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Summary	

Great	 excitement	 has	 surrounded	 our	 ability	 to	 decode	 task	 information	 from	human	

brain	 activity	 patterns,	 reinforcing	 the	 dominant	 view	 of	 the	 brain	 as	 an	 information	

processor.	We	 tested	 a	 fundamental	 but	 overlooked	 assumption:	 that	 such	 decodable	

information	 is	 actually	 used	 by	 the	 brain	 to	 generate	 cognition	 and	 behaviour.	

Participants	 performed	 a	 challenging	 stimulus‐response	 task	 during	 fMRI.	 Our	 novel	

analyses	trained	a	pattern	classifier	on	data	from	correct	trials,	and	used	it	to	examine	

stimulus	 and	 rule	 coding	 on	 error	 trials.	 There	 was	 a	 striking	 interaction	 in	 which	

frontoparietal	 cortex	 systematically	 represented	 incorrect	 rule	 but	 correct	 stimulus	

information	when	participants	used	the	wrong	rule,	and	incorrect	stimulus	but	correct	

rule	information	on	other	types	of	errors.	Visual	cortex,	by	contrast,	did	not	code	correct	

or	 incorrect	 information	 on	 error.	 Thus	 behaviour	 was	 tightly	 linked	 to	 coding	 in	

frontoparietal	cortex	and	only	weakly	linked	to	coding	in	visual	cortex.	Human	behaviour	

may	 indeed	 result	 from	 information‐like	 patterns	 of	 activity	 in	 the	 brain,	 but	 this	

relationship	 is	 stronger	 in	 some	brain	 regions	 than	 in	others.	Testing	 for	 information	

coding	on	error	can	help	establish	which	patterns	constitute	behaviourally‐meaningful	

information.	

	

Introduction 

Successful	 goal‐directed	 behaviour	 is	 thought	 to	 depend	 on	 frontoparietal	 cortex.	 In	

particular,	 certain	 regions	 of	 frontal	 and	 parietal	 cortex,	 comprising	 regions	 in	 the	

inferior	 frontal	 sulcus	 (IFS),	 anterior	 insular/	 frontal	 operculum	 (AI/FO),	 anterior	

cingulate	 cortex	 /	 pre‐supplementary	 motor	 area	 (ACC/pre‐SMA)	 and	 intraparietal	

sulcus	(IPS),	are	recruited	for	a	wide	variety	of	tasks	(e.g.	1,2,3).	These	‘multiple‐demand’	
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(MD)	regions	4,	are	widely	implicated	in	neural	models	of	cognitive	control	5‐8,	in	which	

they	are	proposed	to	selectively	prioritise	processing	of	task	relevant	information	4.		

	

Much	of	 the	 recent	 evidence	 for	 this	 idea	 comes	 from	multivariate	 analysis	of	 human	

neuroimaging	data,	in	which	patterns	of	activity	are	analysed	to	examine	whether	we	can	

decode	 aspects	 of	 tasks	 or	 stimuli.	 For	 example,	 the	MD	 regions	 have	 been	 shown	 to	

represent	the	key	features	of	tasks	such	as	stimuli,	rules	and	responses	(for	a	review	see	

9),	 and	 to	 adapt	 their	 representation	 of	 these	 features	 as	 required	 for	 successful	

behaviour	 10‐14.	 However,	 since	 these	 studies	 have	 focused	 almost	 exclusively	 on	

successful	 behaviour,	 it	 has	 been	 difficult	 to	 establish	 whether	 the	 decoded	

representations	are	actually	meaningful	for	behaviour.	Simply	observing	that	patterns	of	

activity	differ	between	 two	 conditions	does	not	mean	 that	 this	 is	 ‘information’	 that	 is	

available	 to	 other	 brain	 regions15,	 or	 ‘read	 out’	 in	 behaviour	 (e.g.	 16,17,18).	 Patterns	

observed	during	successful	behaviour	may	be	necessary	for	behaviour	(i.e.,	without	this	

pattern,	this	behaviour	would	not	occur)	or	they	could	be	epiphenomenal	(e.g.,	an	efferent	

copy	of	information,	and	not	necessary	for	successful	completion	of	the	task).	To	test	the	

critical	 assumption	 that	multivariate	patterns	 identify	neural	 information	 relevant	 for	

behaviour,	we	used	a	novel	extension	of	multivariate	decoding	 in	which	we	examined	

how	patterns	change	on	error	trials.		

	

If	information	coding	in	a	particular	brain	region	is	necessary	for	behaviour,	what	would	

we	predict	on	error	trials?	One	possibility	is	that	the	brain	region	would	fail	to	represent	

the	necessary	 information.	This	 is	 the	 logic	used	by	Williams,	et	al.	 18,	who	 found	that	

information	about	visual	objects	was	absent	 from	 the	object‐sensitive	 lateral	occipital	

complex	(LOC)	when	participants	made	mistakes.	In	these	data,	object	information	was	
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still	present	in	early	visual	cortex	(EVC),	suggesting	that	multivoxel	representation	in	EVC	

is	not	sufficient	to	drive	behaviour.	These	authors	concluded	that	behaviour	was	more	

closely	 linked	 to	 activity	 in	 the	 LOC	 than	 to	 that	 of	 the	 EVC.	 However,	 something	

important	remains	unexplained.	There	was	no	coding	of	object	category	in	LOC,	but	the	

participant	still	generated	a	response,	leaving	it	open	as	to	how	the	incorrect	response	

was	generated.	More	direct	evidence	for	a	link	between	activation	patterns	and	behaviour	

would	be	given	by	the	incorrect	information	being	encoded.	

Results 

We	designed	a	challenging	stimulus‐response	task	(Figure	1)	that	resulted	in	moderate	

error	rates.	On	the	basis	of	the	behavioural	response	on	each	trial,	we	were	able	to	classify	

responses	as	‘correct’,	incorrect	due	to	application	of	the	incorrect	rule	(‘rule	error’),	or	

incorrect	resulting	from	another	type	of	error	(‘unspecified	error’;	e.g.	misperception	of	

stimulus,	accidentally	pressing	the	wrong	button,	guessing).	Participants	were	correct	on	

78.2%	 of	 trials	 and	 made	 rule	 errors	 on	 11.4%	 of	 trials,	 leaving	 10.4%	 of	 trials	 as	

unspecified	errors.	We	trained	a	pattern	classifier	using	correct	trials	to	derive	the	neural	

signature	of	correctly	encoded	rules	and	stimulus	positions,	and	used	this	classifier	to	

interrogate	the	content	of	the	MD	and	visual	cortex	on	error	trials.	This	analysis	approach	

now	 renders	 below‐chance	 classification	 meaningful:	 it	 means	 that	 the	 pattern	

systematically	 reflects	 the	 incorrect	 information.	For	each	error	 type,	we	were	able	 to	

identify	the	correct	or	incorrect	stimulus	and	rule	information	encoded	in	the	activation	

patterns	of	different	brain	regions.	
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Figure	1.	Participants	observed	the	position	of	a	visual	stimulus	on	a	screen	and	applied	one	

of	two	stimulus‐response	mapping	rules	to	determine	which	key	press	response	should	be	

given.	(A)	Each	rule	comprised	four	different	position‐response	transformations	and	the	two	

rules	were	mirror	images	of	each	other.	Background	colour	indicated	which	rule	to	use	on	

each	trial	(Green:	rule	1;	Purple:	rule	2).	(B)	At	the	beginning	of	each	block,	participants	were	

reminded	of	the	rule	mappings	for	10s.	Then	on	each	trial,	a	single	blue	square	was	shown	

in	 one	 of	 the	 four	 possible	 positions	 against	 a	 coloured	background.	 For	 the	 three	 trials	

shown,	the	correct	responses	would	be	buttons	3,	4,	and	3.	
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There	was	a	striking	double	dissociation	in	the	MD	regions	(Figure	2).	When	participants	

made	 rule	 errors,	 the	 patterns	 of	 activation	 consistently	 reflected	 the	 incorrect	 rule	

(classification	accuracy	=	45.8%,	95%	confidence	intervals	[41.8,	49.9],	t(21)	=	‐2.12,	p	=	

.046	two‐tailed,	Cohen’s	d	=	‐0.45;	classification	accuracy	below	50%	indicates	coding	of	

the	incorrect	rule).	On	these	trials,	stimulus	information	was	encoded	correctly	(56.2%,	

[52.1,	60.2],	t(20)	=	3.15,	p	=	.005	two‐tailed,	d	=	0.69).	For	unspecified	errors,	we	saw	the	

reverse:	now	frontoparietal	cortex	coded	the	correct	rule	(56.1%,	[50.1,	62.1],	t(16)	=	2.14,	

p	=	.048	two‐tailed,	d	=	0.52),	but	incorrect	stimulus	(44.7%,	[39.9,	49.4],	t(18)	=	‐2.38,	p	=	

.028	two‐tailed,	d	=	‐0.55).		

	

We	further	tested	whether	the	profile	of	information	coding	was	significantly	different	

for	 the	 two	 types	 of	 errors	 by	 entering	 the	 classifier	 accuracy	 scores	 into	 a	 repeated	

measured	ANOVA	with	factors	Feature	(Rule	coding,	Stimulus	coding),	Error	Type	(Rule	

error,	Unspecified	error)	and	Region	(ACC/pre‐SMA,	IPS,	IFS,	AI/FO,	data	collapsed	over	

hemisphere).	 This	 showed	 a	 significant	 interaction	 between	 Feature	 and	 Error	 type	

(F(1,15)	=	12.69,	p	=	.003,	partial	eta‐squared	ηp2=.458),	indicating	a	different	pattern	of	

rule	and	stimulus	information	coding	between	rule	and	unspecified	errors.	There	was	no	

three‐way	interaction	(F(3,45)	=	0.355,	p	=	.786,	ηp2=.023).	These	results	demonstrate	a	

close	 link	between	MD	coding	and	behaviour.	On	rule	errors,	MD	activity	encoded	the	

correct	stimulus	but	incorrect	rule,	while	on	unspecified	errors,	MD	activity	reflected	the	

correct	rule	but	incorrect	stimulus.	
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A	different	pattern	of	results	was	apparent	in	visual	cortex	(Figure	3).	In	EVC	and	LOC,	

stimulus	information	was	correctly	encoded	on	rule	errors	(EVC:	62.3%	[53.8	70.8],	t(21)	

=	3.02,	p	=	0.007	two‐tailed,	d	=	0.64;	LOC:	60.7%	[54.6,	66.8],	t(21)	=	3.64,	p	=	0.002	two‐

tailed,		d	=	0.78),	but	was	absent	on	unspecified	errors	(EVC:	50.8%	[42.8,	58.8],	t(18)	=	

0.21,	p	=	0.84	two‐tailed,	d	=	0.05;	LOC:	51.2%	[45.3	57.2],	t(18)	=	0.44,	p	=	0.67	two‐

tailed,	d	=	0.10).	Thus	in	contrast	to	the	MD	system,	the	visual	cortex	did	not	encode	the	

Figure	2.	Multivoxel	coding	in	the	MD	network	of	(A)	rule	and	(B)	stimulus	information	on	

rule	 error	 (dark	 bars)	 and	 unspecified	 error	 (light	 bars)	 trials.	 A	 linear	 support	 vector	

machine	was	trained	on	data	from	correct	trials	to	establish	the	multivoxel	pattern	coding	

for	 each	 rule	 and	 stimulus.	 This	 classifier	 was	 then	 tested	 on	 data	 from	 rule	 error	 and	

unspecified	error	trials.	Note	that	below	chance	(50%)	classification	is	interpretable:	below	

chance	classification	of	rule	indicates	coding	of	the	alternate	(incorrect)	rule,	below	chance	

classification	of	stimulus	indicates	coding	of	the	alternate	(incorrect)	stimulus.	Error	bars	

indicate	standard	error.	Asterisks	indicate	classification	significantly	different	from	chance	

in	a	two‐tailed	t‐test	against	chance	(50%)	*	p	<	0.05,	**	p	<	0.01	
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incorrect	stimulus	on	unspecified	errors,	instead	we	failed	to	find	any	coding	of	stimulus	

information	here.	Rule	coding	was	not	significantly	different	from	chance	in	the	visual	

cortex	for	either	type	of	error	(all	ps	>	0.30,	two‐tailed).		

	

Discussion 

The	 results	 reveal	 a	 clear	 relationship	 between	what	 information	 is	 coded	 in	 the	MD	

regions	and	the	type	of	behavioural	error	a	participant	makes.	Behaviour	appears	to	be	

Figure	3.	Multivoxel	coding	in	visual	ROIs	of	(A)	rule	and	(B)	stimulus	information	

on	rule	error	(dark	bars)	and	unspecified	error	(light	bars)	trials.	Conventions	as	

in	Figure	2.	Stimulus	position	was	encoded	correctly	when	participants	made	rule	

errors,	but	could	not	be	discriminated	when	they	made	unspecified	errors.	Unlike	

the	 MD	 system	 (Figure	 2),	 there	 was	 no	 evidence	 for	 coding	 of	 the	 incorrect	

stimulus	in	the	visual	ROIs.		
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more	closely	linked	to	information	coding	here	than	visual	areas,	consistent	with	a	large	

literature	 suggesting	 a	 key	 role	 for	 these	 regions	 in	 cognitive	 control.	 We	 know,	 for	

example,	that	these	brain	regions	are	active	for	a	wide	range	of	cognitive	demand	(e.g.	

1,2),	 and	 that	we	 can	decode	 a	 range	 of	 information	 from	 their	 activity	 patterns9.	One	

influential	theory	proposes	that	these	regions	adjust	their	function	to	code	information	

as	needed	for	current	behaviour4,	and	indeed,	multivoxel	codes	in	these	regions	adjust	in	

response	 to	 a	 variety	 of	 task‐manipulations10‐13.	Moreover,	 neuropsychology	 has	 long	

suggested	 a	 causal	 role	 for	 prefrontal	 regions	 in	 supporting	meaningful	 goal‐directed	

behaviour	(e.g.	19),	with	recent	work	showing	that	the	extent	of	cognitive	deficit	is	linearly	

predicted	by	 the	extent	of	damage	to	 the	MD	network20,21.	Previously,	however,	 it	has	

been	difficult	 to	 link	 these	observations	 together	–	 for	example,	 to	know	whether	 the	

deficits	observed	after	brain	lesions	are	related	to	changes	in	multivoxel	patterns.	Here	

we	 provide	 correlative	 evidence	 linking	 multivoxel	 patterns	 in	 these	 regions	 to	

behaviour.	 Although	 we	 still	 cannot	 infer	 causality,	 our	 approach	 examines	 which	

multivariate	 patterns	 are	 predictive	 of	 behaviour,	 and	 the	 data	 underscore	 the	

importance	of	the	MD	regions	in	determining	behavioural	outcome.	

	

We	did	not	observe	coding	of	the	incorrect	stimulus	in	the	visual	cortex	on	error	trials:	

on	‘unspecified’	errors,	there	was	no	decodable	information	discriminating	the	stimuli.	

Therefore,	the	visual	cortex	pattern	integrity	predicted	success	and	failure	in	behaviour,	

but,	 on	 error,	we	 found	no	 evidence	 that	 visual	 cortex	 coded	 the	 information	used	 to	

generate	 the	 behavioural	 response.	 In	 contrast,	 for	 each	 type	 of	 error,	 MD	 patterns	

represented	the	 incorrect	stimulus	or	rule	 information	corresponding	 to	 the	 incorrect	

behavioural	response.	Lacking	the	same	evidence	from	EVC	or	LOC,	we	suggest	the	link	
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between	information	coding	and	behavioural	response	here	is	less	direct	than	in	the	MD	

system.		

	

A	 previous	 study18	 also	 reported	 that	 pattern	 integrity	 in	 LOC	 predicted	 behavioural	

success	 on	 a	 difficult	 object	 discrimination	 task.	 These	 authors	 found	 that	 stimulus	

information	was	absent	on	error	and	concluded	that	LOC	patterns	are	‘read	out’	in	task	

performance.	 However,	 this	 can	 only	 be	 concluded	 if	 LOC	 patterns	 show	 encoding	 of	

incorrect	information,	rather	than	reducing	to	noise.	In	our	study,	by	training	on	correct	

trials	to	establish	the	neural	signature	of	correctly	coded	information,	and	using	this	to	

decode	error	 trials,	we	 can	be	more	 specific	 about	what	 is	 coded	on	error.	Using	 this	

measure,	we	found	that	both	EVC	and	LOC	patterns	resembled	correct	 information	on	

rule	errors,	but	did	not	consistently	resemble	either	the	correct	or	incorrect	information	

on	unspecified	errors.	As	with	any	null	effect,	we	must	be	cautious.	The	analysis	could	be	

underpowered,	 although	we	 could	detect	 coding	of	 the	 same	 information	 in	 the	 same	

regions	 on	 rule	 error	 trials	 which	 were	 very	 similarly	 powered.	 fMRI	 will	 also	 miss	

activity	that	is	not	extended	in	time,	and	chance	decoding	could	reflect	an	average	of	some	

stimulus	driven	(correct)	responses	mixed	with	top‐down	(incorrect)	influences.	So	we	

cannot	conclude	that	the	information	is	absent	on	error,	but	only	that	it	does	not	manifest	

in	the	same	way	as	on	correct	trials.	Our	data	therefore	suggest	a	more	nuanced	view:	

failure	to	represent	stimulus	 information	(in	the	same	way	as	on	correct	 trials)	 in	 the	

visual	cortex	appears	to	predict	that	the	person	will	make	an	error,	but	at	the	same	time,	

the	specific	behaviour	that	occurs	cannot	be	directly	 linked	to	(or	 ‘read	out’	 from)	the	

decodable	information	in	either	EVC	or	LOC.		
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The	neural	data	point	to	a	failure	of	stimulus	perception	on	‘unspecified’	error	trials.	The	

design	of	our	study	meant	we	could	not	independently	verify	when	our	unspecified	errors	

followed	from	an	incorrect	perception	of	the	stimulus	rather	than	guesses	or	accidental	

response	errors	(e.g.,	knowing	the	answer	but	pressing	the	wrong	button).	Despite	this,	

the	representation	of	the	incorrect	stimulus	in	the	MD	system	in	the	absence	of	stimulus	

information	 in	 the	visual	 system	suggests	 that	 the	MD	representation	of	 the	 incorrect	

stimulus	may	have	been	internally	generated.	There	are	similar	results	when	stimuli	are	

ambiguous22,	 invisible	 (e.g.	 23)	 or	 in	 the	 context	 of	 self‐initiated	 movements	 or	 free	

decisions	(e.g.	24,25),	but	this	is	the	first	time	we	see	it	for	unambiguous	and	easily	visible	

stimuli.	Of	course,	the	MD	response	could	reflect	input	from	weak	activity	in	visual	cortex	

that	 our	 methods	 cannot	 decode,	 or	 subtle	 contextual	 information	 such	 as	 choice	

history26;	we	 cannot	distinguish	 these	possibilities	here.	Nonetheless,	 the	dissociation	

between	MD	and	visual	cortex	 is	 interesting	 for	 two	reasons.	First,	patterns	reflecting	

visual	 stimuli	 tend	 to	 show	 stronger	 decoding	 in	visual	 cortices	 than	 in	 frontoparietal	

cortices,	making	ours	an	unusual	pattern.	Second,	 it	 indicates	that	any	feedback	or	re‐

entrant	processing	between	the	MD	and	visual	systems	(e.g.	27,28)	was	insufficient	to	drive	

decodable	patterns	in	EVC	or	LOC	(c.f.	29,30,31).	Thus,	decodable	representation	in	visual	

cortex	 is	 not	 necessary	 for	 coding	 in	MD	 regions	 or	 for	 a	 behavioural	 response	 to	 be	

generated.	Although	feedback	from	the	MD	regions	may	bias	or	support	representation	

in	the	visual	cortices	(e.g.	28,32),	behaviour	appears	to	depend	on	representation	in	the	MD	

regions	themselves.		

	

This	work	validates	a	novel	variation	of	MVPA	to	examine	the	information	on	error	trials:	

by	 training	 a	 classifier	 on	 plentiful	 correct	 trials,	we	 can	 interrogate	 representational	

content	on	the	less	frequent	incorrect	trials.	This	approach	has	great	potential	 for	any	
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question	where	the	key	condition	has	fewer	trials	than	that	usually	required	for	MVPA	

(e.g.,	what	 aspects	 of	 processing	 are	 impaired	 after	 brain	 injury;	what	 ‘lapses’	 during		

vigilance;	where	errors	occur	within	processing	streams	across	multiple	brain	networks).		

A	particularly	exciting	research	direction	may	be	to	combine	disruptive	brain	stimulation	

with	these	decoding	techniques,	to	understand	the	causal	relations	between	a	stimulated	

brain	area,	multivoxel	coding,	and	behaviour.		

	

We	 show	 that	 activity	patterns	 in	 the	MD	regions	predict	 the	 error	 an	 individual	will	

make.	Rather	than	simply	reducing	to	noise	when	participants	make	mistakes,	as	in	visual	

cortex,	frontoparietal	activity	patterns	show	systematic	coding	of	incorrect	information,	

which	is	in	turn	diagnostic	of	the	particular	error.	This	demonstrates	the	critical	role	of	

these	 regions	 in	 determining	 success	 or	 failure	 and	 draws	 a	 clear	 link	 between	

information	coding	in	frontoparietal	cortex	and	behaviour.	More	broadly,	these	results	

show	the	importance	of	testing	for	systematic	links	between	decodable	information	and	

behaviour,	in	order	to	establish	which	“information”	is	meaningful.		

	

Online Methods 

Participants 

Twenty‐two	right‐handed	participants	(14	female,	8	male,	mean	age	24.9	years,	SD	4.51),	

with	normal	or	corrected‐to‐normal	colour	vision,	took	part	in	this	study.	All	participants	

gave	 written	 informed	 consent	 and	 were	 reimbursed	 for	 their	 time.	 The	 study	 was	

approved	by	the	Macquarie	University	Human	Research	Ethics	Committee.	

	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 19, 2019. ; https://doi.org/10.1101/673681doi: bioRxiv preprint 

https://doi.org/10.1101/673681


13	
	

Task 

Participants	 performed	 a	 challenging	 stimulus‐response	 task	 that	 we	 have	 used	

previously	to	separate	coding	of	stimulus,	rule	and	response	information	10,11.	On	each	

trial	participants	identified	the	horizontal	position	of	a	blue	square	and	applied	one	of	

two	stimulus‐response	transformation	rules	(rule	to	use	cued	by	background	colour)	to	

generate	a	button‐press	response.	For	further	details	of	stimuli,	task	and	procedure,	see	

Woolgar,	et	al.	10.	Participants	learnt	and	performed	four	rules,	but	only	the	data	from	the	

two	 more	 challenging	 rules	 (shown	 in	 Figure	 1),	 on	 which	 participants	 made	 a	

substantial	number	of	mistakes,	are	analysed	here.	The	analysis	of	correct	trials	has	been	

published	elsewhere	10.	

	

Acquisition 

As	described	in	Woolgar,	et	al.	10,	we	acquired	fMRI	scans	using	a	Siemens	3	Tesla	Verio	

scanner	 with	 32‐channel	 head	 coil,	 at	 the	 Macquarie	 Medical	 Imaging	 facility	 in	

Macquarie	University	Hospital,	Sydney,	Australia.	We	used	a	sequential	descending	T2*‐

weighted	echo	planar	imaging	(EPI)	acquisition	sequence	with	the	following	parameters:	

repetition	time	(TR),	2000	ms;	echo	time	(TE),	30	ms;	34	oblique	axial	slices	of	3.0	mm	

slice	thickness	with	a	0.7	mm	interslice	gap;	in‐plane	resolution,	3.0	x	3.0	mm;	field	of	

view,	210	mm;	flip	angle	78	degrees.	We	also	acquired	T1‐weighted	MPRAGE	structural	

images	for	all	participants	(resolution	1.0	x	1.0	x	1.0	mm).	

We	 presented	 stimuli	 using	 Matlab	 with	 Psychophysics	 Toolbox‐3	 33,34,	 back‐

projected	 onto	 a	 screen	 viewed	 through	 a	 head‐coil	 mounted	 mirror	 in	 the	 scanner.	

Participants	performed	2	min	blocks	of	the	rules	described	here	alternating	with	blocks	

of	 two	 ‘easy’	 rules	 described	 in	Woolgar,	 et	 al.	 10	 and	 not	 analysed	 here.	 Participants	
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performed	two	EPI	acquisition	runs	each	consisting	of	eight	blocks	of	trials	and	lasting	

19	min	12	sec.	Block	order	was	counterbalanced	within	participants	across	runs,	and	run	

order	was	counterbalanced	between	participants.	

At	the	start	of	each	block,	a	graphical	depiction	of	the	two	rules	was	displayed	for	

10	sec,	after	which	the	screen	was	grey	for	1000	ms.	Within	each	block,	the	eight	stimuli	

(four	 positions	 *	 two	 background	 colors)	 were	 presented	 in	 random	 order.	 Stimuli	

remained	visible	for	4000	ms	or	until	the	participant	responded.	There	was	an	inter‐trial‐

interval	of	1000	ms	between	response	and	display	of	the	next	stimulus,	during	which	time	

the	 screen	 was	 grey	 (Figure	 1).	 Block	 length	 was	 fixed	 at	 2	 min,	 in	 which	 time	

participants	completed	a	varying	number	of	trials	(mean	±	SD	total	number	of	trials	over	

the	8	blocks	analyzed	here	was	294.36	±	95.05).	At	the	end	of	each	block,	participants	

were	shown	a	blank	screen	(1000	ms),	the	message	“End	of	Block”	(1000	ms),	a	blank	

screen	(500	ms),	feedback	(%	correct	and	average	reaction	time)	for	4000	ms,	and	then	

a	further	blank	screen	(5000	ms).		

	

Preprocessing 

Preprocessing	was	carried	out	as	described	in	Woolgar,	et	al.	10.	EPI	images	were	spatially	

realigned	to	the	first	image,	slice‐time‐corrected	with	the	first	slice	as	the	reference	and	

smoothed	with	a	4mm	FWHM	Gaussian	kernal.	The	timecourse	of	each	voxel	was	high‐

pass	filtered	with	a	cut	off	of	128	sec.	The	structural	image	was	co‐registered	to	the	mean	

EPI	 image	 and	 normalised	 so	 as	 to	 derive	 normalisation	 parameters	 for	 deforming	

template	space	ROIs	to	native	space.		
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ROIs 

We	used	the	MD	ROIs	from	our	previous	work	11,12,21,35,36.	The	seven	MD	ROIs	were	left	

and	right	IFS	(centre	of	mass	in	MNI152	space:	+/−38,	26,	24;	volume:	17	cm3),	left	and	

right	AI/FO	(+/−35,	19,	3;	3	cm3),	left	and	right	IPS	(+/−35,	−58,	41;	7	cm3),	and	bilateral	

ACC/pre‐SMA	(0,	23,	39;	21	cm3).	Left	and	right	EVC	ROIs	(−13,	−81,	3;	16,	−79,	3;	54	

cm3),	were	defined	as	Brodmann’s	Areas	17	and	18,	 from	the	 template	available	with	

MRIcro	37.	Left	and	right	LOC	(+/−42	−70	−9,	4	cm3)	was	a	spherical	(radius:	10mm)	ROI	

centred	on	co‐ordinates	showing	maximal	responses	to	objects	over	scrambled	shapes	

and	textures	in	the	literature	38.	We	deformed	these	template	space	ROIs	to	the	native	

space	of	each	participant	using	the	parameters	derived	from	normalising	the	structural.	

	

First level model 

We	used	a	General	Linear	Model	to	estimate	the	BOLD	response	associated	with	different	

task	 events	 (stimulus	 positions,	 rules	 and	 responses)	 for	 correct,	 rule	 error	 and	

unspecified	error	trials,	in	each	block	separately.	To	account	for	trial‐by‐trial	variation	in	

time‐on‐task	39‐41,	each	event	was	modelled	using	a	box	car	function	lasting	from	stimulus	

presentation	 until	 response,	 or	 the	 4000ms	 for	 which	 the	 stimulus	 was	 visible	 if	

participants	 failed	to	respond.	Each	trial	contributed	to	the	estimation	of	3	regressors	

(one	 stimulus,	 one	 rule	 and	 one	 response)	 and	 regressors	 were	 convolved	 with	 the	

haemodynamic	 response	 function	 of	 SPM	 (Wellcome	 Department	 of	 Imaging	

Neuroscience,	London,UK;	www.fil.ion.ucl.ac.uk).		
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Decoding representational content on error trials 

We	used	multivariate	pattern	analysis	(MVPA)	to	examine	the	multivoxel	representation	

of	 stimulus	 positions	 and	 stimulus‐response	 mapping	 rules	 on	 ‘rule	 error’	 and	

‘unspecified	error’	trials	separately.	For	the	analysis	of	stimulus	positions,	we	compared	

inner	with	outer	positions	(which	have	equal	contribution	 from	the	two	rules	and	the	

four	button	press	responses)	as	 in	our	previous	work	 10,11,36.	MVPA	was	 implemented	

using	The	Decoding	Toolbox	42	version	3.99.	

	

For	each	participant	and	each	ROI,	we	first	trained	a	linear	pattern	classifier	(LibSVMC,	

cost	parameter	C	=	1)	using	data	from	the	correct	trials,	to	establish	the	neural	signature	

of	 correctly	 encoded	 stimulus,	 rule	 and	 response	 information.	 For	 example,	 for	 the	

analysis	of	rule	coding,	we	extracted	the	pattern	of	activation	(beta	estimate)	associated	

with	each	rule	on	correct	trials,	in	each	of	the	8	task	blocks	separately	(16	betas:	2	rules	

*	 8	 blocks).	 This	 formed	 the	 dataset	 on	 which	 the	 pattern	 classifier	 was	 trained	 to	

distinguish	 between	 the	 two	 rules.	 Next,	 we	 tested	 the	 extent	 to	 which	 the	 decision	

boundary	from	this	classifier	cross‐generalised	to	the	unseen	data	from	error	trials.	First,	

we	tested	the	classification	of	the	two	rules	on	rule	error	trials.	For	this,	we	extracted	the	

multivoxel	vectors	corresponding	to	each	of	the	two	rules	that	were	presented	on	rule	

error	trials	in	each	of	the	blocks.	In	some	cases,	there	were	more	multivoxel	vectors	for	

one	rule	than	for	the	other	(for	example,	if	a	participant	did	not	happen	to	make	a	rule	

error	in	rule	1	in	one	of	the	blocks,	they	would	not	have	a	beta	estimate	for	rule	1	in	that	

block	 and	would	 therefore	 have	one	 fewer	 vectors	 for	 rule	 1	 than	 rule	 2).	When	 this	

happened,	 we	 ensured	 that	 the	 test	 set	 was	 balanced	 (equal	 numbers	 of	 rule	 error	

estimates	for	rule	1	and	2),	by	excluding	the	corresponding	block	from	the	rule	with	more	

estimates.	We	 additionally	 excluded	 participants	 for	whom	 the	 number	 of	 blocks	 per	
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condition	 in	 the	 test	 set	 was	 less	 than	 2.	 For	 the	 analysis	 of	 rule	 in	 rule	 error,	 no	

participants	needed	to	be	excluded	and	the	mean	(over	participants)	number	of	testing	

blocks	retained	was	5.86	(SD	=	1.67)	blocks	for	each	rule.	Next,	we	repeated	the	same	

decoding	analysis	 for	unspecified	error	 trials	 (2	 rules	 *	up	 to	8	blocks;	5	participants	

excluded,	mean	number	of	testing	blocks	retained	was	5.88	(SD	=	1.83)	for	each	rule).	

Note	 that	 this	decoding	scheme	means	 that	below	chance	classification	accuracies	are	

interpretable.	 Above	 chance	 classification	 signifies	 that	 the	 rules	 on	 error	 trials	were	

correctly	 classified	 according	 to	 the	 neural	 signature	 derived	 from	 the	 correct	 trials.	

Below	 chance	 classification	 signifies	 that	 rules	 were	 consistently	 misclassified:	 trials	

where	 rule	 1	 were	 presented	 were	 classified	 as	 belonging	 to	 the	 class	 of	 activation	

patterns	representing	rule	2	and	vice	versa.	Thus,	below	chance	classification	signifies	

consistent	coding	of	the	incorrect	rule.	Classification	close	to	chance	(50%)	signifies	no	

consistent	information	to	distinguish	between	the	two	rules.	Finally,	the	entire	procedure	

was	 repeated	 to	 examine	 the	 coding	 of	 position	 information.	 For	 this,	 the	 following	

numbers	of	blocks	were	retained	 in	 the	analysis:	 rule	error:	one	participant	excluded,	

mean	 number	 of	 testing	 blocks	 =	 5.24	 (SD	 =	 1.70);	 unspecified	 error:	 3	 participants	

excluded,	mean	number	of	training	blocks	=	5.15	(SD	=	1.70).	

	

To	assess	whether	any	stimulus	and	rule	 information	was	encoded	on	error	trials,	we	

compared	 classification	 accuracies	 to	 chance	 (50%)	 on	 rule	 and	 unspecified	 errors	

separately,	 using	 two‐tailed	 t‐tests.	 Our	 unusual	 analysis	 scheme	 means	 that	

classification	 accuracies	 are	 not	 bounded	 at	 50%	 (both	 above	 and	 below	 chance	 is	

interpretable),	making	parametric	 tests	 suitable43.	We	 report	mean	classification	with	

95%	confidence	intervals,	and	effect	size,	Cohen’s	d,	calculated	as	the	mean	difference	

from	chance	(50%)	divided	by	the	standard	deviation	of	the	group	mean	classification	
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accuracy.	Additionally,	to	test	for	statistical	differences	in	coding	between	the	two	types	

of	 error,	 classification	 accuracies	 for	 each	 person	 were	 entered	 into	 an	 ANOVA	with	

factors	Feature	(stimulus	position,	rule),	Error	Type	(rule	error,	unspecified	error),	and	

Region	(ACC/pre‐SMA,	IPS,	IFS,	AI/FO,	data	collapsed	over	hemisphere).	We	report	the	F	

statistic	and	corresponding	two‐tail	p	value	for	two‐way	(Feature*Error	Type)	and	three‐

way	 (Feature*Error	Type*Region)	 interactions	of	 interest,	 as	well	 as	 effect	 sizes	using	

partial	eta‐squared.		
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Figure Legends  

Figure	1.	Participants	observed	the	position	of	a	visual	stimulus	on	a	screen	and	applied	

one	 of	 two	 stimulus‐response	mapping	 rules	 to	 determine	which	 key	 press	 response	

should	 be	 given.	 (A)	 Each	 rule	 comprised	 four	 different	 position‐response	

transformations	and	the	two	rules	were	mirror	images	of	each	other.	Background	colour	

indicated	 which	 rule	 to	 use	 on	 each	 trial	 (Green:	 rule	 1;	 Purple:	 rule	 2).	 (B)	 At	 the	

beginning	of	each	block,	participants	were	reminded	of	the	rule	mappings	for	10s.	Then	

on	each	trial,	a	single	blue	square	was	shown	in	one	of	the	four	possible	positions	against	

a	 coloured	 background.	 For	 the	 three	 trials	 shown,	 the	 correct	 responses	 would	 be	

buttons	3,	4,	and	3.	

	

Figure	2.	Multivoxel	coding	in	the	MD	network	of	(A)	rule	and	(B)	stimulus	information	

on	rule	error	(dark	bars)	and	unspecified	error	(light	bars)	trials.	A	linear	support	vector	

machine	was	trained	on	data	from	correct	trials	to	establish	the	multivoxel	pattern	coding	

for	each	rule	and	stimulus.	This	classifier	was	then	tested	on	data	from	rule	error	and	

unspecified	 error	 trials.	 Note	 that	 below	 chance	 (50%)	 classification	 is	 interpretable:	

below	 chance	 classification	 of	 rule	 indicates	 coding	 of	 the	 alternate	 (incorrect)	 rule,	
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below	 chance	 classification	 of	 stimulus	 indicates	 coding	 of	 the	 alternate	 (incorrect)	

stimulus.	Error	bars	indicate	standard	error.	Asterisks	indicate	classification	significantly	

different	from	chance	in	a	two‐tailed	t‐test	against	chance	(50%)	*	p	<	0.05,	**	p	<	0.01	

	

Figure	3.	Multivoxel	coding	in	visual	ROIs	of	(A)	rule	and	(B)	stimulus	information	on	

rule	error	(dark	bars)	and	unspecified	error	(light	bars)	trials.	Conventions	as	in	Figure	

2.	Stimulus	position	was	encoded	correctly	when	participants	made	rule	errors,	but	could	

not	be	discriminated	when	they	made	unspecified	errors.	Unlike	the	MD	system	(Figure	

2),	there	was	no	evidence	for	coding	of	the	incorrect	stimulus	in	the	visual	ROIs.		
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