ambiguity prior to assignment of multi-mapping reads, and can therefore 
be used to identify isoform-specific changes across cells and cell clusters 32. 
 
While we have focused on a workflow for 10x Chromium data, the bustoools commands we 
implemented are generic and will work with any BUS file, generated with data from any 
scRNA-seq technology. Distinct technology encodes barcode and UMI information differently in 
reads, but the kallisto bus  command can accept custom formatting rules. While the 
pre-processing steps for error correction and counting may need to be optimized for the 
distinguishing characteristics of different technologies, the modularity of the bustools based 
workflow makes such customization possible and easy.  
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Methods 
 
Benchmark panel data 
A diverse set of 20 datasets was compiled for the purpose of benchmarking pre-processing 
workflows. Datasets produced and distributed by 10x Genomics were downloaded from the 10x 
Genomics data downloads page: 
https://support.10xgenomics.com/single-cell-gene-expression/datasets. Six v3 chemistry 
datasets and two v2 chemistry datasets were downloaded and processed (Supplementary 
Table 1). Another 12 datasets were obtained from either the SRA or the ENA; all were produced 
with 10x Genomics v2 chemistry. For six of the datasets (SRR6956073, SRR6998058, 
SRR7299563, SRR8206317, SRR8327928, SRR8524760) the BAM files were downloaded and 
the Cell Ranger utility bamtofastq was run to produce fastq files for pre-processing from Cell 
Ranger structured BAM files. FASTQ files were downloaded directly for the datasets 
EMTAB7320, SRR8257100, SRR8513910, SRR8599150, SRR8611943, SRR8639063.  

Details of all datasets and their accession numbers can be found in Supplementary Table 1.  
 
Software 
The software versions used for the results in the paper were: bustools v0.39.1, Cell Ranger 
v3.0.0, kallisto v0.46.0, python 3.7, R v3.5.2, Salmon v0.13.1, Seurat v3.0, scvelo 0.1.17, 
snakemake v5.3.0, STARsolo v2.7.0e, velocyto v0.17.17, wc v8.22 (GNU coreutils), and zcat 
v1.5 (gzip). All programs were run with default options unless otherwise specified. Instructions 
for how to download the kallisto and bustools programs and to run the single-cell RNA-seq 
workflow are hosted at http://pachterlab.github.io/kallistobus.  

 
Hardware 
All the benchmarks were carried out on a Supermicro server computer (2xXeon® Gold 6152 
22-Core 2.1, 3.7GHz Turbo, 12 x 64GB Quad-Rank DDR4 2666MHz memory, 16 x 12TB 
Ultrastar He12 HUH721212ALE600, 7200 RPM, SATA 6Gb/s HDD) with CentOS7 operating 
system installed. The running time of all programs were evaluated using eight threads. 

. 

Transcriptome indices 
Reference transcriptomes were constructed by processing datasets with Cell Ranger, 
downloading the constructed Cell Ranger GTF file, and then producing a transcriptome from it 
and the relevant genome using GFFread 
(http://cole-trapnell-lab.github.io/cufflinks/file_formats/#the-gffread-utility). 

 
Inference of per-base sequencing error rate and correctable barcodes 
For each dataset, the per-base error rate  was estimated by the formula 

, 
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where  was the number of barcodes matching the whitelist, and  the number of barcodes 
hamming distance 1 away from a whitelist barcode. This was derived by solving for  from the 
equations  

  

and 

,  

where  is the(effective) total number of barcodes. 

 To estimate the proportion of barcodes Hamming distance 1 away from a whitelist barcode, we 
computed  

 

for each dataset, using the estimated per-base error rate . 

 
UMI collision estimates 
A UMI associated with a read from a cell is said to have “collided” if it appears in two or more 
reads originating from different molecules. To estimate UMI collision rates, two types of 
information were used. First, reads in the same cell that originate from different genes must 
have originated from different molecules, and therefore the sharing of a UMI between two such 
reads was used as an indicator of a collision. Second, for each gene, the number of distinct 
UMIs associated within it was measured from the data. Based on the assumption that UMIs 
were sampled uniformly at random from beads, this data was used to estimate the number of 
intra-gene collisions (see Supplementary Note). The assumption was verified to be legitimate by 
examining the distribution of UMI counts across cells; the empirical distribution was 
near-uniform with the exception of a handful of UMIs (Supplementary Note Figure 2). 

 
Comparative analysis of the benchmark panel datasets 
The benchmark panel datasets (Supplementary Table 1) were processed uniformly as follows: 

For each dataset a “knee plot”33 was constructed for both Cell Ranger and kallisto by plotting, 
for each cell, the number of distinct UMIs in the cell vs. the number of barcodes with at least that 
number of UMIs. Then, the distinct number of UMIs for kallisto and Cell Ranger were plotted 
against each other. Subsequently, for each cell, the number of distinct UMIs was plotted against 
the number of genes detected. Finally, the Pearson correlation was computed between the 
gene counts of kallisto and Cell Ranger for each cell. 

To investigate the similarity of Cell Ranger to kallisto, the  distance between each 
corresponding kallisto and Cell Ranger cell was computed. The distance to the nearest kallisto 
cell was also measured. To visualize the Cell Ranger and kallisto count matrices, t-SNE was 
performed on the data projection to the 10 principal components computed for each dataset 
using the opentSNE package (https://github.com/pavlin-policar/openTSNE) with perplexity=30, 
metric=”Euclidean”, random_state=42, n_iter=750. 
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To check for systematic differences in the quantification of certain genes between Cell Ranger 
and kallisto, a differential expression analysis was performed on the matrices produced by the 
two workflows. First, the matrices were concatenated using the genes determined to be 
expressed in both methods. Then the counts were normalized using Seurat. DE was performed 
with logistic regression. Next GSEA with the R package EGSEA on all marker genes with 
adjusted p-value less than 0.05, to identify classes of genes more likely to be affected by the 
different workflows. KEGG pathways were used as gene sets.  

Comparative analysis of the 10x Genomics E18 Mouse dataset 
Analysis of the Cell Ranger and kallisto pre-processed datasets was performed in R. The 
DropletUtils package was used to remove empty droplets from the kallisto gene count matrix. 
For Cell Ranger, the filtered matrix was used. After filtering, genes not detected in any 
remaining Cell Ranger or kallisto barcode were removed. Seurat was used for basic analysis. 
First, data was normalized by dividing the UMI count of each gene in each cell by the total UMI 
counts of that cell, multiplied this number by 10000. Then a pseudocount of 1 was added, and 
the natural log transform was applied. Subsequently, the normalized data was scaled so the 
distribution of the expression of each gene would have mean of 0 and standard deviation of 1. 
Subsequently, 3,000 highly variable genes were selected with the vst method in Seurat. Then 
principal component analysis was performed on the highly variable genes in the scaled data 
with the R package irlba called by Seurat. The first 40 principal components were used for 
tSNE, which was done with the R package Rtsne called by Seurat. Clustering was performed 
with the Leiden algorithm 29 on the kallisto and Cell Ranger matrices. The clustering parameters 
were 20 nearest neighbors and resolution 1. Differential expression analysis was performed with 
the logistic regression method described in Ntranos et al.32 as implemented in Seurat and 
applied to the normalized (unscaled) data. Spearman and Pearson correlations were computed 
for the top 15 cluster marker genes. Gene Set Enrichment Analysis(GSEA) was performed on 
the top 20 cluster marker genes using the R package EGSEA34 with the KEGG pathway gene 
sets. SingleR35 was used to annotate cell types based on correlation profiles with bulk RNA-seq 
from36. Then, the neuronal cell types were used for pseudotime analysis. Pseudotime analysis 
was done with slingshot37 via the Docker container from dyno 38. 

 

Species mixing 
The 10x Genomics 10k 1:1 Mixture of Fresh Frozen Human (HEK293T) and Mouse (NIH3T3) 
Cells dataset was analyzed with kallisto and Cell Ranger for the purpose of comparing the 
resultant banyard plots39. Human and mouse genes were identified with their ENSEMBL 
identifiers. The total number of UMIs mapped to the human and mouse genes in each barcode 
was calculated with the unfiltered matrices. In Supplementary Figure 7b,c only barcodes present 
in both the kallisto and Cell Ranger unfiltered matrices were used.  

 

RNA velocity 
A human reference transcriptome FASTA file of exonic transcripts and a reference genome 
fasta were obtained from the UCSC Genome Browser, build Dec. 2013 GRCh38. A BED file of 
intronic transcripts, with an  (  = read length) flanking sequence was added to each end, 
was also obtained from the UCSC Genome Browser. A unique number was appended to the 
end of each intronic transcript in the BED file. The genome fasta and the intronic BED file were 
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used with bedtools getfasta to construct an intronic fasta file. The intronic and exonic fasta files 
were combined and an index was built with kallisto index. The reads were aligned to the index 
using kallisto bus . The barcodes in the resultant BUS file were error corrected with bustools 
correct and then sorted with  bustools sort. To isolate the intronic counts and exonic counts for 
each barcode, bustools capture was ran twice: once using the list of intronic transcripts and 
once using the list of exonic transcripts. The spliced count matrices were made by using 
bustools count  on the intron-captured split.bus file, and the unspliced count matrices were 
made by using bustools count  on the exon-captured split.bus file. Both matrices were loaded 
into an annotated data frame in a jupyter notebook for downstream analysis.  

To perform the comparison for the La Manno et al. 2018 dataset (Supplementary Figures 9,10), 
the data was first downloaded from the SRA (SRP129388). The cell barcodes were filtered by 
those in La Manno et al. 2018 11. The cluster labels were then transferred from La Manno et  al. 
2018 and the velocyto notebook provided with the paper was used to reproduce the results 
based on the Cell Ranger matrix, and to obtain the RNA velocity analysis for the kallisto 
workflow. 

For the Clark et al. 2019 RNA velocity analysis (Figure 3, Supplementary Figure 8), the data 
was downloaded from the SRA (GSE118614).  First the cell barcodes were filtered by those in 
Clark et al. 2019. The cluster labels were then transferred from Clark et al. 2019 31 and the 
standard velocity pipeline from scvelo was run using the kallisto spliced and unspliced matrices. 
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Figure 1: (A) Error correction of barcodes 1 mismatch away from barcodes in a whitelist. (B) 
Analysis of barcode fidelity in 20 datasets showing barcodes matching the whitelist (white), 
barcodes that are Hamming distance 1 away from the whitelist that were corrected (black) and 
uncorrected barcodes. (C) UMI collapsing within genes. (D) Fraction of UMIs lost per gene 
across cells in 20 experiments due to overcollapsing. (E) Running time of kallisto (orange), Cell 
Ranger (blue), Alevin (black), and STARsolo (green) on 20 datasets. (F) Memory usage of 
kallisto (orange), Cell Ranger (blue), Alevin (black) and STARsolo (green) on 20 datasets.  
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Figure 2: Benchmark panel of single-cell RNA-seq data from Arabidopsis thaliana, Ryu et al. 
2019 18 (SRR8257100). (A) “Knee plots” for kallisto and Cell Ranger showing, for a given UMI 
count (x-axis), the number of cells that contain at least that many UMI counts (y-axis). The 
dashed lines correspond to the Cell Ranger filtered cells. (B) Correspondence in the number of 
distinct UMIs per cell between the workflows. (C) Genes detected by kallisto and Cell Ranger as 
a function of distinct UMI counts per cell. (D) Pearson correlation between gene counts as a 
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function of the distinct UMI counts per cell. (E) The  distance between gene abundances for 
each kallisto cell and its corresponding Cell Ranger cell (blue) and the  distance between the 
gene abundances for each kallisto cell and the closest kallisto cell (orange). (F) kallisto t-SNE 
from the first 10 principal components. (G) Cell Ranger t-SNE from the first 10 principal 
components. (H) Significant differential gene sets between Cell Ranger and kallisto. 
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Figure 3: (A) A kallisto and bustools based RNA velocity analysis of the ten stage scRNA-seq 
retina neurogenesis data from Clark et al. 2019 31. (B) Cell clusters annotated by type. (C) 
Markov diffusion process analysis highlighting source and sink cells, and demonstrating that the 
velocity vector field is consistent with the developmental trajectory of the cells. 
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