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Invariance in ecological pattern

Steven A. Frank¹and Jordi Bascompte²

The abundance of different species in a community often follows the log series distribution. Other eco-
logical patterns also have simple forms. Why does the complexity and variability of ecological systems
reduce to such simplicity? Common answers include maximum entropy, neutrality, and convergent out-
come from different underlying biological processes. This article proposes a more general answer based
on the concept of invariance, the property by which a pattern remains the same after transformation.
Invariance has a long tradition in physics. For example, general relativity emphasizes the need for the
equations describing the laws of physics to have the same form in all frames of reference. By bringing
this unifying invariance approach into ecology, we show that the log series pattern dominates when
the consequences of processes acting on abundance are invariant to the addition or multiplication of
abundance by a constant. The lognormal pattern dominates when the processes acting on net species
growth rate obey rotational invariance (symmetry) with respect to the summing up of the individual
component processes. Recognizing how these invariances connect pattern to process leads to a syn-
thesis of previous approaches. First, invariance provides a simpler and more fundamental maximum
entropy derivation of the log series distribution. Second, invariance provides a simple derivation of the
key result from neutral theory: the log series at the metacommunity scale and a clearer form of the
skewed lognormal at the local community scale. The invariance expressions are easy to understand
because they uniquely describe the basic underlying components that shape pattern.

“It was Einstein who radically changed the way people
thought about nature, moving away from the mechan-
ical viewpoint of the nineteenth century toward the el-
egant contemplation of the underlying symmetry [in-
variance] principles of the laws of physics in the twen-
tieth century” (ref. 1, p. 153).

Introduction

Ecologists have been interested in species abun-
dance distributions (SADs) since the classic papers by
Fisher2 and Preston3. Two major patterns have been
identified depending on the size of the community. In
a large community, abundances often follow the log
series distribution4. Specifically, the probability that
a species has a population size of n individuals fol-
lows pn/n. Communities differ only in their average
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population size, described by the parameter, p. At
smaller spatial scales, the species abundance pattern
often follows a skewed lognormal (a random variable
is lognormally distributed when its logarithm is nor-
mally distributed)5,6.
It is intriguing that the species abundance distribu-

tion follows these simple patterns irrespective of the
particular group (birds, insects, mammals) and re-
gion considered. Other ecological patterns also fol-
low simple probability distributions7–9. Those pat-
terns have attracted a lot of attention. Why does the
variability and complexity of biology reduce to such
a small range of simple distributions? How can we
understand the relations between complex processes
and simple patterns?
Approaches such as Harte’s maximum entropy

formalism9 and Hubbell’s neutral theory5 have at-
tempted to explain the generality of the log series
and skewed lognormal patterns in species abundance
distributions. Maximum entropy describes probabil-
ity distributions that are maximally random subject
to satisfying certain constraints10–12. This approach
has a long tradition in physics, both in statistical me-
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chanics and information theory. An early maximum
entropy approach in ecology derived the biomass pat-
tern of populations13–15.
Neutral theory derives probability distributions by

assuming that all individuals are equivalent16. Varia-
tion arises by random processes acting on the mech-
anistically identical individuals. Put another way, the
mechanistic processes are “neutral” apart from ran-
dom processes. Both maximum entropy and neutral
theory have been shown to provide a good fit to the
empirical patterns of species abundance distributions.
In this article, we subsume these two different ways
of understanding the log series and skewed lognor-
mal patterns with a more general perspective based
on the concept of invariance17.
Invariance can be defined as the property by which

a system remains unchanged under some transforma-
tion. For example, a circle is the same (invariant) be-
fore and after rotation (Fig. 1a). In ecology, pattern
often depends on the ways in which form remains in-
variant to changes in measurement. Some patterns
retain the same form after uniformly stretching or
shrinking the scale of measurement (Fig. 2b). Mea-
sures of length provide a common example of stretch
invariance. One can measure lengths equivalently in
millimeters or centimeters without loss of informa-
tion. As we will see, that kind of invariance often de-
termines the form of observed pattern.
To give another example, consider the common

and widely familiar pattern of the normal distribu-
tion. By the central limit theorem, when indepen-
dent random variables are added, their properly nor-
malized sum tends toward a normal distribution,
even when the component variables themselves are
not normally distributed. The central limit theorem
and the normal distribution are often considered as
unique aspects of pattern that stand apart from other
commonly observed patterns.
The invariance perspective that we promote shows

how the normal distribution is in fact a specific exam-
ple of a wider framework in which to understand the
commonly observed patterns of nature. In particular,
the normal distribution arises from the rotational in-
variance of the circle18. For two variables, x and y,
with a given squared length, x2 + y2 = r2, all com-
binations of the variables with the same radius, r , lie
along the circumference of a circle (Fig. 1a). When

each combination is equally likely, the rotationally in-
variant radius is sufficient to describe the probability
pattern.
It is this rotational invariance that gives the partic-

ular mathematical form of the normal distribution, in
which the average squared radius sets the variance of
the distribution. By this perspective, the mathemati-
cal forms of all commonly observed distributional pat-
terns express their unique invariances18.
The perspective of invariance was the basis for most

of the great conceptual advances of physics in the
twentieth century1. For example, Gell-Mann’s pio-
neering theoretical work on the fundamental parti-
cles of nature derived from invariance (symmetry)
properties that unified understanding of known par-
ticles and predicted new particles such as quarks,
which were subsequently observed. By contrast, gen-
eral aspects of invariance have not been used con-
sistently as the fundamental basis for understanding
patterns in ecology. One exception concerns scale in-
variance, which is often discussed in ecology19–21.
But scale invariance is typically limited to special
kinds of patterns rather than forming a unified ap-
proach to diverse patterns.
The point of this paper is that invariance is the most

general way in which to understand commonly ob-
served patterns. Species abundance distributions pro-
vide an excellent illustration. For species abundances,
we show that maximum entropy and neutral models
can succeed in certain cases because they derive from
invariance principles. However, maximum entropy
and neutrality are often difficult to interpret because
they hide their underlying basis in invariance.
Our unifying invariance analysis clarifies why

seemingly different conceptual approaches have the
same consequences for pattern. Similarly, seemingly
different biological processes may often lead to the
same observed pattern, because those different pro-
cesses share a common basis in invariance. That
deeper understanding suggests a more insightful way
to think about alternative mechanistic models. It also
suggests the kinds of empirical tests that may differ-
entiate between alternative causal processes.
This manuscript is organized as follows. First, we

highlight new theoretical results for species abun-
dance distributions. Second, we review how in-
variance defines probability patterns in a general
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(c)
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Figure 1: Rotational and asymptotic invariance. (a) Transforming a circle by rotation leaves the circle unchanged (in-
variant), with an invariant radial distance at all points along the circumference. (b) Rotating regular polygons changes
pattern. However, as more rotated polygons are added, the form converges asymptotically to a rotationally invariant
circle, in which adding another rotated polygon does not change the pattern. Many common patterns of nature are
asymptotically invariant. In this case, aggregation causes loss of all information except invariant radial distance. (c) The
normal distribution is asymptotically invariant. The left curve describes an arbitrary probability pattern. The second
curve expresses the sum of two randomly chosen values from the first curve. The height is the relative probability of the
summed values. The third, fourth, and fifth curves express the sum of 4, 8, and 16 randomly chosen values from the first
curve. Each curve width is shrunk to match the first curve. In this case, aggregation smooths the curve, causing loss of
all information except the average squared distance from the center (the variance), which is equivalent to the average
squared radial distance of rotationally invariant circles. (d) Extreme value distributions are asymptotically invariant. The
left curve is an arbitrarily chosen probability pattern. The second curve expresses the probability of the largest value in
a sample of two randomly chosen values from the first curve. The third, fourth, and fifth curves show the probability
of the largest value of 4, 8, and 16 randomly chosen values. The asymptotically invariant curve on the right expresses
exponential scaling at small values and linear scaling at large values, labeled in green and blue. Commonly observed
probability distributions often express simple combinations of linear, logarithmic, and exponential scaling. Panels (a-c)
modified from ref. 17.

way18,22,23. The log series distribution24 and the
new gamma-lognormal distribution for species abun-
dances follow directly from the universal invariance
expression of probability patterns. Third, we show
that maximum entropy and neutrality can easily be
understood as special examples of invariance princi-
ples. Finally, we discuss the broad role of invariance
in the analysis of ecological pattern.

New results

This article develops two new theoretical results. We
highlight those results before starting on the general
overview of invariance and pattern.

First, we present a simple maximum entropy
derivation of the log series pattern. We show that con-
straining the average abundance per species is suffi-
cient when analyzing randomness and entropy on the
proper demographic scale.
The simplicity of our maximum entropy derivation

contrasts with Harte’s more complicated maximum
entropy model9,25. Harte had to assume an addi-
tional unnecessary constraint on energy usage. He
required that unnecessary constraint because he eval-
uated randomness on the scale of measured abun-
dances rather than on the scale of demographic pro-
cess. This will be made explicit below.
We use this new result to demonstrate that max-
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(a)

(b)

Figure 2: Shift and stretch invariance of the exponential distribution. (a) The left panel shows e−(x+a) fora = 0,−1 . . . ,−4.
Decreasing values of a shift the curve to the right, which is equivalent to shifting the x axis by resetting the zero point.
For probability patterns, the total probability must be normalized to one, which means that all curves must have the same
area under the curve for values of x between 0 and ∞. To normalize the curves, the right panel plots kae−(x+a) with
ka = ea . Thus, all curves become e−x invariantly with respect to different shift values, a. (b) The left panel shows e−bx

for b = 20, 2−1 . . . , 2−4. Decreasing values of b stretch the x axis by a factor of 2 for each halving of b. To normalize
the average value of each probability curve to be the same, the right panel shows e−λbbx for λb = 1/b. Thus, all curves
become e−x invariantly with respect to different stretch values, b.

imum entropy is the outcome of deeper underlying
principles of invariance and pattern. By working at
the deeper level of invariance, one obtains a simpler
and more powerful understanding of pattern.
The second new result shows that Hubbell’s5 neu-

tral model is the simple expression of three basic
invariances. Hubbell’s full range of log series and
skewed lognormal (zero summultinomial) results fol-
lows immediately from those three underlying invari-
ances.
The three invariances correspond to a maximum

entropy model that constrains the average abundance
of species and the average and variance of the demo-
graphic processes influencing abundance. The three
invariances lead to a simple gamma-lognormal dis-
tribution that matches the neutral theory pattern for
species abundances. The gamma-lognormal is a prod-
uct of the standard gamma and lognormal distribu-
tions.

Invariance

This section reviews how invariance considerations
lead to the log series distribution24. We delay discus-
sion of the gamma-lognormal until the later section

on Hubbell’s neutral model.

Canonical form of probability distributions

We can rewrite almost any probability distribution as

qz = ke
−λTz , (1)

in which T (z) ≡ Tz is a function of the variable, z,
and k and λ are constants. For example, Student’s
t-distribution, usually written as

qz = k
(
1 + z2/ν

)−(ν+1)/2
can be written in the form of eqn 1 with λ = (ν + 1)/2
and Tz = log

(
1 + z2/ν

)
.

The probability pattern, qz , is invariant to a con-
stant shift, Tz 7→ a + Tz , because we can write the
transformed probability pattern in eqn 1 as

qz = kae
−λ(a+Tz ) = ke−λTz ,

with k = kae
−λa (Fig. 2a). We express k in this way

because k adjusts to satisfy the constraint that the
total probability be one. In other words, conserved
total probability implies that the probability pattern
is shift invariant with respect to Tz (see ref. 18).
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Now consider the consequences if the average of
some value over the distribution qz is conserved. For
example, the average of z is the mean, µ, and the av-
erage of (z − µ)2 is the variance. A constraint causes
the probability pattern to be invariant to a multiplica-
tive stretching (or shrinking), Tz 7→ bTz , because

qz = ke
−λbbTz = ke−λTz ,

with λ = λbb (Fig. 2b). We specify λ in this way be-
cause λ adjusts to satisfy the constraint of conserved
average value. Thus, invariant average value implies
that the probability pattern is stretch invariant with
respect to Tz .
Conserved total probability and conserved average

value cause the probability pattern to be invariant to
an affine transformation of theTz scale,Tz 7→ a+bTz ,
in which “affine” means both shift and stretch.
The affine invariance of probability patterns with

respect toTz induces significant structure on the form
of Tz and the associated form of probability patterns.
Understanding that structure provides insight into
probability patterns and the processes that generate
them18,22,23.
In particular, Frank & Smith22 showed that the in-

variance of probability patterns to affine transforma-
tion,Tz 7→ a+bTz , implies thatTz satisfies the differ-
ential equation

dTz
dw
= α + βTz,

in whichw(z) is a function of the variable z. The solu-
tion of this differential equation expresses the scaling
of probability patterns in the generic form

Tz =
1
β

(
eβw − 1

)
, (2)

in which, because of the affine invariance of Tz , we
have added and multiplied by constants to obtain a
convenient form, with Tz → w as β → 0.
By writingTz in this way,w expresses a purely shift-

invariant aspect of the fundamental affine-invariant
scale, because the shift transformation w 7→ a + w

multipliesTz by a constant, and probability pattern is
invariant to constant multiplication ofTz . Thus, eqn 2
dissects the anatomy of a probability pattern (eqn 1)
into its component invariances.

With this expression forTz , we may write probabil-
ity patterns generically as

qz = ke
−λ(eβw−1)/β . (3)

This form has the advantage that w(z) expresses
the shift-invariant structure of a probability pattern.
Most of the commonly observed probability patterns
have a simple form for w 23,26. That simplicity of the
shift-invariant scale suggests that focus onw provides
insight into common patterns.

Proportional processes and species abundances

To understand the log series, wemust consider the re-
lation n = er between the observed pattern of abun-
dances, n, and the processes, r . Here, r represents
the total of all proportional processes acting on abun-
dance24.
A proportional process simply means that the num-

ber of individuals or entities affected by the pro-
cess increases in proportion to the number currently
present, n. Demographic processes, such as birth and
death, act proportionally.
The sum of all of the proportional processes on

abundance over some period of time is

r =

∫ τ

0
m(t)dt .

Here, m(t) is a proportional process acting at time t
to change abundance. Birth and death typically occur
as proportional processes. The value of r = logn is
the total of the m values over the total time, τ . For
simplicity, we assume n0 = 1.
The log series follows as a special case of the

generic probability pattern in eqn 3. To analyze abun-
dance, focus on the process scale by letting the vari-
able of interest be z ≡ r , with the key shift-invariant
scale as simply the process variable itself, w(r ) = r .
Then eqn 3 becomes

qrdr = ke−λ(e
βr−1)/β dr , (4)

in which qrdr is the probability of a process value, r ,
in the interval r + dr .
Using w(r ) = r sets the the shift-invariant scale as

the variable itself. Substituting this simplest form for
the shift-invariant scale into the canonical equation
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for common probability patterns in eqn 3 yields the
simplest generic expression of probability pattern as
eqn 4.
We can generalize the relation between abundance

and process, n = er , by writing nβ = eβr , which
uses an additional parameter β to allow comparison
with the canonical form of probability distributions in
the previous subsection. When we focus on standard
models of species abundances, we use β = 1.
We can change from the process scale, r , to the

abundance scale, n, by noting that β logn = βr , and
so, for any β , we have r = logn. Thus, we can use the
substitutions r 7→ logn and dr 7→ n−1dn in eqn 4,
yielding the identical probability pattern expressed
on the abundance scale

qndn = kn−1e−λ(n
β−1)/β dn. (5)

The value of k always adjusts to satisfy the constraint
of invariant total probability, and the value of λ al-
ways adjusts to satisfy the constraint of invariant av-
erage value.
For proportional processes and species abun-

dances, β = 1, as noted above. For that value of β ,
we obtain the log series distribution24

qn = kn
−1e−λn, (6)

replacing n − 1 by n in the exponential term which,
because of affine invariance, describe the same prob-
ability pattern. The log series is often written with
e−λ = p, and thus qn = kpn/n. One typically observes
discrete values n = 1, 2, . . . . See the Appendix for the
general relation between discrete and continuous dis-
tributions. The continuous analysis here is sufficient
to understand pattern.
We can also write the log series on the process

scale, r , from eqn 4, as24

qr = ke
−λer . (7)

This form shows that the log series is the simplest ex-
pression of generic probability patterns in eqn 3. The
log series arises from β = 1, associated with n = er ,
and from the base shift-invariant scale as w ≡ r for
proportional processes, r .

Invariances of the log series

This subsection summarizes a few technical points
about invariance. These technical points provide

background for our simpler and more general deriva-
tion in the following section of maximum entropy
models for species abundances. Those prior models
focused only on abundances, n, without considering
the underlying process scale, r .
We begin with invariance on the process scale, r .

On that scale, the log series in eqn 7 is the pure ex-
pression of additive shift invariance to r and lack of
multiplicative stretch invariance to r . For example,
note in eqn 7 that an additive change, r 7→ r + a, is
compensated by a change in λ to maintain the overall
invariance, whereas a multiplicative change, r 7→ br ,
cannot be compensated by a change in one of the con-
stants. For example, if r is net reproductive rate, then
an improvement in the environment that adds a con-
stant to everyone’s reproductive rate does not alter
the log series pattern. By contrast, multiplying repro-
ductive rates by a constant does alter pattern.
To understand the parameter, β , from eqn 2, con-

sider that

T =
1
β

(
eβr − 1

)
=

1
β

(
nβ − 1

)
,

in which β is the relative curvature of the measure-
ment scale for abundance, n, with respect to the scale
for process, r . The relative curvature is β = T ′′/T ′,
with the primes denoting differentiation with respect
to r .
For the log series, the curvature of β = 1 describes

the amount of bending of the abundance scale,n = er ,
with respect to multiplying the process scale, r , by a
constant—the departure from stretch invariance.
The simple invariances with respect to process, r ,

become distorted andmore difficult to interpret when
we focus only on the observed scale for abundance, n,
associated with the log series in eqn 6. In that form
of the distribution, the canonical scale is

T =
1
λ
logn + n. (8)

In this expression, purely in terms of abundances, the
logarithmic term dominates when n is small, and the
linear term dominates whenn is large. Thus, the scale
changes from stretch but not shift invariant at small
magnitudes to both shift and stretch invariant at large
magnitudes24.
Without the simple insight provided by the process
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scale, r , we are left with a complicated and nonintu-
itive pattern that is separated from its simple cause.
That difficulty has led to unnecessary complications
in maximum entropy theories of pattern.

Maximum entropy

Maximum entropy describes probability distributions
that are maximally random subject to satisfying cer-
tain constraints10–12. In eqn 1, with the generic de-
scription for distributions as

qzdz = ke−λTzdz,

maximum entropy interprets this form as the expres-
sion of maximum randomness with respect to the
scale z, subject to the constraint that the average of
Tz is fixed23.

This section begins with a maximum entropy
derivation for the log series based on our separation
between the scales of process, r , and observed abun-
dance, n.
We then discuss Harte’s9,25 alternative maximum

entropy derivation of the log series. Harte’s deriva-
tion emphasizes mechanistic aspects of energy con-
straints rather than our emphasis on the different
scales of process and abundance.

Constraint of average abundance on process scale

The log series in eqn 7 is

qrdr = ke−λe
r
dr .

Here, T = er = n. This distribution expresses max-
imum entropy with respect to the process scale, r .
The constraint is the ecological limitation on average
abundance

〈T 〉r = 〈e
r 〉r = 〈n〉r , (9)

in which 〈·〉r denotes average value with respect to
the process scale, r .
In this case, process values, r , are maximally ran-

dom, subject to the ecological constraint that limits
abundance, n. Thus, maximizing entropy with re-
spect to the process scale, r , subject to a constraint
on the observed pattern scale, n, leads immediately
to the log series.

Relating the process scale, r , to the scale of ecolog-
ical constraint, n, often makes sense. Typically, en-
vironmental perturbations associate with changes in
demographic variables, such as birth and death rates.
Such demographic factors typically act proportionally
on populations, consistent with our interpretation of
r as the aggregate of proportionally acting processes.
The perturbations, acting on demographic variables,
associate the process scale with the scale of random-
ness.
In contrast with the process scale of perturbation

and randomness for the demographic variables, the
scale of constraint naturally arises with respect to a
limit on the number of individuals, n. Thus, random-
ness happens on the r scale and constraint happens
on the n scale.
It is, of course, possible to formulate alternative

models in which randomness and constraint happen
on scales that differ from our interpretation. Different
formulations are not intrinsically correct or incorrect.
Instead, they express different assumptions about the
relations between process, randomness, and invari-
ance. The next section considers an alternative for-
mulation.

Harte’s joint constraints of abundance and energy

Harte developed comprehensive maximum entropy
models of ecological pattern. He tested those theories
with the available data. His work synthesizes many
aspects of ecological pattern9.
For species abundances, Harte9,25 analyzed maxi-

mum randomness with respect to the scale of abun-
dance values, n. Maximum entropy derivations com-
monly evaluate randomness on the same scale as the
observations. In this case, with observations for the
probabilities of abundances, pn , entropy on the same
scale is the sum or integral of −pn logpn .
However, there is no a priori reason to suppose that

the scale of observation is the same as the scale of
randomness. The fact that observation, randomness,
and process may occur on different scales oftenmakes
maximum entropymodels difficult to develop and dif-
ficult to interpret. For example, we may observe the
probabilities of abundances, pn , but randomness may
be maximized on the scale of process, as the sum or
integral of −pr logpr .
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In the final part of this section, we argue that invari-
ance provides a truer path to the natural scale of anal-
ysis and to the mechanistic processes that generate
pattern than does maximum entropy. Before compar-
ing invariance and maximum entropy, it is useful to
sketch the details of Harte’s maximum entropy model
for species abundances.
The simplest maximum entropy model analyzes

entropy with respect to abundance, n, subject to a
constraint on the average abundance, 〈n〉. That anal-
ysis yields an exponential distribution

qndn = ke−λndn.

The exponential pattern differs significantly from the
observed log series pattern. Thus, maximizing en-
tropy with respect to the scale of abundance, n, and
constraining the average abundance is not sufficient.
From our invariance perspective, it is natural to

think of the scale of randomness in terms of dr , the
scale of proportional processes, rather than in terms
of dn, the scale of abundance. Maximizing random-
ness with respect to dr leads directly to the log series,
as shown in the previous section.
Harte did not consider the distinction between the

exponential and log series patterns with respect to the
scale of randomness. Instead, to go from the default
exponential pattern of maximum entropy to the log
series, his maximum entropy analysis required addi-
tional assumptions. He proceeded in the following
way.
Suppose that the total quantity of some variable,

ϵ , is constrained to be constant over all individuals of
all species. The average value per individual is 〈ϵ〉. It
does not matter what the variable ϵ is. All that mat-
ters is that the constraint exists. Harte assumed that
ϵ is energy, but that assumption is unnecessary with
regard to the species abundance distribution.
The value ϵ is distributed over individuals indepen-

dently of their species identity. Thus, the variable
δ |n = nϵ is the total value in a species with n indi-
viduals, with average value 〈δ |n〉 = n〈ϵ〉.
The joint distribution of n and δ is

qn,δ = qnqδ |n .

The explicit form of this joint distribution can be ob-
tained by maximizing entropy subject to the con-
straints on the average abundance per species, 〈n〉,

and the average total value in a species with n indi-
viduals, 〈δ |n〉, yielding

qn,δ = ke
−λne−λ

′δ .

We obtain the form presented by Harte25 using the
equivalence δ = nϵ , yielding

qn,ϵ = ke
−λne−λ

′nϵ .

The species abundance distribution is obtained by

qn =

∫
qn,ϵdϵ = ke−λn

∫
e−λ

′nϵdϵ .

Noting that
∫
e−λ

′nϵ = 1/λ′n, and absorbing the con-
stant λ′ into k, we obtain the log series for the species
abundance distribution

qn = kn
−1e−λn .

Maximum entropy and invariance

Harte’s maximum entropy derivation of the log series
assumes joint constraints of abundance, n, and some
auxiliary variable, ϵ , which he labeled as energy. He
evaluated entropy on the scales of n and ϵ .
By contrast, our invariance derivation arises from

a constraint on abundance plus evaluation of invari-
ance or entropy on the scale r = logn. On that scale,
the log series arises in a simple and clear way. There is
no need for constraint of a second auxiliary variable.
Without an invariance argument, nothing compels

us to analyze with respect to the r scale. Harte, with-
out focus on invariance, followed the most natural ap-
proach of usingn as the scale for maximization of ran-
domness and for constraint. That approach required
an auxiliary constraint on a second scale to arrive at
the log series.
Harte’s approach was a major step in unifying the

analysis of empirical pattern. But, in retrospect, his
approach was unnecessarily complicated.
One might say that Harte’s approach provided a

richer theory because it led to predictions about both
abundance and energy. However, the data on abun-
dance patterns match very closely to the log series,
whereas the data for different proxies of energy vary
considerably9.
Our invariance approach strips away the unneces-

sary auxiliary variable. The invariance theory there-
fore provides a much simpler way to derive and to
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understand abundance patterns.
Maximum entropy can be thought of purely as a ba-

sic invariance method of analysis. Maximum entropy
distributions have the form in eqn 1 as

qzdz = ke−λTzdz,

in which Tz is the affine-invariant scale that defines
the probability pattern. Thus, the method of max-
imum entropy is simply a method for deriving the
affine-invariant expression,Tz . In practice, maximum
entropy has three limitations.
First, maximum entropy is silent with respect to the

proper choice for the scale on which entropy is maxi-
mized and the constraints that set the affine-invariant
expression, Tz . By contrast, focus on invariance led
us to the shift invariance of the process scale, r . That
scale provided a much simpler analysis, in which r is
the incremental scale with respect to invariance and
the measurement scale with respect to entropy.
In other words, maximum entropy is a blind appli-

cation of the most basic invariance principles, without
any guidance about the proper scales for invariance,
randomness, and constraint. By contrast, an explicit
invariance approach takes advantage of the insight
provided by the analysis of invariance.
Second, by focusing on invariance, we naturally ob-

tain the full invariance (symmetry) group expression
in eqn 3 as the generic form of probability patterns

qz = ke
−λ(eβw−1)/β .

That generic expression leads us to a generalization
of the log series in eqn 5 as24

qndn = kn−1e−λ(n
β−1)/β dn,

which is a two parameter distribution for abundances
with respect to λ and β . The log series is a special case
with β = 1.
Third, invariance leads to a deeper understanding

of the relation between observed pattern and alter-
native mechanistic models of process. The following
section provides an example.

Neutrality

Here, we analyze Hubbell’s5 neutral model of species
abundances in the light of our invariance perspective.

With that example in mind, we then discuss more
generally how neutral models relate to invariance and
maximum entropy.

Hubbell’s neutral model

The strong recent interest in Hubbell’s neutral model
follows from the match of the theory to the con-
trasting patterns of species abundance distributions
(SADs) that have been observed at different spatial
scales. In the theory, many local island-like communi-
ties are connected by migration into a broader meta-
community. Sufficiently large metacommunities fol-
low the log series pattern of species abundances. Each
local community follows a distribution that Hubbell
called the zero-sum multinomial27, which is similar
to a skewed lognormal. As noted by Rosindell et al.6,
it is this flexibility of the classic neutral model to rec-
oncile the log series and lognormal distributions that
allows it to fit empirical data well28.

Invariance and the gamma-lognormal distribution

Broad consensus suggests that species abundances
closely follow the log series pattern at large spatial
scales. Extensive data support that conclusion4.
Observed pattern at small spatial scales differs from

the log series. Consensus favors a skewed lognormal
pattern. The data typically show an excess of rare
species, causing a skew relative to the symmetry of
the lognormal when plotted on a logarithmic scale.
At small spatial scales, most recent analyses focus

on data from a single long-term study of tree species
in Panama5,27. Thus, some ambiguity remains about
the form and consistency of the actual pattern at small
scales.
The blue curve of Fig. 3 shows Chisholm and

Pacala’s27 fit of the neutral theory to the Panama tree
data for species abundances at small spatial scales.
The gold curve shows the close match to the neutral
theory pattern by a simple probability distribution de-
rived from the analysis of invariance.
To obtain the matching distribution derived by in-

variance, we begin with the canonical form for prob-
ability distributions in eqn 3. That canonical form ex-
presses pattern in terms of the shift-invariant scale,
w . Next, we need to find the specific form of the scale
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Figure 3: Match of the gamma-lognormal pattern in gold to the neutral theory fit in blue for Panama tree species abun-
dances. The neutral theory fit to the data comes from Chisholm and Pacala’s27 analysis in their Fig. 1. They used
Hubbell’s neutral theory model with parameters J = 21, 060, m = 0.075, and θ = 52.1 in their eqn 3, originally from
Alonso and McKane29. The gamma-lognormal model in eqn 11 produces essentially the identical pattern with parame-
ters λ = 0.00205, a = 0.491, and α = 0.0559. The abundance scale can be expressed equivalently on the process scale,
log2 n = r/log 2. See the Data accessibility statement for the calculations used to produce this plot.

w that relates this canonical form for probability dis-
tributions to the neutral theory. Because the neutral
theory derives abundance, n, as an outcome of demo-
graphic processes, r , the fundamental shift-invariant
scale for neutral theory is expressed in terms of the
demographic process variable as

w = log
(
er −

a

λ
r +

α

λ
r2

)
. (10)

Below, we discuss why this is a natural shift-invariant
scale for neutral theory. For now, we focus on the
details of the mathematical expressions. Recall that
n = er relates measured abundances, n, to the demo-
graphic process scale, r . If we assume that β = 1 in
eqn 3 and use w from eqn 10, we obtain

qr = ke
−λer+ar−αr 2, (11)

with parameters λ, a, and α . We can write this distri-
bution equivalently on the n scale for abundance as

qn = kn
ã−1e−λne−α (logn−µ)

2
. (12)

In the second distribution, µ = (a− ã)/2α . Thus, both
distributions have the same three parametric degrees
of freedom.
The right-hand exponential term of eqn 12 is a

lognormal distribution with parameters µ and σ 2 =

1/2α . The remaining terms are a gamma distribution
with parameters ã and λ. We call this product of the
gamma and lognormal forms the gamma-lognormal
distribution.
Figure 3 showed that the gamma-lognormal distri-

bution matches the neutral theory fit for the Panama
tree data. Fig. 4 shows that the shape of the gamma-
lognormal matches the shape of the neutral theory
predictions for various mechanistic parameters of the
neutral theory.
In summary, the neutral theory distribution ap-

pears to be nearly identical to a gamma-lognormal
distribution when compared over realistic parameter
values. Both distributions have the same three para-
metric degrees of freedom.

Maximum entropy and the gamma-lognormal

The constraints on pattern can be seen most clearly
by rewriting eqn 11 as

qr = ke
−λTr = ke−λe

r+ãr−α r̃ 2, (13)

in which r̃2 = (r − µ)2 is the squared deviation from
µ, in which µ is the average value of r . This expres-
sion remains a three-parameter distribution because,
as noted above, µ = (a − ã)/2α .
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Figure 4: Match of Hubbell’s neutral theory to the gamma-lognormal distribution. The blue curve for the neutral theory
and the gold curve for the gamma-lognormal are calculated as described in Fig. 3. The parameters for the neutral theory
are the same as in Fig. 3, except as shown in each panel. I fit the parameters for the gamma-lognormal to each neutral
theory curve, with values for each panel: (a) λ = 0.01115, a = 0.4452, and α = 0.03660; (b) λ = 0.0004209, a = 0.4622,
and α = 0.05014; (c) λ = 0.002765, a = 0.3182, and α = 0; (d) λ = 0.001777, a = 0.2217, and α = 0.03576; (e)
λ = 0.0001509, a = 0.3851, and α = 0.03667; (f) λ = 0.02519, a = 0.3726, and α = 0.006900. See the Data
accessibility statement for the calculations used to produce these plots.

With this set of parameters, the affine-invariant
scale is

Tr = er −
ã

λ
r +

α

λ
r̃2. (14)

Note thatT andw are related by eqn 2. We are using
w from eqn 10 and β = 1, as noted below eqn 10. We
ignore the extra −1 term in T of eqn 2, because the
canonical form of probability distributions is invari-
ant to adding a constant to T . The tilde parameters
of the distribution in eqn 13 are interchangeable with
the nontilde parameters of the identical distribution
in eqn 12. The tilde expressions focus on the invari-
ances that will help us to interpret ecological pattern.
The nontilde expressions describe pattern in terms of
the classic forms for the gamma and lognormal distri-
butions.
By the standard theory of maximum entropy, qr

maximizes entropy on the incremental scale dr sub-
ject to a constraint on the average value of the defin-
ing affine-invariant scale, 〈T 〉r . That constraint is the
linear combination of three constraints: the average
abundance on the process scale, 〈n = er 〉r , the aver-
age demographic process value, 〈r 〉, and the variance
in the demographic process values,

〈
r̃2

〉
.

By maximum entropy, all of the information in

Hubbell’s mechanistic process theory of neutrality
and the matching gamma-lognormal pattern reduces
to maximum randomness subject to these three con-
straints.
However, it is very unlikely that we would have

derived the correct form by maximum entropy with-
out knowing the answer in advance. This limitation
emphasizes that maximum entropy provides deep in-
sight into process and pattern, but often we need an
external theory to guide our choice among various
possible maximum entropy formulations.
Put another way, maximum entropy and process

oriented theories, such as Hubbell’s model, often
work together synergistically to provide deeper in-
sight than either approach alone.

Invariance, information and scale

Before turning to invariance and the gamma-
lognormal pattern of neutral theory, it is useful to
consider some basic properties of invariance and in-
formation30,31. In particular, this subsection develops
our claim that the affine-invariant scale provides the
deepest insights into the relations between pattern
and process.
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We start by noting that, in the general expression
for probability distributions

qz = ke
−λTz ,

the affine-invariant scale, Tz , is equivalent to a com-
mon expression for the information content in a mea-
surement, z, as

Iz = − logqz .

This expression follows from assuming that: infor-
mation depends on the probability, qz , of observing
the measured value and not on the value itself; rarely
observed values provide more information than com-
monly observed values; and the information in two
independent measurements is the sum of the infor-
mation in each measurement.
From the general expression for probability distri-

butions
Iz = − logqz = − logk + λTz .

Thus, an incremental change in information is equal
to an incremental change in the affine-invariant scale

dIz = −d logqz = λdTz .

Equivalently, the change in information with respect
to a change in the affine-invariant scale,

dIz
dTz
= λ, (15)

is constant at all magnitudes of the measurement, z.
Every measured increment on the Tz scale provides
the same amount of information about pattern. Con-
stancy of information at all magnitudes is the ideal
for a measurement scale. Thus, affine invariance pro-
vides the ideal scale on which to evaluate the pat-
tern in measurements23. Figure 5 illustrates some
key properties of the affine-invariant scale.
Information is sometimes thought of as a primary

concept. However, it is important to understand that,
in this context, information and affine invariance are
the same thing. Neither is intrinsically primary.
We prefer to emphasize invariance, because it is an

explicit description of the properties that pattern and
process must obey17,26,32. Further analysis of invari-
ant properties leads to deeper insight. For example,
only through invariance can we obtain the group the-
ory expression for the canonical form of probability

patterns (eqn 3).
By contrast, “information” is just a vague word that

associates with underlying invariances. Further anal-
ysis of information requires unwinding the definitions
to return to the basic invariances.

Invariance interpretation of the gamma-
lognormal

We turn now to the neutral theory model for abun-
dances at local spatial scales. We showed that all of
the information about pattern and process in the neu-
tral theory is captured by the gamma-lognormal pat-
tern in eqn 13 as

qr = ke
−λTr = ke−λe

r+ãr−α r̃ 2,

which defines the affine-invariant scale in eqn 14 as

λTr = λe
r − ãr + α r̃2. (16)

On this scale, changes in r provide the same amount
of information about pattern at all magnitudes. Shift-
ing the scale by a constant does not change the in-
formation about pattern in measurements. In other
words, it does not matter where we set the zero point
for Tr . Similarly, uniformly stretching or shrinking
the scale,Tr , does not change the information in mea-
surements of r .
We can parse the terms of eqn 16 with respect to

constraint and invariance. When r is large, the term
λer = λn dominates the shape of the distribution in
the upper tail, which decays as

qrdr = ke−λe
r
dr = ke−λndr

for sufficiently large er = n. The smaller the value
of λ relative to ã and α , the greater er must be for
this pattern to dominate. When λ is relatively large
compared with ã and α , this pattern dominates at all
magnitudes and leads to the log series.
With respect to constraint, for large values of abun-

dance, n, the constraint on average abundances domi-
nates the way in which altered process influences pat-
tern. With respect to invariance, a process that addi-
tively shifts or multiplicatively stretches the er = n

values does not alter the pattern in the upper tail.
Similarly, pattern is invariant to a process that addi-
tively shifts process values, r , but processes that mul-
tiplicatively change r alter pattern. Thus, we can eval-
uate the role of particular processes by considering
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(a) (b)

ke-λT

T ± T

〈T〉 T = σ2

Figure 5: Continuous probability distributions can often be expressed as exponential or normal distributions with respect
to the affine-invariant scale. A continuous distribution typically can be written as qz = ke−λTz , from eqn 1. In the figure,
T ≡ Tz . (a) A parametric plot of qz vsTz is exponential. All of differences between probability distributions are contained
in the form of the affine-invariant scale,Tz . The change in information for each increment of the affine-invariant scale is λ,
as in eqn 15. (b) A parametric plot of qz vs ±

√
Tz is normally distributed when describing the deviations from a unimodal

peak of qz . The average of the deviations on the affine-invariant scale, 〈T 〉, relative to measurements on the square root
of that scale,

√
Tz , is the variance, σ 2. For the normal distribution, we can think of a deviation from the central location

on the affine-invariant scale, Tz = R2
z , as the squared radial deviations along the circumference of a circle with radius Rz ,

describing the squared vector length for an aggregation of variables. The variance is the average of the squared radial
deviations relative to the scale of radial measures,

√
Tz = Rz . Most continuous unimodal distributions are, in this way,

equivalent to a normal distribution when scaled with respect to the square root of the affine-invariant measure. See refs.
17,18 for details.

how they change n or r .
The pattern at small and intermediate values of r

depends on the relative sizes of the parameters. If
the ãr term dominates, then the constraint, 〈r 〉, on
the average process value is most important. With
respect to invariance when ãr dominates, a process
that additively shifts or multiplicatively stretches the
r values does not alter the pattern in the lower tail.
That lower tail is a rising exponential shape, e ãr , as
in Fig. 4c.
When the α r̃2 term is negligible at all magnitudes,

the combination of the dominance by ãr in the lower
tail, and the dominance by λer in the upper tail,
yields the gamma distribution pattern on the abun-
dance scale, n.
Finally, for magnitudes of r at which the α r̃2 =

α(r − µ)2 term dominates, the constraint, σ 2 =〈
r − µ2

〉
, on the variance in process values is most im-

portant. In this case, pattern follows a normal distri-
bution, e−α (r−µ)

2
, on the r scale, which is a lognormal

distribution on the abundance scale, n.
When combining numerous process values to ob-

tain an overall net r value, approximate rotational in-
variance is sufficient for the pattern to be very close
to a perfect normal curve (see Introduction). When

measuring net squared deviations from the mean,
which is the squared radial distance, the pattern is in-
variant to shift and stretch of the squared radial mea-
sures, (r − µ)2.
In practice, the lognormal pattern of abundance

dominates when a constraint on r dominates and
net values of r obey rotational invariance (symme-
try) with respect to the summing up of the individual
processes acting on abundance.
Any theory of process that leads to those three ba-

sic invariances will follow the gamma-lognormal pat-
tern. The great unsolved puzzle is how specific mech-
anistic processes combine such that the structure of
pattern is fully expressed by these particular invari-
ances of pattern or, equivalently, by constraints on
the average values of certain quantities in the con-
text of maximum entropy. Our work opens the way
for a more direct attack on this great puzzle by clari-
fying the anatomy of a pattern, thereby clarifying the
puzzle that must be solved.
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The anatomy of pattern

[J]ust as the physiologist divides the animal
world, according to anatomy, into families
and classes, so the ornamentist is able to clas-
sify all pattern-work according to its struc-
ture [invariance]. Like the scientist, he is able
even to show the affinity between groups to all
appearance dissimilar; and, indeed, to point
out how few are the varieties of skeleton upon
which all this variety of effect is framed (ref.
33, pp. 3–4). . . . The fact of the matter is, the
characteristic lines of time-honoured patterns
are mainly the direct result of the restrictions
under which the craftsman was working (ref.
33, p. 47).

Invariances comprise the structural components in
the anatomy of pattern. Commonly observed patterns
almost always dissect completely into a few simple
invariances. Our primary goal has been to introduce
into ecological study the anatomy of pattern and the
methods of dissection.
Identifying and naming the parts does not tell one

how those parts came to be. In fact, common patterns
are widespread exactly because so many different un-
derlying mechanistic processes give rise to the same
simple invariances.
Roughly speaking, one can think of a common pat-

tern as an attractor. Each different underlying mech-
anistic process that develops into the generic form
traces a distinctive path from some starting point to
the generic endpoint of the attractor. All of the dif-
ferent mechanistic processes and starting points that
end up at the same attractor form the basin of attrac-
tion for that pattern.
Our work characterized the anatomy of pattern—

the anatomy of the attractors. The next step requires
understanding how various combinations of mech-
anistic processes lead to one attractor or another.
Equivalently, one can think of a mechanistic process
as something that transforms inputs into outputs34.
Three questions follow.
How do particular cascades of input-output trans-

formations ultimately combine to produce overall
transformations that associate with simple invari-
ances? What separates some cascades from others

with regard to association with different invariances?
In other words, how can we assign different mecha-
nistic cascades to one basin of attraction or another?
If we could answer those questions, then we could

predict whether different mechanistic processes lead
to the same pattern or to different patterns.
The fact that different processes can attract to

the same pattern has been widely discussed in ecol-
ogy27,35–43. However, that past work typically did
not explain common patterns in terms of invariance.
Without invariance, one does not have a basis for de-
scribing the anatomy of common patterns or the rea-
sons why certain processes attract to a particular pat-
tern and others do not.
Invariance may provide a way to compare differ-

ent models of process that lead to the same pattern.
Among the many complex component processes that
may occur in a model, which truly matter? In other
words, which component processes shape the defin-
ing invariances and which are irrelevant? For the fo-
cal component processes of each model that matter,
which empirical tests would tell us which of the alter-
native mechanistic models is the more likely match to
natural processes?

Conclusions

The apparent simplicity of invariance can mislead
about its ultimate power. For example, probability
patterns express a shift and stretch invariant scaling.
That affine-invariant scaling provides a constant mea-
sure of information at all magnitudes.
Shift and stretch invariance seem almost trivially

simple. Yet, by analyzing how repeated transforma-
tions of shift and stretch retain invariance, we obtain
the most general form that expresses various affine-
invariant scales (eqn 2). That affine symmetry group
defines the simple, general structure of probability
patterns and their uniform measurement scales.
Knowing the general invariant form of probability

patterns reveals the relations between different ap-
proaches. Invariance provides powerful methods to
analyze pattern and process.
To sum up, our invariance approach is not just an-

other one among various alternatives. Rather, it is
the only way to relate process to pattern, because
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the essence of pattern is invariance. Only by under-
standing what pattern actually is and how it generally
arises can one begin to formulate testable hypotheses
about mechanism.
Put another way, pattern is always the interaction

between, on the one hand, the generic aspects of in-
variance and scale that arise in all cases and, on the
other hand, the particular aspects of biology that op-
erate in each case. Without a clear view of that dual-
ity between the generic and the particular, it is easy
to mistakenly attribute generic aspects of observed
pattern to particular causes. To properly understand
the role of specific mechanistic aspects in shaping pat-
tern, one must evaluate pattern simultaneously from
the perspectives of the generic and the particular.
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Appendix

This appendix provides details of how to analyze
changes of variable and changes of scale in a con-
sistent way for discrete and continuous random vari-
ables. The material here was originally published
at https://doi.org/10.5281/zenodo.2597895 under
a CC-BY Creative Commons 4.0 license as a supple-
ment to ref. 24.
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Discrete and continuous probability distributions
are usually analyzed differently, which prevents a
general understanding of scale. These notes present
a technique by which a change of variable or a change
of scale can be done in a consistent way for both dis-
crete and continuous distributions44. The final sec-
tion relates discrete and continuous scales, illustrated
by the log series.
For example, suppose initial measurements are in

terms of abundance, n, and we wish to analyze the
data on the transformed logarithmic scale, r = logn.
How can we make the change of variable, n 7→ er ,
consistently for discrete and continuous cases?
The Dirac delta function provides the basis for a

consistent method. The next section introduces the
basic aspects and notation for the Dirac delta func-
tion. The following section shows how to use this
method to obtain a consistent approach for trans-
forming scale by change of variable. The final sec-
tions consider transformations between discrete and
continuous variables and the specification of the do-
mains of variables.

Dirac delta function

The Dirac delta function, δ , provides the key. The
function is defined such that∫ ϵ

−ϵ
δ (z)dz = 1

for any real value ϵ > 0. In other words, for any
region of integration containing 0, the integral of δ (z)
is one. Then we also have∫ z+ϵ

z−ϵ
f (x)δ (x − z)dx = f (z).

In other words, the integral picks out the function
evaluated at the point x = z, at which δ (x−z) = δ (0).
With that definition, we can write a discrete prob-

ability distribution at the set of points Ω = {xi } as a
continuous probability density function

f (x)
∑
xi ∈Ω

δ (x − xi ) = f (x)δx , (17)

because the cumulative distribution function, F (x), of
the continuous density, f (x)δx , has the form of a dis-
crete probability distribution

F (a) =

∫ a+ϵ

−∞

f (x)δxdx =
∑
xi ∈Ω

f (xi ),

in which xi < a+ϵ for an infinitesimal positive value,
ϵ . We need the extra ϵ so that δx integrates to one
around a point xi = a,
For continuous distributions, let the density of

points in Ω increase to fill the interval (−∞,∞) con-
tinuously. Then

δx =
∑
xi ∈Ω

δ (x − xi ) →

∫ ∞

−∞

δ (x − xi )dxi = 1,

because, whatever the value of x , there will be some
point xi ∈ Ω for which x = xi , and any integral over
the region including that point is one. With δx = 1,
the continuous probability density function is f (x),
and the cumulative distribution function is

F (a) =

∫ a+ϵ

−∞

f (x)dx =
∫ a

−∞

f (x)dx,

because
∫ a+ϵ
a f (x)dx = 0 for infinitesimal ϵ and finite

f (x).

Change of variable

We seek a consistent method for doing a change of
variable in both continuous and discrete probability
distributions. The approach arises from always con-
sidering the probability associated with a value as the
area of a rectangle.
For a continuous distributions, we write f (x)dx ,

which is the product of the probability function, f , as
the height, and the infinitesimal interval, dx , as the
width. Thus, the probability in the interval (a,a + ϵ),
with small width ϵ , is∫ a+ϵ

a
f (x)dx ≈ f (a)ϵ,

the product of the height, f (a), and the width, ϵ .
When we change variables, x 7→ д(x) ≡ y, we ob-
tain both a new height, f (y), and a new width, dy,
and so we must compensate appropriately, as shown
below.
For discrete distributions, we may write f (x)∆x ,

in which ∆x is the width associated with a discrete
point, x . Typically, we assume that ∆x = 1 for all
x , and write the discrete probability as f (x). We can
think of this as the area of a rectangle with implicit
width of one.
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When we change variables, x 7→ д(x) ≡ y, tradi-
tionally one keeps the interval widths, ∆y = 1, as one
on the new scale, y, and the probabilities are sim-
ply f (y) at the new points, y. However, by changing
scales, the spacing between the discrete points on the
y scale differs from the spacing between points on the
original x scale.
This change of spacing can be interpreted as a

change in the widths associated with discrete prob-
ability points, or as a change in the density of prob-
ability points in intervals along the y scale. Thus, as
in the continuous case, we may wish to keep track of
how both the heights change, f (x) 7→ f (y), and how
the widths change with a change of scale, ∆x 7→ ∆y.
Doing so provides a consistent way of changing vari-
ables for continuous and discrete cases.
We begin with the standard method for continuous

variables. We then demonstrate an analogousmethod
for discrete variables based on the Dirac delta func-
tion.
For a continuous distribution, f (x), we make the

change x 7→ д(x) ≡ y. With that transformation, we
have

dy/dx = д′(x).

Define
my =

1
|д′(x)|

,

in which the absolute value arises because we are us-
ing dx and dy as positive probability measures. Thus,

dx =mydy.

Then the standard result for the change of variable
x 7→ y in a continuous distribution yields

f (x)dx = f (y)mydy. (18)

For discrete distributions, we will derive the analo-
gous change of variable expression

f (x)δxdx = f (y)myδ
′
ydy = f (y)δydy. (19)

To obtain this result, we need to show that the change
of variable x 7→ д(x) ≡ y leads to

δxdx 7→myδ
′
ydy = δydy,

which follows if

δx 7→m−1y δy ≡ δ
′
y .

To obtain this expression for δ ′y , we need the general
change of variable rule for the Dirac delta function

δ (x − xi ) 7→ |д
′(xi )|δ [д(x) − д(xi )]

=m−1y δ (y − yi ).

Thus, with Ω′ = {д(xi )} = {yi }, we have

δx =
∑
xi ∈Ω

δ (x − xi ) 7→m−1y

∑
yi ∈Ω′

δ (y − yi ) =m
−1
y δy .

The gamma and log series distributions

The gamma distribution is given by the probability
function

f (x) = kxα−1e−λx ,

in which the constant k normalizes the total proba-
bility to be one. With α = 0 and x > x0 > 0 for x0
not too close to zero, this has the same mathematical
form as the log series distribution.
Consider the change in variable r = logx = д(x),

which corresponds to x 7→ er . Then,

|д′(x)| = d logx/dx = 1/x = e−r =m−1r .

If we consider f (x) as a continuous distribution, then
we can apply the formula for change of variable in
eqn 18 to obtain

f (x)dx = f (r )mrdr

= ker (α−1)e−λe
r
erdr

= kerα−λe
r
dr

= h(r )dr ,

in which
h(r ) = f (r )mr = ke

rα−λer , (20)

for r > logx0. For α = 0, transforming the log series
form

f (x) = kx−1e−λx

by r = logx yields the equivalent distribution on the
r scale as

h(r ) = ke−λe
r
. (21)

Now consider f (x) as a discrete distribution. Then,
by eqn 19, we immediately have

f (x)δxdx = f (r )mrδ
′
rdr = h(r )δ

′
rdr ,
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in which the full form of h(r ) is given in eqn 20, and
we also have the log series form with α = 0 in eqn 21.
Thus, by using the measure dr for the widths in the

continuous case and the measure δ ′rdr for the widths
in the discrete case, we obtain the identical probabil-
ity functionh(r ) for the continuous and discrete cases.
For the discrete case, we must keep in mind that

h(r )δ ′rdr = h(r )m
−1
r δrdr ,

in which the right side is the traditional expression
that picks out the probability mass, h(r )m−1r , as the
heights at the points defined by δrdr , implicitly us-
ing constant widths of one on all scales, because at a
discrete point, r ∗, at which the probability is nonzero,∫ r ∗+ϵ

r ∗−ϵ
δrdr = 1.

In the gamma example, m−1r = e−r , with x =

1, 2, . . . and r = log 1, log 2, . . . , we have the tra-
ditional expression for a discrete change of variable
with constant widths of one as

f (x)δxdx 7→ h(r )m−1r δrdr

= ker (α−1)−λe
r
δrdr .

For the log series case, α = 0, this becomes

h(r )m−1r δrdr = ke−r−λe
r
δrdr .

We can go back to the classic log series expression by
reversing the change, er 7→ n, yielding the discrete
distribution f (n)δndn for n = 1, 2, . . . , with

f (n) = kn−1e−λn .

In these examples, we have assumed that the distri-
butions on the r and n ≡ x scales are either both dis-
crete or both continuous. In application, it will usu-
ally make sense to think of process, r , as a continu-
ous variable, and abundance, n, as a discrete variable.
Therefore, we need to consider transformations be-
tween continuous and discrete variables. We discuss
that topic in the final section, after a brief summary
of the discrete transformations.

Summary of alternative discrete expressions

We have two different ways of expressing trans-
formed discrete variables, in which the initial distri-
bution is given by f (x)δxdx , andwe transform x 7→ y.
In the first expression, the transformed distribution

is
f (y)myδ

′
ydy = h(y)δ

′
ydy,

in which h(y) = f (y)my is the same expression as ob-
tained when transforming continuous variables. The
measure for the y scale, δ ′ydy, stretches or shrinks in
relation to the measure for the x scale, altering the
widths associated with each height. This form has the
advantage of retaining the same expressions for the
probability functions in the discrete and continuous
cases.
In the second expression, the transformed distribu-

tion is
f (y)δydy = h(y)m−1y δydy,

in which this expression highlights the difference be-
tween the standard form of the probability function
obtained in the discrete case, f (y) = h(y)m−1y , and
the standard form of the probability function ob-
tained in the continuous case, h(y) = f (y)my . Here,
we assume the widths associated with each probabil-
ity point remain one on all scales.
For the transformation x 7→ д(x) ≡ y, the value

m−1y = |д
′(x)| determines the distinction between the

discrete and continuous cases, associated with the
change in widths between scales.

Transforming between continuous and discrete
variables

In the prior cases, we transformed from one discrete
variable to another discrete variable or from one con-
tinuous variable to another continuous variable. The
expressions for transformation followed without any
further assumptions.
In the case of the log series and the distribution

of abundances, it often make sense to consider pro-
cess, r , as a continuous variable, and abundance, n,
as a discrete variable. We usually think of process as
causing abundance. So we should begin with the con-
tinuous distribution for process, qr , and seek the cor-
responding discrete distribution for abundance, qn .
The probability mass, qn , at a particular value of
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Figure A1: Close match between the continuous distribution for process, r , and the discrete log series for abundance, n.
The blue circles show the probabilities of the discrete values of n obtained from the continuous distribution in r , calculated
by eqn 22. The gold circles show the actual values of qn for the log series in eqn 24. For most points, the values are nearly
identical, causing the gold circles to hide the underlying blue circles. (a) When using no offset for continuous intervals,
γ = 0, a slight mismatch occurs, particularly at n = 1. The nonlinearity of qr causes the mismatch. (b) When using
an offset of γ = 0.1, the continuous distribution of the process, r , maps almost perfectly onto the discrete log series of
abundance, n. For all calculations, λ = 0.05.

n = 1, 2, . . . , should map to the total probability for
a matching range of growth rates, such that

qn =

∫ bn

an
qrdr , (22)

in which r > a1.
We need the particular form of qr , which we take

as the fundamental shift-invariant distribution in the
main text

qr = ke
−λer . (23)

We also need, for each n, the interval of growth rates,
(an,bn), that maps to the abundance, n. In partic-
ular, we need a sequence of contiguous intervals,
{(an,bn)}, that associate each value ofn to an interval
for r , such that an+1 = bn .
The problem concerns how to pick the sequence of

intervals. The simplest approach is to use a standard
rounding procedure, such that

an = log(n − 0.5 + γ )

bn = log(n + 0.5 + γ ),

in which γ < 0.5 is a correction for centering inter-
vals to account for the nonlinearity in the mapping
between the continuous and discrete probability ex-
pressions.

If we use γ = 0.1, the transformation from the con-
tinuous scale r to the discrete scale n in eqn 22 yields
a distribution that closely matches the log series

qn ≈ kn
−1e−λn . (24)

Figure A1 shows the match between the continuous
distribution for r and the associated discrete distribu-
tion for n.
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