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11 Abstract
12 1. Theway that organisms diverge into reproductively isolated speciesisamajor question in
13 biology. The recent accumulation of genomic data provides promising opportunities to
14 understand the genomic landscape of divergence, which describes the distribution of
15 differences across genomes. Genomic areas of unusually high differentiation have been called
16 genomic islands of divergence. Their formation has been attributed to a variety of
17 mechanisms, but a prominent hypothesisis that they result from divergent selection over a
18 small portion of the genome, with surrounding areas homogenised by gene flow. Such islands
19 have often been interpreted as being associated with divergence with gene flow. However
20 other mechanisms related to genetic architecture and population history can also contribute to
21 the formation of genomic islands of divergence.
22 2. Wecurrently lack a quantitative framework to examine the dynamics of genomic landscapes
23 under the complex and nuanced conditions that are found in natural systems. Here, we
24 develop an individual-based s mulation to explore the dynamics of diverging genomes under
25 various scenarios of gene flow, selection and genotype-phenotype maps.
26 3. Our modelling results are consistent with empirical observations demonstrating the formation
27 of genomic islands under genetic isolation. Importantly, we have quantified the range of
28 conditions that produce genomic islands. We demonstrate that the initial level of genetic
29 diversity, drift, time since divergence, linkage disequilibrium, strength of selection and gene
30 flow are all important factors that can influence the formation of genomic islands. Because the
31 accumulation of genomic differentiation over time tends to erode the signal of genomic
32 islands, genomic islands are more likely to be observed in recently divergent taxa, although
33 not all recently diverged taxawill necessarily exhibit isands of genomic divergence. Gene
34 flow primarily slowsthe swamping of islands of divergence with time.
35 4. By using this framework, further studies may explore the relative influence of particular suites
36 of eventsthat contribute to the emergence of genomic islands under sympatric, parapatric and
37 allopatric conditions. This approach represents a novel tool to explore quantitative
38 expectations of the speciation process, and should prove useful in elucidating past and
39 projecting future genomic evolution of any taxa.
40
41 Keywor ds: Evolution, Genomic landscape, Individual based model, Island of genomic divergence.
42

43 Introduction

44 A magjor aim of evolutionary biology isto understand mechanisms associated with the
45  divergence of organisms between populations and the emergence of new species. This
46  motivated Charles Darwin and Alfred Wallace 160 years ago when they advanced the
47  Theory of Natural Selection (Darwin & Wallace 1858). Since then, theincreasing

48  accumulation of genetic, genomic and computational tools has allowed a better
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49  understanding of the genetic basis of the speciation process, resulting in therise of a
50 new eraof evolutionary research (Hughes 2009; Chanderbali et al. 2016). Patterns of
51 divergence at the level of the genome have been characterised for an increasing

52 number of taxa, but the extent to which observed patterns are informative about

53  evolutionary processesis actively debated (e.g. Ellegren et al. 2012; Renaut et al.

54  2013; Ruegg et al. 2014; Burri et al. 2015).

55 The genomic landscape of divergence describes the distribution of differences
56  acrossthe genomes of diverging organisms. The genome of a diverging taxon does
57  not change uniformly, with some regions changing at higher rates than others

58  (Seehausen et al. 2014; Ravinet et al. 2017). If a single process uniquely generates a
59  particular divergence pattern, then identification of that pattern can confidently be

60 interpreted as representing a particular evolutionary history. In contrast, if multiple
61  processes can generate the same patterns of genomic divergence, then identification of
62  the pattern will not point to a specific process, though the suite of candidate processes
63  may be narrowed. In these cases, additional information beyond patterns of genomic
64  divergence, such as the ecological and evolutionary context of a given divergence,

65  will berequired to understand patterns of evolutionary divergence.

66 Genomic islands of divergence - highly differentiated regions of the genome
67 that are surrounded by regions of low differentiation - are a particularly intriguing

68  pattern of genomic divergence (Turner, Hahn & Nuzhdin 2005; Harr 2006; Nosil,

69  Funk & Ortiz - Barrientos 2009). Initially, their formation was attributed to the action
70  of divergent natural selection on particular loci, creating elevated regions containing
71 theselected loci and other physically linked loci, surrounded by regions homogenised
72 by geneflow (Wu 2001; Wu & Ting 2004; Nosil, Funk & Ortiz - Barrientos 2009).
73  Severa authors consequently interpreted presence of genomic islands of divergence
74  asasignal of divergence with gene flow (e.g. Feder et al. 2013), concluding that the
75  speciation process in sympatric or parapatric conditions may be more common than
76  previously thought (e.g. Nosil 2008; Fraisse et al. 2014; Soria-Carrasco et al. 2014).
77  However, empirical studies have aso proposed that genomic islands of divergence
78  canarisein the absence of gene flow dueto a variety of causes, such asthe

79  architecture of the diverging genomes (e.g. variation in recombination rate) and the
80  action of genetic drift, background selection, and adaptation to local environmental
81  conditions (Noor & Bennett 2009; Cruickshank & Hahn 2014; Campagnaet al. 2015).
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82  Furthermore, regions of low divergence may occur because of incomplete lineage
83  sorting rather than homogenisation by gene flow, with peaks of genetic divergence
84  being an artefact of aloss of nucleotide diversity after divergent selection
85  (Cruickshank & Hahn 2014).
86 There have been some previous attempts to model the dynamic of the
87  architecture of genomic landscapes that can be applied to the formation of genomic
88 islands of divergence. However, these models either simulate single bi-allelic selected
89 loci (Charlesworth, Nordborg & Charlesworth 1997; Sedghifar, Brandvain & Ralph
90  2016) or consider asmall number of simulated loci (Feder & Nosil 2009; Feder &
91 Nosil 2010; Feder et al. 2012). They aso provide a static view of the divergence
92  process by summarizing selection as asingle parameter. While informative, such
93  models represent specific stages when populations have aready achieved agiven
94  level of differentiation. Flaxman, Feder and Nosil (2013) used an individual-based
95  model to project this dynamic forward in time, but their model was constrained to a
96  uniform distribution of loci with constant recombination rates. A quantitative and
97  more flexible framework than previous attempts is thus required to evaluate the
98  dynamics of genomic landscapes, and increase the utility of accumulated genomic
99  datasets (Feder et al. 2013; Seehausen et al. 2014). We develop a quantitative
100 individual-based modelling approach to simulate the dynamic of a genomic landscape
101  of divergence. The model simulates any number of loci and allelic polymorphisms
102  and can be theoretically motivated or parameterised using data. A major difference
103  between our approach and previous simulations is the treatment of the fitness
104  function, which is compatible with many structured ecological and evolutionary
105 models. Our approach is highly flexible and can be constructed for any genotype-
106  phenotype map and any configuration of recombination rates between neighbouring
107  loci, can be constructed for deterministic and stochastic environments, and
108  incorporates any desired system of mating. The simulation method presented here
109  provides aflexible framework to examine the dynamics of diverging genomic
110 landscapes under various scenarios of gene flow and selection on single genes or
111  networks of multiple interacting genes. Our approach represents a novel tool to
112  evaluate quantitative expectations in genomic landscapes. It is useful to elucidate the
113  influence of arange of demographic and evolutionary scenarios, including divergence
114  with or without gene flow, the divergence timeframe, and the architecture of target

115 genomes.


https://doi.org/10.1101/673483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/673483; this version posted June 18, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

aCC-BY-NC-ND 4.0 International license.

M ethods

General description of the model

The purpose of our model is to provide insight into how arange of genetic and
demographic processes can generate genomic signatures and patterns of genomic
divergence between populations. Our primary motivation was to explore factors
associated with the emergence of genomic islands of divergence, but our approach
can be applied to many questions about genetic architectures, genomic landscapes,
and the evolution of divergent organisms.

The model isindividual-based and consists of two populations that may or
may not be linked by gene-flow. Our model is composed of three hierarchical levels:
genotypes, phenotypic traits, and demographic rates. The dynamics of the
populations, the distributions of genotypes at each locus and the phenotypic traits, are
all emergent properties of the model. The model tracks the multivariate distribution of
multi-locus genotypes and phenotypes. We simulate individuals that are characterised
by sex and genetic identity (Fig. 1a). The genotype and the environment determine the
phenotypic trait values of an individual viaa genotype-phenotype map. The
phenotypic trait values influence an individual’ s expected demography (i.e. survival,
mate choice, and reproductive success). For example, assuming a per generation time
step, the potential number of offspring produced by each individual depends on its
phenotype @ = f (z), which in turn depends on the individual genotype and on the
environment z=g(G, E) (Fig. 1b). G is anumeric value determined by an
individual’s genotype, representing the genetic value of the genotype. In the case of
an additive genetic map, the genetic value of a genotype will be abreeding value. E
represents the effect of the environment on phenotypic expression, and this allows us
to capture the effects of plasticity on phenotypic expression. The environmental effect
is important when simulating real-life eco-evolutionary dynamics because it almost
always interacts with the genotype to determine the expression of a phenotypic trait
(Bradshaw 1965; Kokko et al. 2017). The realized demography is obtained by
sampling from a distribution whose expected value is the expected demography. Once
mating pairs are formed, the genotype of the young is determined by merging haploid
gametes produced by each parent. Genetic variation of the offspring is determined by

recombination and mutation.
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149 We describe how the model isimplemented in the next section. Our starting
150  pointisthedistribution of individuals classified by genotype, sex and population (Fig.
151  1a). First, we generate the phenotypic trait of each individual given its genotype (and
152 potentially the environment). Second, we calculate individua fitness given an

153 individual’s phenotype, the population it isin, and potentially the environment.

154  Mating pairs are formed based on these individual fitness scores. Parental gametes are
155  then produced given recombination and mutation rates, before segregating within

156  mating pairs to generate offspring genotypes. The offspring can disperse to the

157  neighbouring population with a given probability. The loop is then repeated for the
158  next offspring generation.

159

160  Individual based framework

161  We assume organisms are diploid and composed of males and females. Each

162 individua i is characterized by atwo-dimensional array that represents a pair of

163  homologous chromosomes. Multiple pairs of arrays may also be constructed to allow
164  the characterisation of any number of chromosomes. Similarly, variation in the

165 number of dimensions of the arrays may be introduced to extend this framework to
166  haploid or polyploid organisms. Each element of the array is an integer defining the
167  copy of agiven dlele at agiven locus. Individuals are also classified into populations.
168  We assume random mating within a population, although this assumption can easily
169  berelaxed (Schindler et al. 2015; Ellner, Childs & Rees 2016). Populationsi and j are
170  linked by migration rates (m; and m;) describing movement from population i to j and
171 viceversa. We assume that individuals that migrate and reproduce successfully pass
172  their genesinto the other population hence incorporating gene flow into the model.
173  The genotype-phenotype and phenotype-demography map can differ between

174  populationsif required.

175 The model proceeds in discrete time steps representing generations. Itisa
176  forward simulation that includes reproduction and migration at each time step.

177  Density dependence regulates the population growth rate, influencing the probability
178  of successful reproduction (Fig. 1a).

179 The fitness of individuals is associated with a phenotype (z). We only focus
180  on an additive genetic genotype-phenotype map here, but maps including epistasis,
181 pleiotropy and dominance are possible. In the additive case, the sum of values of

182  alleles at each locus gives abreeding value (b,) for each individual at that locus. The
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sum of breeding values across loci gives a breeding value for the phenotype.
Therefore:

z=ibv+gmv(0,aenv) 1)

Where nyis the number of additive loci. In our simulations, the environmental

contribution (&_ ) isassumed to be stochastic and normally distributed, with mean 0

and standard variation oen. £, may also be dependent on population density or any

other environmental driver (Coulson et al. 2017).

The fitness function (w) defines the phenotype-fitness map and consequently
the type of selection influencing the divergence between populations. Once a
population has colonized anovel area, new phenotype-environment interactions
appear on the phenotype-demography map, shifting the distribution of phenotypes
that are expected to have higher fitness (i.e. phenotypic optima). The differencein
phenotypic optima between the populations drives the strength of “ divergent
selection” (grey area, Fig. 1¢). Populations exposed to equal phenotypic optimaare
considered to be under “ concordant selection”. The fitness function we use has the

form:

1f 4z-bn, )

o =bye 2 b ) ~BN + £, (0,0 gem) 2

Thefirst part on the right-hand side of equation (2) is based on a Gaussian-
distribution determining the relation between the phenotypic trait value (z) and fitness
(w). The parameters bo, b, and b, define the maximum number of offspring produced,
the phenotypic optima, and the variance of the Gaussian curve, respectively. The
second part of equation (2) determines the intensity of density-dependence (bs) on the
fitness of individuals that are members of a population of size N. The final part of the
equation introduces a stochastic demographic variant with mean 0 and standard
variation ogem. The last two parts of the equation thus determine the increasing or
decreasing variation of fitness due to fluctuations in population size and demographic

stochasticity. Any other form of fitness function could be introduced to account for
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214  specific relationships between phenotypes (e.g. weight, height, bill size, colour

215  pattern) and the expected number of offspring produced.

216 The number of breeding eventsis regulated by the number of females present
217  inthe population. Males are randomly selected according to the number of breeding
218 females. The genotypes of both parents participate in the genetic architecture of their
219  offspring by transmittinga haploid copy of genetic material. The offspring differs
220  from the parents by carrying half of the genome of each parent and by specific rules
221  defining the recombination rate (6) between homologous chromosomes. We do not
222  explorethe effect of new mutations here, because we are primarily interested in the
223  emergence of genomic islands at relative early stages of evolutionary diversification.
224  However, mutation can easily be incorporated by generating a novel polymorphism at
225 arandom locus at a given rate per generation (see example in Appendix S1).

226 The genetic variation of the new generation is determined by the

227  recombination rate during the segregation of haploid gametes of each parent.

228  Segregation starts with a randomly selected copy of a chromosome (i.e. one of the two
229 dimensions of the individual array defining its genotypes). The recombination rate
230  may either be afixed value between neighbouring loci or may vary depending on
231  position of the chromosome, for example, through the use of arandomly distributed
232 Poisson process determining crossover points. In the first case, when a recombination
233  mapisavailable, avector of n -1 elements has to be supplied with the recombination
234 rate (6) between each pair of neighbouring loci. The probability of having a crossover
235 (1) or not (0) isuniformly distributed at a rate defined by the value of & between loci
236  (i.e. positions with a probability smaller than 6 recombine). The uniform distribution
237  alows each position with the same values of 6 to have an equal chance of crossover
238  acrossal iterations. There is no recombination between homologous chromosomes
239  when 8 =0, both loci are completely linked (e.g. within an inversion or situated close
240  to centromeres), while with a value of 8 = 0.5, the recombination rate is completely
241  random (i.e. both loci are very distant on the same chromosome or are located on

242  different chromosomes). A value of € < 0.5 meansthe loci are physically linked. In
243  thesecond case, a single average recombination rate for the whole chromosome or
244 part of the genotype of interest has to be supplied, and the crossover points are

245  selected by following arandom distribution (e.g. exponential). This last method may
246  be preferred when trying to fit alarge dataset of genomic information with an

247  unknown recombination rate between neighbouring loci (e.g. Single Nucleotide
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248  Polymorphisms). Because we are primarily interested in the effects of various levels
249  of linkage disequilibrium in the formation of islands of genomic divergence, we

250  present results using the first approach, but an example with the second method is also
251  shown in supporting information (Appendix S1).

252 The offspring represent individuals with the potential to reproduce in the next
253  generation. We assume an equal sex ratio at birth and assign the sexes to offspring by
254  sampling with replacement, with an equal probability of assignment to each sex. A
255  weighted probability could be supplied when unequal sex ratios are considered in the
256  simulations.

257 Thefinal step isthe migration of offspring to neighbouring populations. The
258  probability of migration of each individual is obtained from a uniform distribution, so
259  eachindividual has the same expected probability of migration. The final number of
260 individuals of population i dispersing to population j is defined by the migration rate
261  my. Individuals of i having migration probability smaller than m; move to population
262 . A vaue of mj = 0 means no migration and thus no gene flow between populations,
263  whileavalue of 0.5 means random migration (and hence random reproduction)

264  between them.

265 The final number of individualsin population i at timet+1 can be estimated as

266  the sum of fitness value of al females present in the population at time't ( Nt”) and

267  the number of migrants from population j (males and females, th m;):

N

268 Ny =D o, +N/m, 3)
1=1

269

270 The model isimplemented in R (R Development Core Team 2017), with some

271  functionswritten in C++ and integrated to R by using the Rcpp package (Eddelbuettel
272  etal. 2011). The script is available in the supporting information (appendix S1) and
273  on GitHub (https://github.com/erigande/gids), and is easily modifiable for further
274  applications. Below we describe a number of simulations with different

275  parameterizations to explore how the signatures of genomic divergence are generated
276 by various processes.

277

278 Initialization
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279  We start by simulating how two populations of diploid individuals with equal intra-
280  genomic variation at the beginning of the simulations diverge. The migration rate
281  between the two populations was varied across different simulations to explore

282  divergence without gene flow (i.e. m; = 0) and divergence with gene flow (i.e. m; #
283  0). The demographic and genetic parameter values were chosen to describe two

284  fitness functions that can either have identical or contrasting phenotypic optima, but
285  with asimilar number of individuals in each population during the simulation (Fig 1c,
286 Fig1d, Tablel).

287 The mean population sizes of the two populations were always around 400
288 (Fig 1d). Thisisalso theinitial number of individuals at the beginning of the

289  simulations. The genomic architecture of individuals was characterized by genotypes
290  across 300 loci (n. = 300), that were either strongly linked (6 = 0.0001) or completely
291 unlinked (6 = 0.5). Thisrange of linkage allows us to explore the dynamic of genomic
292  landscapes across more contiguous or distantly related loci. Because previous

293  simulations on the formation of genomic islands of divergence were restricted to bi-
294  dlélicloci (e.g. Feder et al. 2012; Flaxman, Feder & Nosil 2013), we ran simulations
295  with ahigher number of allelesto allow for greater allelic variation (Table 1). The
296  genomic identities of individuals were randomly assigned at the beginning of each
297  simulation by setting the seed of the random number generator in R

298 Fifty additive loci were chosen to have non-zero variation in allelic

299  contributions to the phenotypic trait value. This fraction of loci is potentially subject
300 toselection. By operating on the phenotype, selection changes the distribution of

301 genotypes at each locus that contributes to the phenotype in the ssmulation. Loci not
302 influencing phenotypes are neutral and were used to examine the effect of drift and
303 linkage on the appearance of genomic islands. This allowed us to account for both
304  adaptive and neutral evolution simultaneously. The phenotypes were always

305 computed from 50 additive loci (n, = 50), 10 of which were always linked. These 50
306 additiveloci contributed to the phenotypic trait values of individuals, with the

307  additive value of each allele ranging between 0 and 1. The sum of additive values was
308 then used to compute the phenotype, and then the fitness score, for each individual.
309 However, further studies may expand this procedure to include any required

310 genotype-phenotype map. In summary, we have four classes of genes: i) unlinked
311  genes contributing to the phenotype; ii) linked genes where both loci contribute to the

312  phenotype; iii) unlinked genes that do not contribute to the phenotype; and iv) linked
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313  genesthat do not contribute to the phenotype. The first two categories of genes are
314  under selection, and the last two are not.

315 The number of mating pairs depends on the number of breeding females.

316  Female reproductive success was determined first, before male mates were assigned
317  tofather each offspring. In this simulation we assumed random mating, although other
318 mating patterns are possible (e.g. Schindler et al. 2015). Offspring sex was assigned
319  randomly, with probability 0.5 (Table 1)

320

321 Genomic divergence

322  Wemeasured pairwise Fsrat each locus to estimate genetic differentiation between
323  populations. Fst isawidely used measure of heterogeneity across divergent genomes
324  instudies of genomicislands of divergence (e.g. Ellegren et al. 2012; Kusakabe et al.
325 2017). We computed Fsrat each simulated locus using the R package “ pegas”

326  (Paradis 2010). Genetic differentiation averaged across multiple loci was calculated
327  using the approach of Nel (1973), as implemented in the R package “mmod” (Winter
328  2012).

329

330 Smulations

331  We conducted a number of simulation experiments using awide suite of parameter
332  values. These were designed to examine how various scenarios of linkage between
333 loci, drift, selection, and time since divergence influence the formation of genomic
334  idlands of divergence in both the presence and absence of gene flow. Parameter values
335 arepresented in Table 1 and the supplementary information provides more details for
336  the choice of each parameter set (Table S1). Thefirst ssimulations characterise the
337  effect of the founder population on the resulting genetic divergence (Fst) at an early
338  stage of independent evolution (100 generations, m; = 0). We then explored in more
339 detail, the effect of linkage, gene flow and time since initial divergence. Drift is

340 included in al simulations through the group of genes that are not involved with the
341  phenotype trait value, and through the random selection of gametes at birth. We

342  assigned a name to each group of simulations and will briefly describe their structure.

343 1. Random sampling of founders and concordant selection: these simulations

344  were designed to examine how random sampling of the founder population influenced
345  genomic divergence. Both populations were exposed to neutral evolution and
346  concordant selection, with identical phenotypic optima (equal to population 1, Table
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347 1). Weran 50 simulations with different random initial founder genotypes. Founder
348  genotypes were determined by sampling a uniform distribution with replacement.
349 2. Random sampling of founders and divergent selection: We considered the
350 same 50 founder populations as before but added divergent selection. The selective

351  pressures generating evolutionary divergence between populations were generated by
352  their respective fitness functions. The amount of difference between phenotypic

353  optimameasures the strength of “divergent selection” (Fig 1c, Table 1).

354 3. Levels of heterozygosity in the founder population: Our third set of

355  simulations was designed to explore how variable levels of heterozygosity among
356  founder populationsinfluenced the variance of genomic divergence at the end of the
357 simulation. The level of heterozygosity in the founder population was varied by

358 sampling alleles at alocus with variable frequencies of replacement (see Table S1 for
359  moreinformation). The variable frequency of replacement represented the weighted
360  probability of arandom sampling with replacement among the 20 polymorphisms
361 available for each locus. This ranged from 1 (an equal probability of allelic sampling
362  and more heterozygous) to 100 (an unequal probability of allelic sampling and more
363  homozygous). As this value becomes higher, it increases the probability for

364 individualsto carry the same allele on both copies of their genes. Because linked loci
365  are hypothesised to be more likely to be involved in the formation of genomic islands
366 and we are analysing this factor separately, we excluded these loci in the final

367  estimation of variability of genetic differentiation.

368 4. Genomic linkage: Having characterised how initial conditions might

369 influence results, we next examined the effect of linkage on the formation of islands
370  of genomic divergence. We ran 100 simulations with equal founder populations, but
371  changed the recombination rate between linked loci, ranging from nearly complete
372  linkage (6 = 0.0001) to no linked loci (6 = 0.5).

373 5. Strong selection at a single, unlinked locus: We next explored the effect of
374  strong selection on unlinked genes of large phenotypic effect. Fifty additive loci

375  contributed to phenotypic expression, but one locus contributed 10 times more than
376  theothers. This means that rather than having multiple linked loci affecting the trait
377 thereis, in particular, one locus of very large effect that is unlinked to the other loci
378 that influence phenotype. We considered the same founder population asin 4

379  (genomic linkage).
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380 6. Time since divergence with and without gene flow: To explore how time

381 sincedivergenceinfluenced the formation of genomic islands, we ran simulations
382  with the same 50 founder populations of our previous analysis “random sampling of
383 founders and divergent selection”, but for different lengths of time: 100, 500, 1000
384  and 2000 generations. We repeated these simulations in the presence (m = 0.01) and

385  absence (m= 0) of gene flow.

386 7. Linkage and gene flow: Finally, we explored how linkage and gene flow
387  combined to influence the formation of genomic islands. We simulated various rates
388  of migration and recombination, using the same 50 founder populationsasin 4

389  (genomic linkage). We recorded average Fst at 10 linked loci affecting the expression
390  of phenotypes (positions 150 to 159) and 10 independent loci not related to phenotype
391 expression (positions 90 to 99). This alowed us to determine the magnitude of

392  differentiation between regions of linked divergent selection and the genomic

393  background of neutral evolution.

394

395 Results

396 Random sampling of founders and concordant selection

397  Our first simulations explored the effect of initial conditions on divergence and the
398 formation of genomic islands under equal selective pressures (i.e. concordant

399  selection). The grey linesin Fig. 2a show the resulting Fst values for al 50 random
400 initial populations. When considering the average Fst values by loci across the 50
401  pairwise comparisons, linked genes that contribute to the phenotype have a slightly
402  higher Fst than unlinked genes (grey line, Fig. 2b). However, independent of the type
403  of loci (i.e. under selection or neutral), all positions have almost the same probability
404  of becoming an area of higher or lower genomic divergence.

405 Different genotypes coding for identical phenotypes influence the dynamics of
406  genetic differentiation with time (Fig. 2a). Fst values across the whole genome ranged
407  between 0 and about 0.3. Interactions between the genotype-phenotype map and the
408  phenotype-demographic map influence the development of genetic differentiation
409  between populations. The black line in Fig. 2a represents a single founder population
410 with atypical, heterogeneous genomic landscape that has formed over 100

411 generations. There are areas of higher or lower genomic divergence between the two

412  populations, that appear seemingly randomly across the whole genome. The variance
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413  in Fst we observed within and acrossloci reveal that the genotype-phenotype map of
414  thefounder populations influences the patterns of genomic divergence.
415

416 Random sampling of founders and divergent selection

417  Genomic islands of divergence are, on average, more likely to be observed for genes
418 that contribute to a phenotypic trait that experiences divergent selection across the two
419  populations (black line, Fig 2b). The range of variance of Fst values was also higher
420  under divergent selection than under concordant selection (Fig. 2c). The values of Fst
421  acrossloci ranged between 0 and about 0.8, and this seemed to affect the average Fst
422  across non-selected loci (compare grey and black line, Fig. 2b). The same single

423  founder population illustrated in Fig 2a and 2c (black lines) provides an example of
424  where genomic islands form at some linked loci experiencing divergent selection. A
425  single high island of genomic divergence did not emerge at unselected loci. Dueto the
426 large variation between simulations, divergent selection did not necessarily generate
427  islands of genomic divergence at loci under selection (grey lines, Fig. 2c).

428

429  Levels of heterozygosity in the founder population

430 Asthe variance of heterozygosity in the founder population increases, so too does the
431 variancein Fst across the genome after 100 generations of independent evolution

432  (Fig. 2d). This variance reflects an increase in Fst of loci not under selection. Fst at
433  theseloci can be aslarge as for genes under direct selection. This result reveals that
434  the appearance of a pattern of genomic islands at early stages of differentiation can be
435  caused by the genetic variation at specific loci in the founder populations.

436

437  Genomic linkage

438  We ran simulations with the same founder population and parameter values used to
439  generate the black linein Fig. 2c that resulted in an island of genomic divergence,
440  except now we varied the recombination rate (¢) among linked selected genes. The
441  average Fst of those linked genes was much higher with nearly complete levels of
442  linkage (0 < 0.02), but tended to the average value of neutral genes when the

443  recombination rate was higher, even when they were still physically linked (compare
444  Fig. 2eand Fig. 2b). These results show that strong linkage may facilitate the

445  appearance of genomic islands when those genes are affected by divergent selection,

446  evenin the absence of gene flow. Extreme genomic linkage therefore tends to
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447  increase the Fst value of genes under selection. The combined effect of divergent
448  selection and linkage is consequently important for the development of genomic
449  islands of larger sizes.

450

451  Srong selection at a single, unlinked locus:

452  The previous simulations revealed that divergent selection on linked selected loci

453  could sometime result in islands of genomic divergence. We therefore next considered
454  afounder population in which an island of genomic divergence formed (Fig. 2c), yet
455  dtered the genotype-phenotype map such that one independent locus (6 = 0.5)

456  contributed disproportionately to the phenotypic value. This locus resulted in alevel
457  of Fst of more than twice that observed elsewhere in the genome, including on linked
458  selected genes (Fig. 2f). This result reveals that patterns of genomic divergence are
459  not necessarily determined by strongly linked genes of similar effect, but can also
460 emerge when one gene of large effect is linked to other markers.

461

462  Time since divergence with and without gene flow

463  We extended our 50 previous simulations of “random sampling of founders and

464  divergent selection” by running them for longer (100 to 2,000 generations). Without
465  geneflow, the trend of higher genomic differentiation in selected loci, particularly in
466  genesthat arelinked, is more evident at early stages of divergence (100 generations,
467  Fig. 3a8). Thelength of time that independent evolution has to act influences genome-
468  wide divergence, masking signals of genomic islands that arise from single or linked
469 loci. The pattern of heterogeneous genomic differentiation is therefore less evident
470  andtends to disappear as the numbers of generations since divergence without gene
471  flow increases (2,000 generations, Fig. 3a).

472 In our simulations, populations differentiate with time even in the absence of
473  divergent selection, when both populations have equal phenotypic optima under

474  concordant selection (Fig 2b). Thisis because there are many ways to generate the
475  same additive phenotypic trait value. The time sinceinitial divergence increases the
476 likelihood of generating these different outcomes (Fig 3a), therefore with enough
477  generations of isolated reproduction, populations can still be highly differentiated
478  even when they are exposed to the same fitness peak.

479

480  Linkage and gene flow
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481  All previous simulations were performed in the absence of gene flow. Gene flow

482  increases the number of generations over which genomic islands of divergence are
483  apparent. The genomic islands of higher Fst are still present after 2,000 generations,
484  when performing the same simulations as in figure 3a, but allowing alevel of

485  migration between populations (m= 0.01, Fig. 3b). However, asthe level of gene
486  flow increases, the prevalence of islands of genomic divergence decreases (see the
487  zerovaluesin Fig. 3c).

488 We performed the ssimulations of divergent selection using the same 50

489  founder populations (Fig. 2a and 2c), while varying both the migration rate between
490  populations and the recombination rate anong linked loci. The numbers inside the
491  grey sguaresin Fig. 3c indicate the magnitude of difference between independent
492  neutra loci (i.e. genomic background) and linked selected loci (i.e. genomic islands).
493  Thelargest differences were present under conditions with extreme linkage (6 < 0.04)
494  and alow migration rate (m < 0.02), and ranged from 0.1 to 0.2. Those differences are
495  negligible under concordant selection (Fig S2). Overall, these results show that gene
496  flow may influence the persistence of genomic islands but is not the only factor

497  determining their emergence.

498

499  Discussion

500 Genomic islands of divergence

501 The application of our quantitative framework to model the generation of genomic
502 islands of divergence has revealed that while there are several routes that can result in
503  genomic islands, the conditions required to generate islands are relatively narrow, and
504  importantly, thereis no single set of circumstances that guarantee their emergence.
505  For instance, formation of large genomic islands requires a combination of divergent
506  selection and strong linkage, regardless of the gene flow scenario. In contrast smaller
507  genomic islands can form viadrift in the early stages of divergencein particular.

508 However, in both cases, genomic islands can also fail to form even when these

509 conditions are met, because outcomes are highly dependent on the initial genetic

510 composition of the diverging populations. Our simulations suggest that genomic

511 islandsare most obvious during the early stages of divergence, and tend to disappear
512  with the accumulation of genome-wide divergence over time. If present, gene flow
513  canslow thislossup to apoint, however including gene flow is not necessary to

514  explain genomic island formation. The importance of evolutionary processes that
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515  were modelled (divergent selection, drift, gene flow), along with influencing factors
516  of initial genetic composition, degree of genetic linkage, and time since divergence
517 aresummarised in Figure 4. The modelling approach used has provided a nuanced
518 understanding of how genomic islands arise, yet it is not possible to confidently

519 interpret aparticular process from genomic data on its own, along-held goal of

520 genomic data analysis (Turner, Hahn & Nuzhdin 2005; Nosil 2008; Feder et al. 2013;
521  Seehausen et al. 2014; Nosil et al. 2017).

522

523 Initial genetic composition and drift influence the gener ation of genomic islands

524  Our model revealed two ways that random effects can influence the formation of
525 genomicislands of divergence. First, a previously unappreciated but critical factor
526  influencing their generation was the genetic composition of the initial populations.
527  Thiswas evident from comparison of simulations with identical parameter values but
528 different starting populationsi.e. different genetic composition. In some simulations,
529  genomic islands were generated and in others they failed to form. Furthermore, the
530 starting values influenced island appearance even in regions of the genome that were
531 notinfluenced by selection, linkage or gene flow — all of which are thought to be
532 important in genomic island formation as discussed below (Feder et al. 2013;

533  Flaxman, Feder & Nosil 2013). Second, drift alone could generate a pattern of

534  numerousislands of small size particularly in the early stages of divergence. Recent
535  studies exploring the distribution of genomic islands have also advanced the idea that
536 islandsarise from neutral processes without a magor contribution from divergent

537  selection (Campagnaet al. 2015; Wang et al. 2016) and the results of our model

538 identify the scenarios wherethisis particularly likely to be the case. Some studies
539  document asmall number of very prominent islands (e.g. Turner, Hahn & Nuzhdin
540  2005; Wang et al. 2016), however finding multiple islands of low relief is also

541 common (e.g. Ellegren et al. 2012; Ruegg et al. 2014, Soria-Carrasco et al. 2014;
542  Feulner et al. 2015). Furthermore, comparisons often involve recently diverged

543  populations (e.g. Nadeau et al. 2012; Via2012; Ruegg €t al. 2014), with some

544  divergence timescales as short as 100 generations (e.g. Marques et al. 2016). Our
545  modelling suggests that these patterns and types of comparisons could be explained
546  without recourse to explanations that invoke selection.

547 Another scenario that may be particularly prone to stochastic effects is where

548  one of the diverging populations experiences a geographic expansion. Klopfstein,
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549  Currat and Excoffier (2006) suggest that the effect of drift is stronger in expanding
550  populations because of “allelic surfing”, where aleles that happen to be at the

551  expansion front may incidentally increase in frequency (see Hofer, Foll & Excoffier
552  2012; Excoffier, Quilodran & Currat 2014). This, in turn, impacts genetic

553  composition, and if occurring very early during the divergence process, the

554  combination of early differencesin genetic composition and drift could generate
555  highly stochastic patterns of islands of divergence.

556 We have shown that populations diverge through time even under the equal
557  selective pressures of concordant selection. Indeed, highly polygenic traits may also
558  express divergence based on which alleles of the genes under selection in the founder
559  population end up increasing in frequency. Selection will tend to create shorter

560  coalescence times around those selected loci, meaning alower effective population
561 sizeand hence greater drift (Nordborg 1997). However, it should be noted that the
562  specification of the additive genotype-phenotype map we use means there are

563  multiple genotypes that will produce the same phenotypic value. This explains why
564  populations with identical selection regimes can diverge, with some developing

565 islands of genomic divergence, and others not. The nature of our genotype-phenotype
566  map inthe model could also underpin the influence of initial genetic composition on
567  our results. Future work will explore whether the same conclusions hold with

568  genotype-phenotype maps that do not assume small additive contributions to the
569  phenotype from genotypes at multiple loci. However, the genotype-phenotype map
570  we useiswidely assumed in quantitative genetics, and given that many traits are

571  highly polygenic, is an appropriate initial map to assume in simulations.

572
573  Linkage and divergent selection generate islands of divergence independent of gene
574 flow

575  Extreme linkage in combination with divergent selection was necessary, though not
576  sufficient, for the development of the most prominent genomic islands, regardless of
577  whether gene flow occurred or not. These findings are consistent with observations of
578  prominent genomic islands between populations presumed to be under strong

579  divergent selection, and not connected by gene flow (Burri et al. 2015; Zhang et al.
580  2017). The occurrence of candidate genes, hypothesised to be under natural selection,
581  associated with genomic islands of divergence also supports the role of selection

582  (Sousa& Hey 2013; Kusakabe et al. 2017). However, empirical results also provide
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examples where SNPs under selection are not associated with islands of divergence
(e.g. Ruegg et al. 2014; Han et al. 2017; Riesch et al. 2017).

The importance of linkage in the appearance of genomic islands has been
highlighted in both theoretical and empirical studies (Feder & Nosil 2010; Renaut et
al. 2013; Flaxman et al. 2014), with extreme linkage, such as that found near
centromeres or within genomic inversions, often associated with the maost prominent
genomic islands of divergence (Feder & Nosil 2009; Ellegren et al. 2012; Kawakami
et al. 2014). Selection acting in these zones of low rates of recombination (i.e. linked
selection) reduces the effective population size of these genomic regionsto a greater
degree than in the rest of the genomes, generating genomic islands (Feder & Nosil
2009; Turner & Hahn 2010).

We did not explore the effect of linkage on deleterious variants (i.e.
background selection) in our simulations. However, previous studies have shown that
selection on both adaptive and del eterious mutations has a similar effect of reducing
within population diversity (Nordborg, Charlesworth & Charlesworth 1996; Satkin &
Wiehe 1998), and influencing the formation of genomic islands (Cruickshank & Hahn
2014).

The effect of gene flow on gener ation and persistence of genomic islands

The ideathat genomic islands of divergence were generated primarily by antagonistic
effects of divergent selection and gene flow was a favoured explanation until recently
(Turner, Hahn & Nuzhdin 2005; Nosil 2008; Feder, Egan & Nosil 2012). According
to this mechanism, genomic islands form around selected loci involved with the
divergence process, and genes physically linked to them, while adjacent neutral or
weakly selected regions are homogenised by gene flow (Turner & Hahn 2010;
Flaxman, Feder & Nosil 2013; Kawakami et al. 2014). Our modelling provides
further support that the presence of gene flow is not an essential condition, however,
an additional insight is that when gene flow does occur, it can lengthen the time that
genomic islands are visible. Verbal models of changing genomic landscapes over time
predicted that genomic islands would disappear with the accumulation of genome-
wide divergence over time (Wu & Ting 2004; Nosil 2012; Nosil & Feder 2012).
Empirical support that thisisindeed the caseis provided from studies where genomic
islands are more frequently documented in recently diverged versus distantly related
taxa (e.g. Nadeau et al. 2012; Via 2012; Marques et al. 2016). Our results reveal that
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617  thisdynamic can be moderated by gene flow, where a limited amount of gene flow
618  servesto slow down the swamping of genomic islands over time, wheress large

619  amounts of gene flow tend to erase the pattern of islands of divergence altogether.
620

621 Limitations

622  Themain limitation of our simulation approach lies in the amount of genetic and

623  ecologica information required to parameterize it for afield system. Empirical

624  information is needed to identify fitness functions, specify the genotype-phenotype
625  map or estimate rates of migration. Model organisms with short generation time that
626  have been extensively studied in the past represent a source of datafor potential

627  application (e.g. Mackay 2014). For non-model organisms, applications may adapt the
628  parameter values from sister species for which information is available. This

629 limitation is expected to become less important in the future as the rapid accumulation
630  of freely available ecological and genomic datasets grow (Jones et al. 2008; Ellegren
631 2014). However, in the absence of sufficient information to parametrize afitness

632  function, thisframework is still useful to elucidate neutral evolution, which can be
633  simulated in the framework by replacing the fitness function with a random

634  distribution (e.g. Poisson) in order to generate the next generation of offspring (see
635 examplein Appendix S1). While mutation is not explored here, as we were mostly
636 interested in divergence a relatively early stages of evolution, its incorporation would
637  not likely change any of the patterns observed in this study (see example in Appendix
638  Sl).

639

640  Conclusions

641  We have developed a quantitative framework to explore the dynamics of genomic
642  landscapes and identify how various processes can generate patterns of divergence
643  between populations. Our work builds on previous insights (Charlesworth, Nordborg
644 & Charlesworth 1997; Feder & Nosil 2009; Flaxman, Feder & Nosil 2013; Akerman
645 & Burger 2014; Sedghifar, Brandvain & Ralph 2016). We have been able to

646  demonstrate that the formation of genomic islands of divergence isnot adeterministic
647  phenomenon, but that they can arise viaanumber of routes. We urge extreme caution
648 ininferring a particular ecological or evolutionary process when a particular genomic
649  pattern is observed. Narrowing down the potential cause of a particular signature will

650 likely require ancillary information beyond the genome sequence or modelling
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651  exercisesthat examine the processes that have the potential to generate such a pattern.
652  The methods described here provide a modelling framework which helps to depict
653  such signatures of past evolution, aswell as potential routes of future evolution for

654  any divergent taxa.

655
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821

Table 1. List of parameters of the model with default values

Symbol  Definition

Value'

Ni Number of individualsin population i

n. Number of loci

n, Number of additive loci

A Number of alleles at locus p

B, Breeding values of additive loci

mjj Migration rate of population i to population j
Opq Recombination rate between loci p and
by Maximum generated offspring

b, Phenotypic optima

b, Variance of the fitness curve

bs Density-dependent demographic effect
Oenv Stochagtic environmental variant

Odem Stochastic demographic variant

Initial size: N;=N,=400
300

50

20

[0.1]

[0,0.5]

[0,0.5)

Pl = P2 =6

P, =0.25; P,=0.75
Pl = P2 =05

P, =0.01; P, = 0.005
0.01

1

"P1and P2 refer to the value for population 1 and 2, respectively.

Hit may also represent a single average value for the whol e chromosome (see methods)
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828  Fig. 1. General description of the simulation framework. A) Main steps of the general

829  modelling approach. The red polygons represent the starting conditions. The orange
830 sguares arethe different computing steps on each generation. The green polygonisa
831 condition variable stating either the running of a next generation (blue square) or the
832  end of simulations (olive green circle). B) Relationship between genotypes,

833  phenotypes, and fitness. The genetic variation is represented in different colours. The
834  space between points represents unequal centiMorgan distances. C) Two different
835  fitness functions with different phenotypic optima. D) Example of population size
836  acrosstime.
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845 Fig. 2. Smulations of genetic differentiation between two simulated populations
846  without gene flow. a8) Random sampling of founders and concordant selection. The
847  grey lines represent the resulting genetic differentiation (Fst) on 50 comparisons with
848  different random sampling of founders. The black lineillustrates the resulting values
849 for asingle founder population. The grey squares on the horizontal axis represent
850 linkedloci (6 = 0.0001) and the black rectangles independent ones (4 = 0.5). The
851  dotted vertical lines delimit loci participating in the computation of phenotypes. b)
852  Mean divergence by loci on the 50 founder populations. The black and the grey lines
853  represent divergent selection and concordant selection, respectively. c) Random

854  sampling of founders and divergent selection. The grey lines and the black line

855  represent equal founder populations asin figure 2a, but adding divergent selection to
856 theanalysis. d) Levels of heterozygosity in the founder population. Influence of the
857  heterozygosity variance at the beginning of the simulations on the variance of Fst at
858 theend of the simulations. €) Genomic linkage. Effect of the strength of linkage on
859 theformation of agenomic island. Fst values are averaged over the 10 linked loci
860 influencing the computation of phenotypes and using the same starting conditions as
861 theblack linein Fig 2c. f) Strong selection at asingle, unlinked locus. A single

862  independent locus with a stronger additive effect on the computation of phenotypes
863  (*). All dataare presented after 100 generations of independent evolution.
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Fig. 3. Time since divergence and gene flow. @) Divergence without gene flow. The
grey squares on the horizontal axis represent linked loci (8 = 0.0001) and the black
rectangles unlinked ones (¢ = 0.5). The dotted vertical lines delimit the loci
participating in the computation of phenotypes. The coloured areas represent a
confidence interval at 95% of Fst values, estimated over 50 simulations with
randomly assigned genetic identity of individuals at the beginning of the divergence (t
= generations). b) Divergence with gene flow. Thisis similar to the previous figure,
but allows for gene flow between populations (m= 0.01). c) Linkage and gene flow.
Combined effect of migration rate and recombination rate on the magnitude of a
genomic island. The numbers inside the squares represent the difference between
mean Fst estimated at the 10 linked loci influencing the computation of phenotypes
(i.e. genomic island, positions 150 to 159) and 10 loci not related to fitness and
independent (i.e. genomic background, positions 90 to 99). These numbers represent
the average difference over the same starting conditions used to estimate the
confidence interval of Fig 3a. The datain this last figure are presented after 100
generations of divergent evolution.
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884  Fig 4. Factors influencing the patterns of genomic islands of divergence. Genomic
885 islands may emerge under the influence of linkage, divergent selection, an interaction
886  between these two factors, or drift depending upon theinitial genetic composition of
887  the starting populations (positive effects). Gene flow and time since divergence have
888  an effect on the persistence of islands once formed. Gene flow has an indirect effect
889 by interacting with factors influencing the emergence of this pattern. At early stages
890  of divergence, gene flow can lengthen the time that genomic islands are visible

891 (positive effect), but too high alevel of gene flow can erase genomic island patterns
892  (negative effect). The time since divergence has a negative effect on genomic islands,
893  which are more visible under earlier rather than later stages of genomic

894  differentiation.
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