
i
i

“article” — 2020/3/2 — 11:18 — page 1 — #1 i
i

i
i

i
i

PREPRINT

yacrd and fpa: upstream tools for long-read genome assembly
Pierre Marijon 1,∗, Rayan Chikhi 2 and Jean-Stéphane Varré 3

1Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France.
2Institut Pasteur, C3BI USR 3756 IP CNRS, Paris, France
3Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL, F-59000 Lille, France.
∗To whom correspondence should be addressed.

Abstract

Motivation: Genome assembly is increasingly performed on long, uncorrected reads. Assembly quality
may be degraded due to unfiltered chimeric reads; also, the storage of all read overlaps can take up to
terabytes of disk space.
Results: We introduce two tools, yacrd and fpa, preform respectively chimera removal , read scrubbing,
and filter out spurious overlaps. We show that yacrd results in higher-quality assemblies and is one
hundred times faster than the best available alternative.
Availability: https://github.com/natir/yacrd and https://github.com/natir/fpa

Contact: pierre.marijon@inria.fr
Supplementary information: Supplementary data are available online.
Acknowledgements: This work was supported by Inria and the INCEPTION project (PIA/ANR-16-CONV-
0005). The authors thank Maël Kerbiriou for algorithmic help.

1 INTRODUCTION
Third-generation DNA sequencing (PacBio, Oxford Nanopore) is
increasingly becoming a go-to technology for the construction
of reference genomes (de novo assembly). New bioinformatics
methods for this type of data are rapidly emerging.

Some long-read assemblers perform error-correction on reads
prior to assembly. Correction helps reduce the high error rate of
third-generation reads and make assembly tractable, but is also
a time and memory-consuming step. Recent assemblers (e.g. Li
(2016); Ruan and Li (2019) among others) have found ways to
directly assemble raw uncorrected reads. Here we will therefore
focus only on correction-free assembly. In this setting, assembly
quality may become affected by e.g. chimeric reads and highly-
erroneous regions1, as we will see next.

The DASCRUBBER program2 introduced the concept of read
”scrubbing”, which consists of quickly removing problematic
regions in reads without attempting to otherwise correct bases.
The idea is that scrubbing reads is a more lightweight operation
than correction, and is therefore suitable for high-performance
and correction-free genome assemblers. DASCRUBBER performs
all-against-all mapping of reads and constructs a pileup for each
read. Mapping quality is then analyzed to determinate putatively
high error rate regions, which are replaced by equivalent and
higher-quality regions from other reads in the pileup. MiniScrub
(LaPierre et al., 2018) is another scrubbing tool that uses a modified
version of Minimap2 (Li, 2017) to record positions of the anchors
used in overlap detection. For each read, MiniScrub converts

1 https://dazzlerblog.wordpress.com/2015/11/06/intrinsic-quality-values/
2 https://dazzlerblog.wordpress.com/2017/04/22/1344/

anchors positions to an image. A convolutional neural network then
detects and removes of low quality read regions.

Another problem that is even more upstream of read scrubbing is
the computation of overlaps between reads. The storage of overlaps
is disk-intensive and to the best of our knowledge, there has never
been an attempt at optimizing its potentially high disk space.

In this paper we present two tools that together optimize the
early steps of long-read assemblers. One is yacrd (Yet Another
Chimeric Read Detector) for fast and effective scrubbing of reads,
and the other is fpa (Filter Pairwise Alignment) which filters
overlaps found between reads.

2 MATERIALS & METHODS
Similarly to DASCRUBBER and MiniScrub, yacrd is based
on the assumption that low quality regions of reads are not well-
supported by other reads. But unlike other tools, yacrd uses only
approximate positional mapping information given by Minimap2,
which avoids the time-expensive alignment step. This comes at the
expense of not having base-level alignments, but this will turn out
to be sufficient for performing scrubbing.

The yacrd algorithm proceeds as follows: all-against-all read
mapping is performed using Minimap2, and a base coverage
profile is computed for each read. Reads are split at any location
where coverage drops below a certain threshold, and the low-
coverage region is removed entirely. A read is completely discarded
if a significant portion of its length (e.g. 40%) is below the coverage
threshold. Figure 1 illustrates the process.yacrd time complexity
is linear in the number of overlaps.
yacrd performance is directly linked to the overlapper

performance. We tuned a Minimap2 parameter (the maximal
distance between two minimizers, -g parameter) to find similar

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 2, 2020. ; https://doi.org/10.1101/674036doi: bioRxiv preprint

https://doi.org/10.1101/674036
http://creativecommons.org/licenses/by/4.0/

i
i

“article” — 2020/3/2 — 11:18 — page 2 — #2 i
i

i
i

i
i

Marijon et al.

dataset scrubber # reads # bases (Mbp) Error rate N50 # chimeras # adaptors Time Memory (MB)
ERR3500074 raw 137,155 559 15.41 4398 15111 ∅ ∅ ∅
(Sequel) yacrd 0.99x 0.93x 0.98x 0.94x 0.82x ∅ 2m25s 7,867

DASCRUBBER 0.91x 0.83x 0.91x 0.9x 0.64x ∅ 40m02s 35,271
SRR8494940 raw 158,050 1,621 15.39 20189 2353 247574 ∅ ∅
(ONT) yacrd 1.06x 0.95x 0.95x 0.89x 0.21x 0.18x 1m56s 1,249

DASCRUBBER 0.89x 0.92x 0.83x 1.01x 0.17x 0.16x 2h38m12s 32,325
SRR8494911 raw 200,658 1.425 16.06 9052 40949 ∅ ∅ ∅
(RSII) yacrd 0.98x 0.72x 0.87x 0.83x 0.04x ∅ 1m04s 792

DASCRUBBER 0.93x 0.70x 0.77x 0.83x 0.009x ∅ 1h35m44s 15,443
H. sapiens chr1 raw 1,075,738 7,256 21.20 10,568 25888 959505 ∅ ∅
(ONT) yacrd 0.99x 0.84x 0.91x 0.93x 0.24x 0.10x 28 m 16 s 39,691

DASCRUBBER 0.77x 0.73x 0.78x 0.93x 0.06x 0.33x 2 d 8 h 25 m 14 s 42,120
C. elegans raw 408,988 4,729 12.58 16671 35483 ∅ ∅ ∅
(RSII) yacrd 1.07x 0.94x 0.95x 0.94x 0.25x ∅ 11 m 10 s 19,084

DASCRUBBER 0.91x 0.85x 0.82x 0.95x 0.15x ∅ 14 h 48 m 23 s 43,274
D. melanogaster raw 440,491 4,456 18.02 11934 8992 343029 ∅ ∅
(ONT) yacrd 1.03x 0.89x 0.91x 0.86x 0.66x 0.17x 26m50s 24,009

DASCRUBBER 0.79x 0.76x 0.76x 0.97x 0.57x 0.37x 1d0h11m24s 28,845
Table 1. Performance of yacrd compared to DASCRUBBER on six representative datasets. # reads (resp. # bases) indicates the number of raw reads
(resp. bases) or kept after scrubbing. Error rate is computed by running samtools stats after bwa-mem mapping of reads against reference. # chimera
indicates the number of chimeric reads detected in the dataset using Minimap2 (see Supplementary Section 4). # adaptors indicates the sum the number
of adaptors found by Porechop at start/end of reads. Time and memory indicate respectively the wall-clock running time and peak RAM usage of yacrd
and DASCRUBBER. Numbers in bold indicate best performance per dataset, nothing that deciding what is better for # reads, # bases and N50 is unclear.

A

B

overlap

yacrd

A

B

report

chimeric other

A
.....

B
.....

filtering

A′ A′′

B

splitting

A′

A′′

B

scrubbing

Fig. 1. yacrd takes as input alignments and determines regions in reads that
are sufficiently covered by alignments (grey boxes). yacrd then selectively
perform i) chimeric reads filtering, ii) reads splitting, iii) keeping only high-
confidence read regions (scrubbing).

regions between reads and not to create bridges over low quality
regions (see Supplementary Section 3). yacrd takes reads and their
overlaps as inputs, and produces scrubbed reads, as well as a report.
fpa operates between the overlapper and the assembler. It is the

first stand-alone tool capable of filtering out alignments based on
a highly customizable set of parameters: e.g. alignments length,
length of reads, reads names (see Figure 2). fpa can identify
self-overlaps, end-to-end overlaps, containment overlaps, internal
matches (when e.g. two reads share a repetitive region) as defined in
(Li, 2016). fpa supports the PAF or BLASR m4 formats as inputs
and outputs, with optional compression. fpa can also rename reads,
generate an index of overlaps and output an overlap graph in GFA1
format.

alignments fpa classification
type: dovetail
length: 500

type: dovetail
length: 2000

type: containment
length: 800

type: internal match
length: 700

kept overlaps

Fig. 2. fpa analyzes each alignment separately and can filter baed on type
(dovetail, containment, internal match), length, read length or read ID. In this
example fpa kept only dovetail overlaps longer than 1 kbp.

yacrd and fpa are evaluated on 61 bacterial datasets from
the NCTC database and from Maio et al. (2019) (details provided
in Supplementary Section 1), representative of three long-read
technologies: Oxford Nanopore (ONT), PacBio Sequel, PacBio
RSII, as well as 3 eukaryotic datasets: H. sapiens chromosome
1 ONT ultra-long reads (from Jain et al. (2018)), C. elegans
RSII reads3, and D. melanogaster Oxford Nanopore (ONT). All
tools were run with recommended parameters (see Supplementary
Section 2).

Scrubbed reads were then assembled using both Miniasm
and Wtdbg2 with recommended parameters for each sequencing
technology. We compared yacrd with DASCRUBBER, and also
executed MiniScrub. The latter took more than a day to run
(without GPU support) on many bacterial datasets, and also it is

3 github.com/PacificBiosciences/DevNet/wiki/C.
-elegans-data-set

2

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 2, 2020. ; https://doi.org/10.1101/674036doi: bioRxiv preprint

https://doi.org/10.1101/674036
http://creativecommons.org/licenses/by/4.0/

i
i

“article” — 2020/3/2 — 11:18 — page 3 — #3 i
i

i
i

i
i

yacrd and fpa: upstream tools for long-read genome assembly

Bacterial datasets NGA50 (# improved) Longest Alignment (# improved) Cumulative relocations lengths (# improved)
Technology # datasets Scrubber Miniasm Wtdbg2 Miniasm Wtdbg2 Miniasm Wtdbg2
Sequel 22 yacrd 15 8 14 9 13 11
Sequel 21 DASCRUBBER 18 10 16 12 11 15
ONT 19 yacrd 18 11 15 12 11 9
ONT 19 DASCRUBBER 19 17 18 13 13 11
RSII 20 yacrd 19 13 17 16 14 16
RSII 20 DASCRUBBER 20 19 20 17 11 19

Eukaryotic datasets NGA50 (ratio/raw) Longest Alignment (ratio/raw) Cumulative relocations lengths (ratio/raw)
H. sapiens chr1 raw 96 kbp 1,643 kbp 857 kbp 9,267 kbp 4,779 kbp 4,088 kbp
(ONT) yacrd 5.14x 4.62x 4.65x 4.47x 1.11x 0.94x

DASCRUBBER 0.99x 0.37x 0.89x 0.48x 0.71x 0.6x
C. elegans raw 409 kbp 537 kbp 1,382 kbp 1,382 kbp 354 kbp 245 kbp
(RSII) yacrd 1.04x 1.04x 1.34x 1.23x 0.8x 0.8x

DASCRUBBER 1.24x 1.04x 1.37x 1.27x 0.55x 0.6x
D. melanogaster raw 838 kbp 1,106 kbp 5,193 kbp 5,454 kbp 664 kbp 574 kbp
(ONT) yacrd 1.17x 0.93x 0.79x 1.03x 0.82x 0.97x

DASCRUBBER 0.75x 0.62x 0.65x 0.62x 0.83x 0.9x
Table 2. Performance of yacrd compared to DASCRUBBER on 64 datasets. For each dataset we report the ratio of metric X on the assembly done after
yacrd (resp. DASCRUBBER) over metric X on the assembly done on raw reads, where X is either NGA50, largest alignment, or cumulative relocation length.
For the bacterial datasets, we report the number of times the ratio is above 1, i.e. the number of times the metric on the assembly done after yacrd (resp.
DASCRUBBER) is strictly larger (for NGA50 and longest alignment, and smaller for cumulative relocations length) than the metric on the assembly done on
raw reads. For one of Sequel bacterial datasets, DASCRUBBER could not be executed.

only tailored to Nanopore data, therefore it was excluded from our
benchmark. We used Porechop4 on all Nanopore datasets as a
baseline number of adapters in reads.

3 RESULT & DISCUSSION
Table 1 presents the results of yacrd and DASCRUBBER on 3
representative bacterial datasets of each sequencing technology, as
well as the 3 eukaryotic datasets.

The main feature of yacrd is its short execution time, two orders
of magnitude smaller than DASCRUBBER. In our tests, up to half
of the execution time of yacrd is spent running Minimap2. Both
scrubbers significantly reduce the number of chimeras in reads, with
variable performance across datasets. DASCRUBBER tends to do a
better job than yacrd at removing chimeras, but at the expense of
discarding more reads and bases in reads. Across all datasets, the
number of adapters is reduced by 72-94% with yacrd and 62-95%
with DASCRUBBER. Read error rate is also marginally improved by
9-24%, yet this is not the main goal of these tools.

We next evaluate whether running yacrd results in higher-
quality assemblies (Table 2). Both yacrd and DASCRUBBER
overall improve NGA50 and reduce misassemblies (measured by
the cumulative lengths of relocations) in Miniasm and Wtdbg2
assemblies, compared to direct assembly of unscrubbed raw reads.
Across nearly all datasets yacrd improves the NGA50 metric
moreso than DASCRUBBER (except with the C. elegans dataset).
We note that Wtdbg2 contains steps that have a similar effect as
yacrd, which explains why assembly metrics are not improved as
significantly as with Miniasm.

On the H. sapiens and C. elegans datasets, DASCRUBBER
reduces the total relocation length by a factor of 30-36% more

4 https://github.com/rrwick/Porechop/

than yacrd. However, given that all assemblies in Table 1
completed in less than an hour and DASCRUBBER took up to 2
days, running this tool on larger datasets would become a significant
performance bottleneck. In Supplementary Section 3 we examine
the behavior of yacrd across its parameter space. We observe that
different parameters worked best for different technologies. Our
recommended parameters are: -g 500 -c 4 for ONT, -g 800
-c 4 for PacBio RSII, -g 5000 -c 3 for Sequel, where -g
is the maximal distance between Minimap2 seeds, and -c is the
minimal coverage threshold for keeping portions of reads.
fpa reduced the size of the reads self-alignments file (PAF file

produced by Minimap2) by 40-79% on the evaluated datasets,
without any significant effect on quality assembly. As a consequence
this reduces the memory usage of Miniasm by 13-67%. Other
performance metrics are presented in Supplementary Table 1.

Finally, we examine the effect of combining both yacrd
and fpa. We propose a pipeline based on Miniasm (see
Supplementary Section 7) and show, across 5 datasets, that
it consistently improves assembly contiguity, yields comparable
assembly size, reduces mismatches and indels, reduces misassemblies,
at the cost of a ≈ 2x increase in running time.

REFERENCES
Jain, M. et al. (2018). Nanopore sequencing and assembly of a

human genome with ultra-long reads. Nature Biotechnology,
36(4), 338–345.

LaPierre, N. et al. (2018). MiniScrub: de novo long read scrubbing
using approximate alignment and deep learning. bioRxiv.

Li, H. (2016). Minimap and miniasm: fast mapping and de novo
assembly for noisy long sequences. Bioinformatics, 32(14),
2103–2110.

3

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 2, 2020. ; https://doi.org/10.1101/674036doi: bioRxiv preprint

https://doi.org/10.1101/674036
http://creativecommons.org/licenses/by/4.0/

i
i

“article” — 2020/3/2 — 11:18 — page 4 — #4 i
i

i
i

i
i

Marijon et al.

Li, H. (2017). Minimap2: pairwise alignment for nucleotide
sequences.

Maio, N. D. et al. (2019). Comparison of long-read sequencing
technologies in the hybrid assembly of complex bacterial

genomes. bioRxiv.
Ruan, J. and Li, H. (2019). Fast and accurate long-read assembly

with wtdbg2. bioRxiv.

4

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted March 2, 2020. ; https://doi.org/10.1101/674036doi: bioRxiv preprint

https://doi.org/10.1101/674036
http://creativecommons.org/licenses/by/4.0/

