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Abstract 11 

1. The way that organisms diverge into reproductively isolated species is a major question in 12 

biology. The recent accumulation of genomic data provides promising opportunities to 13 

understand the genomic landscape of divergence, which describes the distribution of 14 

differences across genomes. Genomic areas of unusually high differentiation have been called 15 

genomic islands of divergence. Their formation has been attributed to a variety of 16 

mechanisms, but a prominent hypothesis is that they result from divergent selection over a 17 

small portion of the genome, with surrounding areas homogenised by gene flow. Such islands 18 

have often been interpreted as being associated with divergence with gene flow. However 19 

other mechanisms related to genetic architecture and population history can also contribute to 20 

the formation of genomic islands of divergence.  21 

2. We currently lack a quantitative framework to examine the dynamics of genomic landscapes 22 

under the complex and nuanced conditions that are found in natural systems. Here, we 23 

develop an individual-based simulation to explore the dynamics of diverging genomes under 24 

various scenarios of gene flow, selection and genotype-phenotype maps.  25 

3. Our modelling results are consistent with empirical observations demonstrating the formation 26 

of genomic islands under genetic isolation. Importantly, we have quantified the range of 27 

conditions that produce genomic islands. We demonstrate that the initial level of genetic 28 

diversity, drift, time since divergence, linkage disequilibrium, strength of selection and gene 29 

flow are all important factors that can influence the formation of genomic islands. Because the 30 

accumulation of genomic differentiation over time tends to erode the signal of genomic 31 

islands, genomic islands are more likely to be observed in recently divergent taxa, although 32 

not all recently diverged taxa will necessarily exhibit islands of genomic divergence. Gene 33 

flow primarily slows the swamping of islands of divergence with time.  34 

4. By using this framework, further studies may explore the relative influence of particular suites 35 

of events that contribute to the emergence of genomic islands under sympatric, parapatric and 36 

allopatric conditions. This approach represents a novel tool to explore quantitative 37 

expectations of the speciation process, and should prove useful in elucidating past and 38 

projecting future genomic evolution of any taxa. 39 

 40 

Keywords: Evolution, Genomic landscape, Individual based model, Island of genomic divergence.  41 

 42 

Introduction 43 

A major aim of evolutionary biology is to understand mechanisms associated with the 44 

divergence of organisms between populations and the emergence of new species. This 45 

motivated Charles Darwin and Alfred Wallace 160 years ago when they advanced the 46 

Theory of Natural Selection (Darwin & Wallace 1858). Since then, the increasing 47 

accumulation of genetic, genomic and computational tools has allowed a better 48 
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understanding of the genetic basis of the speciation process, resulting in the rise of a 49 

new era of evolutionary research (Hughes 2009; Chanderbali et al. 2016). Patterns of 50 

divergence at the level of the genome have been characterised for an increasing 51 

number of taxa, but the extent to which observed patterns are informative about 52 

evolutionary processes is actively debated (e.g. Ellegren et al. 2012; Renaut et al. 53 

2013; Ruegg et al. 2014; Burri et al. 2015). 54 

The genomic landscape of divergence describes the distribution of differences 55 

across the genomes of diverging organisms. The genome of a diverging taxon does 56 

not change uniformly, with some regions changing at higher rates than others 57 

(Seehausen et al. 2014; Ravinet et al. 2017). If a single process uniquely generates a 58 

particular divergence pattern, then identification of that pattern can confidently be 59 

interpreted as representing a particular evolutionary history. In contrast, if multiple 60 

processes can generate the same patterns of genomic divergence, then identification of 61 

the pattern will not point to a specific process, though the suite of candidate processes 62 

may be narrowed. In these cases, additional information beyond patterns of genomic 63 

divergence, such as the ecological and evolutionary context of a given divergence, 64 

will be required to understand patterns of evolutionary divergence.  65 

Genomic islands of divergence - highly differentiated regions of the genome 66 

that are surrounded by regions of low differentiation - are a particularly intriguing 67 

pattern of genomic divergence (Turner, Hahn & Nuzhdin 2005; Harr 2006; Nosil, 68 

Funk & Ortiz‐Barrientos 2009). Initially, their formation was attributed to the action 69 

of divergent natural selection on particular loci, creating elevated regions containing 70 

the selected loci and other physically linked loci, surrounded by regions homogenised 71 

by gene flow (Wu 2001; Wu & Ting 2004; Nosil, Funk & Ortiz‐Barrientos 2009). 72 

Several authors consequently interpreted presence of genomic islands of divergence 73 

as a signal of divergence with gene flow (e.g. Feder et al. 2013), concluding that the 74 

speciation process in sympatric or parapatric conditions may be more common than 75 

previously thought (e.g. Nosil 2008; Fraïsse et al. 2014; Soria-Carrasco et al. 2014). 76 

However, empirical studies have also proposed that genomic islands of divergence 77 

can arise in the absence of gene flow due to a variety of causes, such as the 78 

architecture of the diverging genomes (e.g. variation in recombination rate) and the 79 

action of genetic drift, background selection, and adaptation to local environmental 80 

conditions (Noor & Bennett 2009; Cruickshank & Hahn 2014; Campagna et al. 2015). 81 
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Furthermore, regions of low divergence may occur because of incomplete lineage 82 

sorting rather than homogenisation by gene flow, with peaks of genetic divergence 83 

being an artefact of a loss of nucleotide diversity after divergent selection 84 

(Cruickshank & Hahn 2014).  85 

There have been some previous attempts to model the dynamic of the 86 

architecture of genomic landscapes that can be applied to the formation of genomic 87 

islands of divergence. However, these models either simulate single bi-allelic selected 88 

loci (Charlesworth, Nordborg & Charlesworth 1997; Sedghifar, Brandvain & Ralph 89 

2016) or consider a small number of simulated loci (Feder & Nosil 2009; Feder & 90 

Nosil 2010; Feder et al. 2012). They also provide a static view of the divergence 91 

process by summarizing selection as a single parameter. While informative, such 92 

models represent specific stages when populations have already achieved a given 93 

level of differentiation. Flaxman, Feder and Nosil (2013) used an individual-based 94 

model to project this dynamic forward in time, but their model was constrained to a 95 

uniform distribution of loci with constant recombination rates. A quantitative and 96 

more flexible framework than previous attempts is thus required to evaluate the 97 

dynamics of genomic landscapes, and increase the utility of accumulated genomic 98 

datasets (Feder et al. 2013; Seehausen et al. 2014). We develop a quantitative 99 

individual-based modelling approach to simulate the dynamic of a genomic landscape 100 

of divergence. The model simulates any number of loci and allelic polymorphisms 101 

and can be theoretically motivated or parameterised using data. A major difference 102 

between our approach and previous simulations is the treatment of the fitness 103 

function, which is compatible with many structured ecological and evolutionary 104 

models. Our approach is highly flexible and can be constructed for any genotype-105 

phenotype map and any configuration of recombination rates between neighbouring 106 

loci, can be constructed for deterministic and stochastic environments, and 107 

incorporates any desired system of mating. The simulation method presented here 108 

provides a flexible framework to examine the dynamics of diverging genomic 109 

landscapes under various scenarios of gene flow and selection on single genes or 110 

networks of multiple interacting genes. Our approach represents a novel tool to 111 

evaluate quantitative expectations in genomic landscapes. It is useful to elucidate the 112 

influence of a range of demographic and evolutionary scenarios, including divergence 113 

with or without gene flow, the divergence timeframe, and the architecture of target 114 

genomes.  115 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/673483doi: bioRxiv preprint 

https://doi.org/10.1101/673483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 116 

Methods 117 

General description of the model 118 

The purpose of our model is to provide insight into how a range of genetic and 119 

demographic processes can generate genomic signatures and patterns of genomic 120 

divergence between populations. Our primary motivation was to explore factors 121 

associated with the emergence of genomic islands of divergence, but our approach 122 

can be applied to many questions about genetic architectures, genomic landscapes, 123 

and the evolution of divergent organisms.  124 

The model is individual-based and consists of two populations that may or 125 

may not be linked by gene-flow. Our model is composed of three hierarchical levels: 126 

genotypes, phenotypic traits, and demographic rates. The dynamics of the 127 

populations, the distributions of genotypes at each locus and the phenotypic traits, are 128 

all emergent properties of the model. The model tracks the multivariate distribution of 129 

multi-locus genotypes and phenotypes. We simulate individuals that are characterised 130 

by sex and genetic identity (Fig. 1a). The genotype and the environment determine the 131 

phenotypic trait values of an individual via a genotype-phenotype map. The 132 

phenotypic trait values influence an individual’s expected demography (i.e. survival, 133 

mate choice, and reproductive success). For example, assuming a per generation time 134 

step, the potential number of offspring produced by each individual depends on its 135 

phenotype ω = f (z) , which in turn depends on the individual genotype and on the 136 

environment z = g(G, E) (Fig. 1b). G is a numeric value determined by an 137 

individual’s genotype, representing the genetic value of the genotype.  In the case of 138 

an additive genetic map, the genetic value of a genotype will be a breeding value. E 139 

represents the effect of the environment on phenotypic expression, and this allows us 140 

to capture the effects of plasticity on phenotypic expression. The environmental effect 141 

is important when simulating real-life eco-evolutionary dynamics because it almost 142 

always interacts with the genotype to determine the expression of a phenotypic trait 143 

(Bradshaw 1965; Kokko et al. 2017). The realized demography is obtained by 144 

sampling from a distribution whose expected value is the expected demography. Once 145 

mating pairs are formed, the genotype of the young is determined by merging haploid 146 

gametes produced by each parent. Genetic variation of the offspring is determined by 147 

recombination and mutation.  148 
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We describe how the model is implemented in the next section. Our starting 149 

point is the distribution of individuals classified by genotype, sex and population (Fig. 150 

1a). First, we generate the phenotypic trait of each individual given its genotype (and 151 

potentially the environment). Second, we calculate individual fitness given an 152 

individual’s phenotype, the population it is in, and potentially the environment. 153 

Mating pairs are formed based on these individual fitness scores. Parental gametes are 154 

then produced given recombination and mutation rates, before segregating within 155 

mating pairs to generate offspring genotypes. The offspring can disperse to the 156 

neighbouring population with a given probability. The loop is then repeated for the 157 

next offspring generation. 158 

 159 

Individual based framework 160 

We assume organisms are diploid and composed of males and females. Each 161 

individual i is characterized by a two-dimensional array that represents a pair of 162 

homologous chromosomes. Multiple pairs of arrays may also be constructed to allow 163 

the characterisation of any number of chromosomes. Similarly, variation in the 164 

number of dimensions of the arrays may be introduced to extend this framework to 165 

haploid or polyploid organisms. Each element of the array is an integer defining the 166 

copy of a given allele at a given locus. Individuals are also classified into populations. 167 

We assume random mating within a population, although this assumption can easily 168 

be relaxed (Schindler et al. 2015; Ellner, Childs & Rees 2016). Populations i and j are 169 

linked by migration rates (mij and mji) describing movement from population i to j and 170 

vice versa.  We assume that individuals that migrate and reproduce successfully pass 171 

their genes into the other population hence incorporating gene flow into the model. 172 

The genotype-phenotype and phenotype-demography map can differ between 173 

populations if required. 174 

The model proceeds in discrete time steps representing generations. It is a 175 

forward simulation that includes reproduction and migration at each time step. 176 

Density dependence regulates the population growth rate, influencing the probability 177 

of successful reproduction (Fig. 1a).  178 

The fitness of individuals is associated with a phenotype (z).  We only focus 179 

on an additive genetic genotype-phenotype map here, but maps including epistasis, 180 

pleiotropy and dominance are possible. In the additive case, the sum of values of 181 

alleles at each locus gives a breeding value (bv) for each individual at that locus. The 182 
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sum of breeding values across loci gives a breeding value for the phenotype. 183 

Therefore: 184 

 185 

 z = bv
v=1

na

∑ + εenv 0,σ env( )  (1) 186 

 187 

Where na is the number of additive loci. In our simulations, the environmental 188 

contribution ( ε
env

) is assumed to be stochastic and normally distributed, with mean 0 189 

and standard variation σenv. εenv
may also be dependent on population density or any 190 

other environmental driver (Coulson et al. 2017). 191 

The fitness function (ω) defines the phenotype-fitness map and consequently 192 

the type of selection influencing the divergence between populations. Once a 193 

population has colonized a novel area, new phenotype-environment interactions 194 

appear on the phenotype-demography map, shifting the distribution of phenotypes 195 

that are expected to have higher fitness (i.e. phenotypic optima). The difference in 196 

phenotypic optima between the populations drives the strength of “divergent 197 

selection” (grey area, Fig. 1c). Populations exposed to equal phenotypic optima are 198 

considered to be under “concordant selection”. The fitness function we use has the 199 

form:  200 

 201 

 ω = b0e
− 1

2
4 z−b1na

b2na

⎛

⎝⎜
⎞

⎠⎟

2

− b3N + εdem 0,σ dem( ) (2) 202 

 203 

The first part on the right-hand side of equation (2) is based on a Gaussian-204 

distribution determining the relation between the phenotypic trait value (z) and fitness 205 

(ω). The parameters b0, b1 and b2 define the maximum number of offspring produced, 206 

the phenotypic optima, and the variance of the Gaussian curve, respectively. The 207 

second part of equation (2) determines the intensity of density-dependence (b3) on the 208 

fitness of individuals that are members of a population of size N. The final part of the 209 

equation introduces a stochastic demographic variant with mean 0 and standard 210 

variation σdem. The last two parts of the equation thus determine the increasing or 211 

decreasing variation of fitness due to fluctuations in population size and demographic 212 

stochasticity. Any other form of fitness function could be introduced to account for 213 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 18, 2019. ; https://doi.org/10.1101/673483doi: bioRxiv preprint 

https://doi.org/10.1101/673483
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

specific relationships between phenotypes (e.g. weight, height, bill size, colour 214 

pattern) and the expected number of offspring produced.  215 

The number of breeding events is regulated by the number of females present 216 

in the population. Males are randomly selected according to the number of breeding 217 

females. The genotypes of both parents participate in the genetic architecture of their 218 

offspring by transmitting a haploid copy of genetic material. The offspring differs 219 

from the parents by carrying half of the genome of each parent and by specific rules 220 

defining the recombination rate (θ) between homologous chromosomes. We do not 221 

explore the effect of new mutations here, because we are primarily interested in the 222 

emergence of genomic islands at relative early stages of evolutionary diversification. 223 

However, mutation can easily be incorporated by generating a novel polymorphism at 224 

a random locus at a given rate per generation (see example in Appendix S1).  225 

The genetic variation of the new generation is determined by the 226 

recombination rate during the segregation of haploid gametes of each parent. 227 

Segregation starts with a randomly selected copy of a chromosome (i.e. one of the two 228 

dimensions of the individual array defining its genotypes). The recombination rate 229 

may either be a fixed value between neighbouring loci or may vary depending on 230 

position of the chromosome, for example, through the use of a randomly distributed 231 

Poisson process determining crossover points. In the first case, when a recombination 232 

map is available, a vector of nL-1 elements has to be supplied with the recombination 233 

rate (θ) between each pair of neighbouring loci. The probability of having a crossover 234 

(1) or not (0) is uniformly distributed at a rate defined by the value of θ between loci 235 

(i.e. positions with a probability smaller than θ recombine). The uniform distribution 236 

allows each position with the same values of θ to have an equal chance of crossover 237 

across all iterations. There is no recombination between homologous chromosomes 238 

when θ = 0, both loci are completely linked (e.g. within an inversion or situated close 239 

to centromeres), while with a value of θ = 0.5, the recombination rate is completely 240 

random (i.e. both loci are very distant on the same chromosome or are located on 241 

different chromosomes). A value of θ < 0.5 means the loci are physically linked. In 242 

the second case, a single average recombination rate for the whole chromosome or 243 

part of the genotype of interest has to be supplied, and the crossover points are 244 

selected by following a random distribution (e.g. exponential). This last method may 245 

be preferred when trying to fit a large dataset of genomic information with an 246 

unknown recombination rate between neighbouring loci (e.g. Single Nucleotide 247 
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Polymorphisms). Because we are primarily interested in the effects of various levels 248 

of linkage disequilibrium in the formation of islands of genomic divergence, we 249 

present results using the first approach, but an example with the second method is also 250 

shown in supporting information (Appendix S1). 251 

 The offspring represent individuals with the potential to reproduce in the next 252 

generation. We assume an equal sex ratio at birth and assign the sexes to offspring by 253 

sampling with replacement, with an equal probability of assignment to each sex. A 254 

weighted probability could be supplied when unequal sex ratios are considered in the 255 

simulations.  256 

The final step is the migration of offspring to neighbouring populations. The 257 

probability of migration of each individual is obtained from a uniform distribution, so 258 

each individual has the same expected probability of migration. The final number of 259 

individuals of population i dispersing to population j is defined by the migration rate 260 

mij. Individuals of i having migration probability smaller than mij move to population 261 

j. A value of mij = 0 means no migration and thus no gene flow between populations, 262 

while a value of 0.5 means random migration (and hence random reproduction) 263 

between them.  264 

The final number of individuals in population i at time t+1 can be estimated as 265 

the sum of fitness value of all females present in the population at time t ( N
t
i , f ) and 266 

the number of migrants from population j (males and females, Nt
jmji ): 267 

 Nt+1
i = ω l,t

l=1

Nt
i, f

∑ + Nt
jmji  (3) 268 

 269 

The model is implemented in R (R Development Core Team 2017), with some 270 

functions written in C++ and integrated to R by using the Rcpp package (Eddelbuettel 271 

et al. 2011). The script is available in the supporting information (appendix S1) and 272 

on GitHub (https://github.com/eriqande/gids), and is easily modifiable for further 273 

applications. Below we describe a number of simulations with different 274 

parameterizations to explore how the signatures of genomic divergence are generated 275 

by various processes. 276 

 277 

Initialization 278 
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We start by simulating how two populations of diploid individuals with equal intra-279 

genomic variation at the beginning of the simulations diverge. The migration rate 280 

between the two populations was varied across different simulations to explore 281 

divergence without gene flow (i.e. mij = 0) and divergence with gene flow (i.e. mij ≠ 282 

0). The demographic and genetic parameter values were chosen to describe two 283 

fitness functions that can either have identical or contrasting phenotypic optima, but 284 

with a similar number of individuals in each population during the simulation (Fig 1c, 285 

Fig 1d, Table 1).  286 

The mean population sizes of the two populations were always around 400 287 

(Fig 1d). This is also the initial number of individuals at the beginning of the 288 

simulations. The genomic architecture of individuals was characterized by genotypes 289 

across 300 loci (nL = 300), that were either strongly linked (θ = 0.0001) or completely 290 

unlinked (θ = 0.5). This range of linkage allows us to explore the dynamic of genomic 291 

landscapes across more contiguous or distantly related loci. Because previous 292 

simulations on the formation of genomic islands of divergence were restricted to bi-293 

allelic loci (e.g. Feder et al. 2012; Flaxman, Feder & Nosil 2013), we ran simulations 294 

with a higher number of alleles to allow for greater allelic variation (Table 1). The 295 

genomic identities of individuals were randomly assigned at the beginning of each 296 

simulation by setting the seed of the random number generator in R. 297 

 Fifty additive loci were chosen to have non-zero variation in allelic 298 

contributions to the phenotypic trait value. This fraction of loci is potentially subject 299 

to selection. By operating on the phenotype, selection changes the distribution of 300 

genotypes at each locus that contributes to the phenotype in the simulation. Loci not 301 

influencing phenotypes are neutral and were used to examine the effect of drift and 302 

linkage on the appearance of genomic islands. This allowed us to account for both 303 

adaptive and neutral evolution simultaneously. The phenotypes were always 304 

computed from 50 additive loci (na = 50), 10 of which were always linked. These 50 305 

additive loci contributed to the phenotypic trait values of individuals, with the 306 

additive value of each allele ranging between 0 and 1. The sum of additive values was 307 

then used to compute the phenotype, and then the fitness score, for each individual. 308 

However, further studies may expand this procedure to include any required 309 

genotype-phenotype map. In summary, we have four classes of genes: i) unlinked 310 

genes contributing to the phenotype; ii) linked genes where both loci contribute to the 311 

phenotype; iii) unlinked genes that do not contribute to the phenotype; and iv) linked 312 
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genes that do not contribute to the phenotype. The first two categories of genes are 313 

under selection, and the last two are not.      314 

 The number of mating pairs depends on the number of breeding females. 315 

Female reproductive success was determined first, before male mates were assigned 316 

to father each offspring. In this simulation we assumed random mating, although other 317 

mating patterns are possible (e.g. Schindler et al. 2015). Offspring sex was assigned 318 

randomly, with probability 0.5 (Table 1)  319 

 320 

Genomic divergence 321 

We measured pairwise FST at each locus to estimate genetic differentiation between 322 

populations. Fst is a widely used measure of heterogeneity across divergent genomes 323 

in studies of genomic islands of divergence (e.g. Ellegren et al. 2012; Kusakabe et al. 324 

2017).  We computed FST at each simulated locus using the R package “pegas” 325 

(Paradis 2010). Genetic differentiation averaged across multiple loci was calculated 326 

using the approach of Nei (1973), as implemented in the R package “mmod” (Winter 327 

2012). 328 

 329 

Simulations 330 

We conducted a number of simulation experiments using a wide suite of parameter 331 

values. These were designed to examine how various scenarios of linkage between 332 

loci, drift, selection, and time since divergence influence the formation of genomic 333 

islands of divergence in both the presence and absence of gene flow. Parameter values 334 

are presented in Table 1 and the supplementary information provides more details for 335 

the choice of each parameter set (Table S1). The first simulations characterise the 336 

effect of the founder population on the resulting genetic divergence (Fst) at an early 337 

stage of independent evolution (100 generations, mij = 0). We then explored in more 338 

detail, the effect of linkage, gene flow and time since initial divergence. Drift is 339 

included in all simulations through the group of genes that are not involved with the 340 

phenotype trait value, and through the random selection of gametes at birth. We 341 

assigned a name to each group of simulations and will briefly describe their structure.    342 

1. Random sampling of founders and concordant selection: these simulations 343 

were designed to examine how random sampling of the founder population influenced 344 

genomic divergence. Both populations were exposed to neutral evolution and 345 

concordant selection, with identical phenotypic optima (equal to population 1, Table 346 
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1). We ran 50 simulations with different random initial founder genotypes. Founder 347 

genotypes were determined by sampling a uniform distribution with replacement.   348 

2. Random sampling of founders and divergent selection: We considered the 349 

same 50 founder populations as before but added divergent selection. The selective 350 

pressures generating evolutionary divergence between populations were generated by 351 

their respective fitness functions. The amount of difference between phenotypic 352 

optima measures the strength of “divergent selection” (Fig 1c, Table 1).  353 

3. Levels of heterozygosity in the founder population: Our third set of 354 

simulations was designed to explore how variable levels of heterozygosity among 355 

founder populations influenced the variance of genomic divergence at the end of the 356 

simulation. The level of heterozygosity in the founder population was varied by 357 

sampling alleles at a locus with variable frequencies of replacement (see Table S1 for 358 

more information). The variable frequency of replacement represented the weighted 359 

probability of a random sampling with replacement among the 20 polymorphisms 360 

available for each locus. This ranged from 1 (an equal probability of allelic sampling 361 

and more heterozygous) to 100 (an unequal probability of allelic sampling and more 362 

homozygous). As this value becomes higher, it increases the probability for 363 

individuals to carry the same allele on both copies of their genes. Because linked loci 364 

are hypothesised to be more likely to be involved in the formation of genomic islands 365 

and we are analysing this factor separately, we excluded these loci in the final 366 

estimation of variability of genetic differentiation. 367 

4. Genomic linkage: Having characterised how initial conditions might 368 

influence results, we next examined the effect of linkage on the formation of islands 369 

of genomic divergence. We ran 100 simulations with equal founder populations, but 370 

changed the recombination rate between linked loci, ranging from nearly complete 371 

linkage (θ = 0.0001) to no linked loci (θ = 0.5).    372 

 5. Strong selection at a single, unlinked locus: We next explored the effect of 373 

strong selection on unlinked genes of large phenotypic effect. Fifty additive loci 374 

contributed to phenotypic expression, but one locus contributed 10 times more than 375 

the others. This means that rather than having multiple linked loci affecting the trait 376 

there is, in particular, one locus of very large effect that is unlinked to the other loci 377 

that influence phenotype. We considered the same founder population as in 4 378 

(genomic linkage).   379 
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 6. Time since divergence with and without gene flow: To explore how time 380 

since divergence influenced the formation of genomic islands, we ran simulations 381 

with the same 50 founder populations of our previous analysis “random sampling of 382 

founders and divergent selection”, but for different lengths of time: 100, 500, 1000 383 

and 2000 generations. We repeated these simulations in the presence (m = 0.01) and 384 

absence (m = 0) of gene flow.  385 

 7. Linkage and gene flow: Finally, we explored how linkage and gene flow 386 

combined to influence the formation of genomic islands. We simulated various rates 387 

of migration and recombination, using the same 50 founder populations as in 4 388 

(genomic linkage). We recorded average Fst at 10 linked loci affecting the expression 389 

of phenotypes (positions 150 to 159) and 10 independent loci not related to phenotype 390 

expression (positions 90 to 99). This allowed us to determine the magnitude of 391 

differentiation between regions of linked divergent selection and the genomic 392 

background of neutral evolution.       393 

 394 

Results 395 

Random sampling of founders and concordant selection 396 

Our first simulations explored the effect of initial conditions on divergence and the 397 

formation of genomic islands under equal selective pressures (i.e. concordant 398 

selection). The grey lines in Fig. 2a show the resulting Fst values for all 50 random 399 

initial populations. When considering the average Fst values by loci across the 50 400 

pairwise comparisons, linked genes that contribute to the phenotype have a slightly 401 

higher Fst than unlinked genes (grey line, Fig. 2b). However, independent of the type 402 

of loci (i.e. under selection or neutral), all positions have almost the same probability 403 

of becoming an area of higher or lower genomic divergence.  404 

Different genotypes coding for identical phenotypes influence the dynamics of 405 

genetic differentiation with time (Fig. 2a). Fst values across the whole genome ranged 406 

between 0 and about 0.3. Interactions between the genotype-phenotype map and the 407 

phenotype-demographic map influence the development of genetic differentiation 408 

between populations. The black line in Fig. 2a represents a single founder population 409 

with a typical, heterogeneous genomic landscape that has formed over 100 410 

generations. There are areas of higher or lower genomic divergence between the two 411 

populations, that appear seemingly randomly across the whole genome. The variance 412 
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in Fst we observed within and across loci reveal that the genotype-phenotype map of 413 

the founder populations influences the patterns of genomic divergence.  414 

 415 

Random sampling of founders and divergent selection 416 

Genomic islands of divergence are, on average, more likely to be observed for genes 417 

that contribute to a phenotypic trait that experiences divergent selection across the two 418 

populations (black line, Fig 2b). The range of variance of Fst values was also higher 419 

under divergent selection than under concordant selection (Fig. 2c). The values of Fst 420 

across loci ranged between 0 and about 0.8, and this seemed to affect the average Fst 421 

across non-selected loci (compare grey and black line, Fig. 2b). The same single 422 

founder population illustrated in Fig 2a and 2c (black lines) provides an example of 423 

where genomic islands form at some linked loci experiencing divergent selection. A 424 

single high island of genomic divergence did not emerge at unselected loci. Due to the 425 

large variation between simulations, divergent selection did not necessarily generate 426 

islands of genomic divergence at loci under selection (grey lines, Fig. 2c). 427 

 428 

Levels of heterozygosity in the founder population 429 

As the variance of heterozygosity in the founder population increases, so too does the 430 

variance in Fst across the genome after 100 generations of independent evolution 431 

(Fig. 2d). This variance reflects an increase in Fst of loci not under selection. Fst at 432 

these loci can be as large as for genes under direct selection. This result reveals that 433 

the appearance of a pattern of genomic islands at early stages of differentiation can be 434 

caused by the genetic variation at specific loci in the founder populations.  435 

 436 

Genomic linkage  437 

We ran simulations with the same founder population and parameter values used to 438 

generate the black line in Fig. 2c that resulted in an island of genomic divergence, 439 

except now we varied the recombination rate (θ) among linked selected genes. The 440 

average Fst of those linked genes was much higher with nearly complete levels of 441 

linkage (θ < 0.02), but tended to the average value of neutral genes when the 442 

recombination rate was higher, even when they were still physically linked (compare 443 

Fig. 2e and Fig. 2b). These results show that strong linkage may facilitate the 444 

appearance of genomic islands when those genes are affected by divergent selection, 445 

even in the absence of gene flow. Extreme genomic linkage therefore tends to 446 
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increase the Fst value of genes under selection. The combined effect of divergent 447 

selection and linkage is consequently important for the development of genomic 448 

islands of larger sizes.  449 

 450 

Strong selection at a single, unlinked locus:  451 

The previous simulations revealed that divergent selection on linked selected loci 452 

could sometime result in islands of genomic divergence. We therefore next considered 453 

a founder population in which an island of genomic divergence formed (Fig. 2c), yet 454 

altered the genotype-phenotype map such that one independent locus (θ = 0.5) 455 

contributed disproportionately to the phenotypic value. This locus resulted in a level 456 

of Fst of more than twice that observed elsewhere in the genome, including on linked 457 

selected genes (Fig. 2f). This result reveals that patterns of genomic divergence are 458 

not necessarily determined by strongly linked genes of similar effect, but can also 459 

emerge when one gene of large effect is linked to other markers.  460 

 461 

Time since divergence with and without gene flow  462 

We extended our 50 previous simulations of “random sampling of founders and 463 

divergent selection” by running them for longer (100 to 2,000 generations). Without 464 

gene flow, the trend of higher genomic differentiation in selected loci, particularly in 465 

genes that are linked, is more evident at early stages of divergence (100 generations, 466 

Fig. 3a). The length of time that independent evolution has to act influences genome-467 

wide divergence, masking signals of genomic islands that arise from single or linked 468 

loci. The pattern of heterogeneous genomic differentiation is therefore less evident 469 

and tends to disappear as the numbers of generations since divergence without gene 470 

flow increases (2,000 generations, Fig. 3a).  471 

In our simulations, populations differentiate with time even in the absence of 472 

divergent selection, when both populations have equal phenotypic optima under 473 

concordant selection (Fig 2b). This is because there are many ways to generate the 474 

same additive phenotypic trait value. The time since initial divergence increases the 475 

likelihood of generating these different outcomes (Fig 3a), therefore with enough 476 

generations of isolated reproduction, populations can still be highly differentiated 477 

even when they are exposed to the same fitness peak.  478 

 479 

Linkage and gene flow 480 
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All previous simulations were performed in the absence of gene flow. Gene flow 481 

increases the number of generations over which genomic islands of divergence are 482 

apparent. The genomic islands of higher Fst are still present after 2,000 generations, 483 

when performing the same simulations as in figure 3a, but allowing a level of 484 

migration between populations (m = 0.01, Fig. 3b). However, as the level of gene 485 

flow increases, the prevalence of islands of genomic divergence decreases (see the 486 

zero values in Fig. 3c). 487 

We performed the simulations of divergent selection using the same 50 488 

founder populations (Fig. 2a and 2c), while varying both the migration rate between 489 

populations and the recombination rate among linked loci. The numbers inside the 490 

grey squares in Fig. 3c indicate the magnitude of difference between independent 491 

neutral loci (i.e. genomic background) and linked selected loci (i.e. genomic islands). 492 

The largest differences were present under conditions with extreme linkage (θ < 0.04) 493 

and a low migration rate (m < 0.02), and ranged from 0.1 to 0.2. Those differences are 494 

negligible under concordant selection (Fig S2). Overall, these results show that gene 495 

flow may influence the persistence of genomic islands but is not the only factor 496 

determining their emergence.  497 

 498 

Discussion  499 

Genomic islands of divergence 500 

The application of our quantitative framework to model the generation of genomic 501 

islands of divergence has revealed that while there are several routes that can result in 502 

genomic islands, the conditions required to generate islands are relatively narrow, and 503 

importantly, there is no single set of circumstances that guarantee their emergence. 504 

For instance, formation of large genomic islands requires a combination of divergent 505 

selection and strong linkage, regardless of the gene flow scenario. In contrast smaller 506 

genomic islands can form via drift in the early stages of divergence in particular. 507 

However, in both cases, genomic islands can also fail to form even when these 508 

conditions are met, because outcomes are highly dependent on the initial genetic 509 

composition of the diverging populations. Our simulations suggest that genomic 510 

islands are most obvious during the early stages of divergence, and tend to disappear 511 

with the accumulation of genome-wide divergence over time. If present, gene flow 512 

can slow this loss up to a point, however including gene flow is not necessary to 513 

explain genomic island formation. The importance of evolutionary processes that 514 
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were modelled (divergent selection, drift, gene flow), along with influencing factors 515 

of initial genetic composition, degree of genetic linkage, and time since divergence 516 

are summarised in Figure 4. The modelling approach used has provided a nuanced 517 

understanding of how genomic islands arise, yet it is not possible to confidently 518 

interpret a particular process from genomic data on its own, a long-held goal of 519 

genomic data analysis (Turner, Hahn & Nuzhdin 2005; Nosil 2008; Feder et al. 2013; 520 

Seehausen et al. 2014; Nosil et al. 2017). 521 

 522 

Initial genetic composition and drift influence the generation of genomic islands 523 

Our model revealed two ways that random effects can influence the formation of 524 

genomic islands of divergence. First, a previously unappreciated but critical factor 525 

influencing their generation was the genetic composition of the initial populations. 526 

This was evident from comparison of simulations with identical parameter values but 527 

different starting populations i.e. different genetic composition. In some simulations, 528 

genomic islands were generated and in others they failed to form. Furthermore, the 529 

starting values influenced island appearance even in regions of the genome that were 530 

not influenced by selection, linkage or gene flow – all of which are thought to be 531 

important in genomic island formation as discussed below (Feder et al. 2013; 532 

Flaxman, Feder & Nosil 2013). Second, drift alone could generate a pattern of 533 

numerous islands of small size particularly in the early stages of divergence. Recent 534 

studies exploring the distribution of genomic islands have also advanced the idea that 535 

islands arise from neutral processes without a major contribution from divergent 536 

selection (Campagna et al. 2015; Wang et al. 2016) and the results of our model 537 

identify the scenarios where this is particularly likely to be the case. Some studies 538 

document a small number of very prominent islands (e.g. Turner, Hahn & Nuzhdin 539 

2005; Wang et al. 2016), however finding multiple islands of low relief is also 540 

common (e.g. Ellegren et al. 2012; Ruegg et al. 2014; Soria-Carrasco et al. 2014; 541 

Feulner et al. 2015). Furthermore, comparisons often involve recently diverged 542 

populations (e.g. Nadeau et al. 2012; Via 2012; Ruegg et al. 2014), with some 543 

divergence timescales as short as 100 generations (e.g. Marques et al. 2016).  Our 544 

modelling suggests that these patterns and types of comparisons could be explained 545 

without recourse to explanations that invoke selection.  546 

Another scenario that may be particularly prone to stochastic effects is where 547 

one of the diverging populations experiences a geographic expansion. Klopfstein, 548 
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Currat and Excoffier (2006) suggest that the effect of drift is stronger in expanding 549 

populations because of “allelic surfing”, where alleles that happen to be at the 550 

expansion front may incidentally increase in frequency (see Hofer, Foll & Excoffier 551 

2012; Excoffier, Quilodrán & Currat 2014). This, in turn, impacts genetic 552 

composition, and if occurring very early during the divergence process, the 553 

combination of early differences in genetic composition and drift could generate 554 

highly stochastic patterns of islands of divergence.  555 

We have shown that populations diverge through time even under the equal 556 

selective pressures of concordant selection. Indeed, highly polygenic traits may also 557 

express divergence based on which alleles of the genes under selection in the founder 558 

population end up increasing in frequency. Selection will tend to create shorter 559 

coalescence times around those selected loci, meaning a lower effective population 560 

size and hence greater drift (Nordborg 1997). However, it should be noted that the 561 

specification of the additive genotype-phenotype map we use means there are 562 

multiple genotypes that will produce the same phenotypic value. This explains why 563 

populations with identical selection regimes can diverge, with some developing 564 

islands of genomic divergence, and others not. The nature of our genotype-phenotype 565 

map in the model could also underpin the influence of initial genetic composition on 566 

our results. Future work will explore whether the same conclusions hold with 567 

genotype-phenotype maps that do not assume small additive contributions to the 568 

phenotype from genotypes at multiple loci. However, the genotype-phenotype map 569 

we use is widely assumed in quantitative genetics, and given that many traits are 570 

highly polygenic, is an appropriate initial map to assume in simulations. 571 

 572 

Linkage and divergent selection generate islands of divergence independent of gene 573 

flow  574 

Extreme linkage in combination with divergent selection was necessary, though not 575 

sufficient, for the development of the most prominent genomic islands, regardless of 576 

whether gene flow occurred or not. These findings are consistent with observations of 577 

prominent genomic islands between populations presumed to be under strong 578 

divergent selection, and not connected by gene flow (Burri et al. 2015; Zhang et al. 579 

2017). The occurrence of candidate genes, hypothesised to be under natural selection, 580 

associated with genomic islands of divergence also supports the role of selection 581 

(Sousa & Hey 2013; Kusakabe et al. 2017). However, empirical results also provide 582 
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examples where SNPs under selection are not associated with islands of divergence 583 

(e.g. Ruegg et al. 2014; Han et al. 2017; Riesch et al. 2017). 584 

The importance of linkage in the appearance of genomic islands has been 585 

highlighted in both theoretical and empirical studies (Feder & Nosil 2010; Renaut et 586 

al. 2013; Flaxman et al. 2014), with extreme linkage, such as that found near 587 

centromeres or within genomic inversions, often associated with the most prominent 588 

genomic islands of divergence (Feder & Nosil 2009; Ellegren et al. 2012; Kawakami 589 

et al. 2014). Selection acting in these zones of low rates of recombination (i.e. linked 590 

selection) reduces the effective population size of these genomic regions to a greater 591 

degree than in the rest of the genomes, generating genomic islands (Feder & Nosil 592 

2009; Turner & Hahn 2010).  593 

We did not explore the effect of linkage on deleterious variants (i.e. 594 

background selection) in our simulations. However, previous studies have shown that 595 

selection on both adaptive and deleterious mutations has a similar effect of reducing 596 

within population diversity (Nordborg, Charlesworth & Charlesworth 1996; Slatkin & 597 

Wiehe 1998), and influencing the formation of genomic islands (Cruickshank & Hahn 598 

2014).  599 

 600 

The effect of gene flow on generation and persistence of genomic islands  601 

The idea that genomic islands of divergence were generated primarily by antagonistic 602 

effects of divergent selection and gene flow was a favoured explanation until recently 603 

(Turner, Hahn & Nuzhdin 2005; Nosil 2008; Feder, Egan & Nosil 2012). According 604 

to this mechanism, genomic islands form around selected loci involved with the 605 

divergence process, and genes physically linked to them, while adjacent neutral or 606 

weakly selected regions are homogenised by gene flow (Turner & Hahn 2010; 607 

Flaxman, Feder & Nosil 2013; Kawakami et al. 2014). Our modelling provides 608 

further support that the presence of gene flow is not an essential condition, however, 609 

an additional insight is that when gene flow does occur, it can lengthen the time that 610 

genomic islands are visible. Verbal models of changing genomic landscapes over time 611 

predicted that genomic islands would disappear with the accumulation of genome-612 

wide divergence over time (Wu & Ting 2004; Nosil 2012; Nosil & Feder 2012).  613 

Empirical support that this is indeed the case is provided from studies where genomic 614 

islands are more frequently documented in recently diverged versus distantly related 615 

taxa (e.g. Nadeau et al. 2012; Via 2012; Marques et al. 2016). Our results reveal that 616 
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this dynamic can be moderated by gene flow, where a limited amount of gene flow 617 

serves to slow down the swamping of genomic islands over time, whereas large 618 

amounts of gene flow tend to erase the pattern of islands of divergence altogether.  619 

 620 

Limitations 621 

The main limitation of our simulation approach lies in the amount of genetic and 622 

ecological information required to parameterize it for a field system. Empirical 623 

information is needed to identify fitness functions, specify the genotype-phenotype 624 

map or estimate rates of migration. Model organisms with short generation time that 625 

have been extensively studied in the past represent a source of data for potential 626 

application (e.g. Mackay 2014). For non-model organisms, applications may adapt the 627 

parameter values from sister species for which information is available. This 628 

limitation is expected to become less important in the future as the rapid accumulation 629 

of freely available ecological and genomic datasets grow (Jones et al. 2008; Ellegren 630 

2014). However, in the absence of sufficient information to parametrize a fitness 631 

function, this framework is still useful to elucidate neutral evolution, which can be 632 

simulated in the framework by replacing the fitness function with a random 633 

distribution (e.g. Poisson) in order to generate the next generation of offspring (see 634 

example in Appendix S1). While mutation is not explored here, as we were mostly 635 

interested in divergence at relatively early stages of evolution, its incorporation would 636 

not likely change any of the patterns observed in this study (see example in Appendix 637 

S1).    638 

 639 

Conclusions 640 

We have developed a quantitative framework to explore the dynamics of genomic 641 

landscapes and identify how various processes can generate patterns of divergence 642 

between populations. Our work builds on previous insights (Charlesworth, Nordborg 643 

& Charlesworth 1997; Feder & Nosil 2009; Flaxman, Feder & Nosil 2013; Akerman 644 

& Bürger 2014; Sedghifar, Brandvain & Ralph 2016). We have been able to 645 

demonstrate that the formation of genomic islands of divergence is not a deterministic 646 

phenomenon, but that they can arise via a number of routes. We urge extreme caution 647 

in inferring a particular ecological or evolutionary process when a particular genomic 648 

pattern is observed. Narrowing down the potential cause of a particular signature will 649 

likely require ancillary information beyond the genome sequence or modelling 650 
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exercises that examine the processes that have the potential to generate such a pattern. 651 

The methods described here provide a modelling framework which helps to depict 652 

such signatures of past evolution, as well as potential routes of future evolution for 653 

any divergent taxa.  654 

 655 

 656 
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Table 1. List of parameters of the model with default values 820 

Symbol Definition Value† 
Ni Number of individuals in population i Initial size: N1=N2=400 
nL Number of loci 300 
na Number of additive loci 50 
Ap Number of alleles at locus p 20 
Bv Breeding values of additive loci [0,1] 
mij Migration rate of population i to population j [0,0.5] 
θpq Recombination rate between loci p and q [0,0.5]‡ 
b0 Maximum generated offspring P1 = P2 = 6 
b1 Phenotypic optima P1 = 0.25; P2 = 0.75 
b2 Variance of the fitness curve P1 = P2 = 0.5 
b3 Density-dependent demographic effect P1 =0.01; P2 = 0.005 
σenv Stochastic environmental variant 0.01 
σdem Stochastic demographic variant 1 
†
P1and P2 refer to the value for population 1 and 2, respectively. 821 

‡It may also represent a single average value for the whole chromosome (see methods) 822 
 823 
 824 
 825 
  826 
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 827 

Fig. 1. General description of the simulation framework. A) Main steps of the general 828 

modelling approach. The red polygons represent the starting conditions. The orange 829 

squares are the different computing steps on each generation. The green polygon is a 830 

condition variable stating either the running of a next generation (blue square) or the 831 

end of simulations (olive green circle). B) Relationship between genotypes, 832 

phenotypes, and fitness. The genetic variation is represented in different colours. The 833 

space between points represents unequal centiMorgan distances. C) Two different 834 

fitness functions with different phenotypic optima. D) Example of population size 835 

across time. 836 
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844 

Fig. 2. Simulations of genetic differentiation between two simulated populations 845 

without gene flow. a) Random sampling of founders and concordant selection. The 846 

grey lines represent the resulting genetic differentiation (Fst) on 50 comparisons with 847 

different random sampling of founders. The black line illustrates the resulting values 848 

for a single founder population. The grey squares on the horizontal axis represent 849 

linked loci (θ = 0.0001) and the black rectangles independent ones (θ = 0.5). The 850 

dotted vertical lines delimit loci participating in the computation of phenotypes. b) 851 

Mean divergence by loci on the 50 founder populations. The black and the grey lines 852 

represent divergent selection and concordant selection, respectively. c) Random 853 

sampling of founders and divergent selection. The grey lines and the black line 854 

represent equal founder populations as in figure 2a, but adding divergent selection to 855 

the analysis. d) Levels of heterozygosity in the founder population. Influence of the 856 

heterozygosity variance at the beginning of the simulations on the variance of Fst at 857 

the end of the simulations. e) Genomic linkage. Effect of the strength of linkage on 858 

the formation of a genomic island. Fst values are averaged over the 10 linked loci 859 

influencing the computation of phenotypes and using the same starting conditions as 860 

the black line in Fig 2c. f) Strong selection at a single, unlinked locus. A single 861 

independent locus with a stronger additive effect on the computation of phenotypes 862 

(*). All data are presented after 100 generations of independent evolution.    863 
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 864 

Fig. 3. Time since divergence and gene flow. a) Divergence without gene flow. The 865 

grey squares on the horizontal axis represent linked loci (θ = 0.0001) and the black 866 

rectangles unlinked ones (θ = 0.5). The dotted vertical lines delimit the loci 867 

participating in the computation of phenotypes. The coloured areas represent a 868 

confidence interval at 95% of Fst values, estimated over 50 simulations with 869 

randomly assigned genetic identity of individuals at the beginning of the divergence (t 870 

= generations). b) Divergence with gene flow. This is similar to the previous figure, 871 

but allows for gene flow between populations (m = 0.01). c) Linkage and gene flow. 872 

Combined effect of migration rate and recombination rate on the magnitude of a 873 

genomic island. The numbers inside the squares represent the difference between 874 

mean Fst estimated at the 10 linked loci influencing the computation of phenotypes 875 

(i.e. genomic island, positions 150 to 159) and 10 loci not related to fitness and 876 

independent (i.e. genomic background, positions 90 to 99). These numbers represent 877 

the average difference over the same starting conditions used to estimate the 878 

confidence interval of Fig 3a. The data in this last figure are presented after 100 879 

generations of divergent evolution. 880 
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 882 
 883 

Fig 4. Factors influencing the patterns of genomic islands of divergence. Genomic 884 

islands may emerge under the influence of linkage, divergent selection, an interaction 885 

between these two factors, or drift depending upon the initial genetic composition of 886 

the starting populations (positive effects). Gene flow and time since divergence have 887 

an effect on the persistence of islands once formed. Gene flow has an indirect effect 888 

by interacting with factors influencing the emergence of this pattern. At early stages 889 

of divergence, gene flow can lengthen the time that genomic islands are visible 890 

(positive effect), but too high a level of gene flow can erase genomic island patterns 891 

(negative effect). The time since divergence has a negative effect on genomic islands, 892 

which are more visible under earlier rather than later stages of genomic 893 

differentiation. 894 
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