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Abstract 14 
 15 
Facing a warming climate, many tropical species–including the arthropod vectors of several infectious 16 
diseases–will be displaced to higher latitudes and elevations. These shifts are frequently forecasted for the 17 
future, but rarely documented in the present day. Here, we use one of the most comprehensive datasets 18 
ever compiled by medical entomologists to track the observed range limits of African malaria mosquito 19 
vectors (Anopheles spp.) from 1898 to 2016. Using a simple regression approach, we estimate that these 20 
species’ ranges gained an average of 6.5 meters of elevation per year, and the southern limits of their 21 
ranges moved polewards 4.7 kilometers per year. These shifts are consistent with the local velocity of 22 
climate change, and might help explain the incursion of malaria transmission into new areas over the past 23 
few decades. Confirming that climate change underlies these shifts, and applying similar methods to other 24 
disease vectors, are important directions for future research.  25 
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Introduction 26 
 27 
In the coming century, most scientific research projects a massive redistribution of global biodiversity. 28 
Today, the world is already +1.2° C warmer than in the pre-industrial period, and this transition is already 29 
underway: tropical species are spreading towards the poles, and species everywhere are tracking their 30 
thermal niche along elevational gradients. One foundational meta-analysis estimated that, to date, 31 
terrestrial species have been moving uphill at a pace of 1.1 meters per year, and to higher latitudes at a 32 
pace of 1.7 kilometers per year [1].  33 
 34 
Among the millions of species on the move are some of the most consequential pathogens, disease 35 
vectors, and wildlife reservoirs that affect human health and economic development. For example, one 36 
study estimated that crop pathogens and agricultural pests were undergoing latitudinal shifts of 3 37 
kilometers per year [2]. Similarly, the North American vector of Lyme disease, the deer tick Ixodes 38 
scapularis, has spread over 40 kilometers per year in the northeast [3,4]; the northern and elevational 39 
range limits of Ix. ricinus have expanded similarly rapidly in Europe [5–7]. In recent years, mosquito-40 
borne diseases like malaria, dengue, and Zika virus have also expanded to new latitudes and elevations 41 
[8–10], and will continue to do so in the future, following the thermal limits on transmission set by their 42 
ectothermic vectors [11–13]. Some of these expansions have been facilitated by parallel global invasions 43 
of Aedes aegypti and Ae. albopictus, which have spread an estimated 250 and 150 kilometers per year, 44 
respectively; climate change will allow their spread to continue over the coming century, albeit at a 45 
slower pace [14,15].  46 
 47 
However, surprisingly little is known about the impacts of climate change on the anopheline vectors of 48 
malaria, lymphatic filariasis, and O’nyong’nyong virus. Already, warming temperatures could have 49 
plausibly permitted expansions into highland east Africa [16]; some Anopheles species have become 50 
newly established in high-elevation sites in Latin America [17]; and a groundbreaking study recently 51 
found that in the Sahel, these mosquitoes can migrate hundreds of kilometers overnight, transported by 52 
wind currents [18]; but no systematic evidence exists that confirms range shifts are already underway in 53 
these species. Here, we track the geographic distributions of the primary malaria vectors (Anopheles spp.) 54 
in sub-Saharan Africa, and test the idea that over the last century, these species have moved southward 55 
(away from the equator) and upward (gaining elevation), consistent with hypothesized climate impacts. 56 
 57 
Methods 58 
 59 
We revisit a recently published compendium of occurrence data for 22 species of Anopheles mosquitoes 60 
vectors of malaria in Africa [19]. While these data include a mix of finer taxonomy, we used the broadest 61 
possible definitions, treating Anopheles funestus sensu lato and sensu stricto as one species, and all 62 
members of the Anopheles gambiae complex - including An. gambiae s.l., s.s., M form, and S form – as 63 
another single species. 64 
 65 
In total, the dataset comprises over a century (1898 to 2016) worth of long-term, systematic 66 
entomological surveys from malaria programs, as well as other opportunistic data collected by 67 
researchers, gathered from a mix of peer-reviewed publications, technical reports, theses, and archival 68 
records. Records span more than one year at the majority of sampling sites (61%), covering an average of 69 
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8.5 years between the first and last presence record (Figure 1B). Parsed into unique spatiotemporal 70 
records, the dataset includes a total of 504,314 year-locality pairs, with an average of 22,923 records per 71 
species; while sampling fluctuates over time and increases during the Global Mariation Eradication 72 
Programme (1955-1969), the dataset spans the entire century with an incredible level of detail (Figure 73 
S1). 74 
 75 
For elevational data, we used the GTOPO30 global digital elevation model (DEM) downloaded as a 30 76 
arc-second resolution grid for Africa from Data Basin (www.databasin.org; Figure 1A). We extracted 77 
elevation for each distinct occurrence record, using the ‘raster’ package in R version 3.3.2. In each year, 78 
we extracted the highest-elevation and southernmost records by species, limiting southernmost points to 79 
only those in the southern Hemisphere (to prevent any early years with incomplete sampling limited to 80 
west Africa from being included and inflating estimates).  81 
 82 
For each of the 22 species of Anopheles, we used a simple linear regression with the ‘stats’ package to 83 
estimate change in elevational and latitudinal limits. We limited this analysis to cases with at least five or 84 
more unique values over time: with this cutoff, we were able to estimate latitudinal trends for 18 species, 85 
and elevational trends for 20 species. Latitudinal shifts were converted into approximate kilometers by 86 
assuming ~111km per degree of latitude. 87 
 88 
Results 89 
 90 
In both elevational and latitudinal limits, we found a clear and unambiguous signal of long-term range 91 
expansion (Figure 2). We found that species’ southern range limits shifted at a pace of 0.042 decimal 92 
degrees (4.7 kilometers) each year, with 16 of 18 species exhibiting a significant trend (cutoff of p < 93 
0.05). Elevational limits also shifted rapidly, with an average trend of 6.5 meters of altitudinal gain per 94 
year, and 18 of 20 species exhibiting a significant trend. All estimated elevational trends and most 95 
latitudinal trends (15 of 18) were positive, i.e., were consistent with the direction expected from climate-96 
linked geographic range shifts. Finally, we found that the correlation between the two (r = -0.30) was 97 
insignificant (p = 0.25), suggesting that landscape-level patterns had a stronger influence on the pace of 98 
range shifts than variation among species’ intrinsic capacity for dispersal.  99 
 100 
Discussion 101 
 102 
We found clear evidence that Anopheles mosquitoes have undergone rapid range shifts over the 20th 103 
century, challenging a long-standing assumption in historical epidemiology that mosquito ranges are 104 
mostly stationary over decades or centuries [20,21]. Our findings were consistent with expectations for 105 
the direction and pace of climate-linked range shifts, including previous estimates of climate velocity in 106 
sub-Saharan Africa [22]. Future work could build on these findings by using more sophisticated methods, 107 
such as spatiotemporal occupancy models [23], to formally test the explanatory power of climate change 108 
in these trends. If confirmed, the rapid expansion of Anopheles ranges—on average, over 500 kilometers 109 
southward and 700 meters uphill during the period of observation—would rank among the more 110 
consequential climate change impacts on African biodiversity that have been observed to date.  111 
 112 
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These findings could also suggest a new facet of the complex and contentious relationship between 113 
climate change and shifting malaria endemicity in Africa. The thermal limits of the Plasmodium parasite 114 
are well established [24,25], and readily superimposed onto climate projections; this mechanistic 115 
approach has suggested that malaria will spread into highland east Africa and expand at its southern range 116 
limits, but transmission will likely decrease as west and central Africa become prohibitively warm 117 
[13,26]. Beginning in the early 2000s, several studies have proposed that these impacts might already be 118 
observable in east Africa [27–29]. Others have disputed these conclusions, suggesting that they are 119 
irreconcilable with long-term progress towards malaria elimination, that trends in the region are better 120 
explained by lapsed control programs and growing drug resistance [30–33], and that climate change is 121 
inconsistent with long-term trends at the continental scale [34]. These debates—which remain 122 
unresolved—have focused nearly entirely on P. falciparum prevalence or incidence, and have rarely 123 
considered direct impacts of climate change on the mosquito vectors of the parasite.  124 
 125 
If climate change has allowed Anopheles mosquitoes to invade once-protected colder areas, this might 126 
help explain observed changes in the altitudinal limits of malaria transmission [9], without presuming the 127 
veracity of a broader climate-driven, long-term increase in prevalence. Confirming this chain of causation 128 
would be an important step in resolving one of the longest-standing debates in climate and health 129 
research. More broadly, in the coming years, these sorts of direct links between climate, biodiversity 130 
change, and disease emergence will be increasingly important to quantify in real-time, not just to 131 
document a changing world but also to identify and address healthcare needs in newly-vulnerable 132 
populations. 133 
  134 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2022. ; https://doi.org/10.1101/673913doi: bioRxiv preprint 

https://doi.org/10.1101/673913
http://creativecommons.org/licenses/by/4.0/


 

Figure 1. The elevational gradient in Africa (left); the sites of occurrence data, where color represents the 135 
maximum temporal span of observations (right).  136 

137 
 138 
Figure 2. Estimated shifts in Anopheles species’ latitudinal and elevational maxima over the 20th Century. 139 
Left: species’ southern maxima, where starting points are given at the longitude of the southmost point in 140 
the first half of the century (1900 to 1950), and the arrow shows the estimated latitudinal shift from 1900 141 
to 2000 (chosen as a standardized unit for visualization, rather than the entire observation period, given 142 
that some species are sampled over slightly different intervals). Right: Elevational gain estimated from a 143 
linear model, 1900 to 2000 (y-axis), on a 1:1 elevational “gradient” (x-axis gives initial estimated 144 
elevational position). Red arrows indicate species for which temporal trends were statistically significant 145 
(p < 0.05). 146 
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Data and Code Availability 149 
 150 

No original data is used in this study. The study is fully reproducible with all code available on Github 151 
(github.com/cjcarlson/anophelev). 152 
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Supplementary Information 237 

Figure S1. Sampling over time in the Kyalo et al. dataset. 238 
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