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22 Abstract 

23 Ingestion of the polyol mannitol caused sex-biased mortality in adult Drosophila melanogaster, 

24 but larval mortality was not sex-biased. High-sugar diets prolong development and generate 

25 smaller adult body sizes in D. melanogaster. We hypothesized that mannitol ingestion would 

26 generate similar developmental phenotypes as other high-carbohydrate diets. We predicted 

27 concentration-dependent effects on development similar to high-sugar diets when D. 

28 melanogaster larvae are fed mannitol, as well as a concentration-dependent amelioration of 

29 developmental effects if introduction to mannitol media is delayed past the third instar. Both 

30 male and female larvae had prolonged development and smaller adult body sizes when fed 

31 increasing concentrations of mannitol. Mannitol-induced increases in mortality were 

32 concentration dependent in 0 M to 0.8 M treatments beginning as early as 48 hours post-

33 hatching. Larval survival, and pupation and eclosion times, were normal in 0.4 M mannitol 

34 treatments when larvae were first introduced to mannitol 72 hours post-hatching (the beginning 

35 of the third-instar); the adverse mannitol effects occurred in 0.8 M mannitol treatments, but at a 

36 lower magnitude. Female D. melanogaster adults prefer laying eggs on diets with high sugar 

37 concentrations, despite the negative effects on offspring performance. However, when given a 

38 choice, female D. melanogaster avoided laying eggs on mannitol-containing media that was 

39 otherwise identical to the control media, suggesting females perceived and avoided mannitol. In 

40 conclusion, the developmental effects of a larval mannitol diet closely resemble those of high-

41 sugar diets, but adult female oviposition responses to mannitol in laying substrates are distinct 

42 from responses to other carbohydrates. 

43
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44 Introduction 

45 Developmental duration and body size are controlled by three related variables in 

46 holometabolous insects: growth rate, critical weight (the point at which the developmental period 

47 is no longer affected by resource levels), and the interval to the cessation of growth [1,2]. 

48 Because they are controlled by the same three parameters, a direct, positive relationship is 

49 expected and typically observed between developmental duration and body size [3–8]. 

50 However, some environmental variables can differently affect growth rate, critical 

51 weight, and interval to the cessation of growth, causing neutral or even negative relationships to 

52 occur between body size and development time [2,4]. High-carbohydrate diets, specifically 

53 sucrose and glucose, affect insect growth and development. High-sugar diets disrupt the 

54 insulin/TOR signaling pathway through increased circulating trehalose levels [9,10]. High-sugar 

55 fed D. melanogaster adults are a model system for studying metabolic phenotypes associated 

56 with insulin resistance and diabetes [9–15]. At the larval stage, high-sugar diets lead to delays in 

57 adult eclosion (due to delayed onset of pupation, but not prolonged pupation periods), reduced 

58 survival, and smaller pupal case volumes and lower adult dry mass [10,16–19].

59 Mannitol, a non-sugar polyol carbohydrate, prolonged development when fed to D. 

60 melanogaster larvae [20], and larvae fed mannitol were smaller than control larvae of the same 

61 age (Fiocca and Barrett, personal observation). Mannitol is a sugar alcohol and isomer of 

62 sorbitol. It is produced naturally as a product of fermentation and is found commonly in plants, 

63 bacteria, and fungi [21–23]. Mannitol is used as a low-calorie sweetener, sweetening foods 

64 without increasing blood glucose levels or insulin in humans [24,25]. However, ingestion and 

65 breakdown of mannitol by Tribolium castaneum beetles increased hemolymph trehalose levels, 
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66 indicating mannitol may be a nutritive source of dietary carbohydrates in some insect taxa 

67 [26,27]. We hypothesized that mannitol ingestion during D. melanogaster development would 

68 generate phenotypes similar to those produced by high sugar diets [10,17,18]. The ability of 

69 polyols to disrupt development has not been studied, and identifying additional compounds that 

70 affect insect development can further our understanding of the pathways that connect growth 

71 rate, developmental timing, and body size in insects. 

72 The timing of high-carbohydrate diet introduction to larvae is important in determining 

73 its effects, particularly pre- and post-critical weight [10,28]. Third instar larvae fed a high-sugar 

74 diet showed lower transcriptional changes in the expression of genes associated with glucose 

75 transport and metabolism, lipid synthesis and storage, trehalose synthesis and stability, and 

76 oxidative stress when compared to first instar larvae continuously fed sucrose [10]. We 

77 hypothesized that delaying mannitol introduction to larvae until the third instar would reduce the 

78 severity of mannitol’s developmental effects in larvae fed high molarity mannitol media. 

79 Female D. melanogaster choose high-carbohydrate (sucrose) oviposition sites, even when 

80 these sites detrimentally affect the fitness of their offspring [16]. However not all carbohydrates 

81 induce this same response; notably, high-carbohydrate erythritol substrates did not affect 

82 oviposition choice compared to lower-carbohydrate substrates [29]. The impact of mannitol, 

83 found in both fresh and rotting fruits due to microbial fermentation, on oviposition choice has not 

84 been explored [23,30].

85 In this study, we quantified the effect of mannitol feeding as a larva on adult body size, 

86 measured by thorax length. We assessed the effects of increasing concentrations of dietary 

87 mannitol on D. melanogaster larval survival, and pupation and eclosion times. We analyzed if 

88 developmental delays were due to a delay in the onset of pupation, and/or prolonged time in the 
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89 pupal stage. We also evaluated if delaying mannitol introduction to larvae by 72 hours, or 

90 approximately the early third instar [31], could reduce or eliminate the developmental effects of 

91 decreased survival and prolonged developmental duration. We assessed if adult females differed 

92 in the preference for control vs. mannitol media for oviposition sites. Mannitol ingestion during 

93 the larval stage is a rare example of environmental substrate variation that can decouple the 

94 typical positive relationship between development duration and body size; the effects were 

95 concentration-dependent and developmental stage-dependent. We discuss the similarities 

96 between larval mannitol diets and high-sugar diets, and hypothesize that the insulin signaling 

97 pathway is a possible mechanism for mannitol’s developmental effects. 

98 Methods and materials

99 Culturing Drosophila

100 Wild-type (Canton S) D. melanogaster (Bloomington Drosophila Stock Center) were raised to 

101 adulthood on standard Drosophila media for laboratory culturing and reared in an insect growth 

102 chamber at 27.5 ˚C, 50 % relative humidity, with a 12-h:12-h photoperiod [32]. These conditions 

103 were used to rear adults and for all larval experiments. Standard media was prepared in 100 ml 

104 batches as follows: 9.4 g cornmeal, 3.77 g yeast, 0.71 g agar, 0.746 ml Propionic acid, 1.884 ml 

105 Tegosept (10 % w/v methyl p-hydroxybenzoate in 95 % ethanol), and 9.42 ml molasses 

106 (Genesee Scientific). The appropriate amount of mannitol (HiMedia; GRM024-500G, Lot 

107 000249743) was added, and beakers were filled with distilled water to a final volume of 100 ml. 

108 After heating the mixed ingredients to set the agar, media was poured into vials and cooled until 

109 consistency was firm and uniform. An excess of media was provided, with 10 ml in each vial.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 17, 2019. ; https://doi.org/10.1101/674192doi: bioRxiv preprint 

https://doi.org/10.1101/674192
http://creativecommons.org/licenses/by/4.0/


6

110 Testing effect of larval mannitol feeding on adult body size

111 Groups of 15 male and 15 female wild-type flies raised on standard media were placed in vials 

112 containing 0 M, 0.4 M, or 0.8M mannitol adult media (standard media recipe with no molasses) 

113 and allowed to lay for 24 hours (at which time they were removed). Nine vials were used per 

114 concentration, with a total of 405 flies of each sex. Vials were checked for newly emerged adults 

115 every twelve hours from Day 10 to Day 15, and every twenty-four hours from Day 15 to Day 24 

116 (the last day that a larva pupated in the larval plate trials). Adult flies were removed from the 

117 vials and sexed; two males and two females were randomly selected every 24 hours from each 

118 vial with adults. Selected adults were sacrificed and photographed for body size measurements 

119 (0M: n= 52 females, n= 56 males; 0.4M: n= 66 females, n= 61 males; 0.8M: n= 50 females, n= 

120 49 males). Photographs of the thorax were taken from a dorsal view at 4 X magnification using a 

121 digital camera mounted (0.7 X) on a dissecting scope. Measurements of thorax length were taken 

122 from the tip of the scutellum to the most anterior part of the mesothorax [33,34] in ImageJ using 

123 the ruler tool [35], and photographs of a stage micrometer were used to convert pixels to mm.

124 Testing effects of dietary mannitol on larval mortality and 

125 developmental delay

126 Translucent media was produced by omitting the cornmeal from the standard media recipe and 

127 lowering the amount of agar to 0.52 g/100 ml [29]. Food was poured to a depth of 3 mm in 50 

128 mm diameter petri dishes, allowing for the observation of the larvae in the food. Groups of over 

129 100 mixed male and female wild-type flies raised on standard media were placed in each of 10 

130 egg laying chambers. At the end of four hours, eggs were collected and five eggs were plated per 

131 petri dish, with mannitol concentrations from 0 to 0.8 M, at 0.2 M increments. Six petri dishes 
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132 were used per concentration (n=30 eggs/concentration). Egg hatching, mortality, pupation, and 

133 eclosion were assessed every 24 hours for 27 days using the methods detailed in [29]. Mean 

134 pr(mortality), days to pupation, and days to eclosion were calculated for each concentration and a 

135 three-parameter sigmoid curve was fitted to the data to assess LC50 prior to eclosion. 

136 Testing for a change in severity of mannitol’s developmental effects 

137 when delaying introduction to larvae by 72 hours

138 Groups of approximately 100 mixed male and female wild-type flies raised on standard media 

139 were placed in each of 10 egg laying chambers. At the end of four hours, eggs were collected and 

140 plated on 0M control translucent media where they were raised for 72 hours. After 72 hours, five 

141 larvae were plated per treatment petri dish (using translucent media), with the mannitol 

142 concentrations from 0 to 0.8 M, at 0.4 M increments. Six petri dishes were used per 

143 concentration (n=30 eggs/concentration). Larval mortality, pupation, and eclosion were assessed 

144 every 24 hours for another 22 days. Mean percent mortality, days to pupation, and days to 

145 eclosion were calculated for each concentration.

146 Testing effects of mannitol on oviposition choice

147 An oviposition choice test [29] was used to assess differences in egg laying choice between 

148 control and 0.5M mannitol media (control media, with the addition of mannitol). Groups of ten, 

149 0-24 hour old adult male and ten, 0-24 hour old female flies were reared on standard media for 

150 72 hours before being transferred to choice arenas. The arenas consisted of two vials on their 

151 sides, one containing control media and the other containing 0.5 M mannitol media, connected 

152 by a plug with a 1.5 cm diameter central tube. Flies were observed moving freely between vials. 
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153 Six treatment arenas contained a choice between 0.5 M and 0 M mannitol, while six control 

154 arenas contained a choice between two 0 M mannitol media.

155 After 72 hours on standard media, 10 male and 10 female flies were transferred to the paired vial 

156 set-ups, with 5 female and 5 male flies placed on either side of the plug. Flies were moved to a 

157 new media arena every 24 hours and eggs laid on each media were counted daily for three days 

158 (n=7,120 eggs). Vial orientation within the incubator was rotated once per day. 

159 Statistical analyses

160 Analyses were performed using SPSS v. 24, Sigmaplot v 12.5, and Graphpad v. 8.0.0 [36–38]. 

161 The effects of mannitol introduction to larvae on adult body size were analyzed using Kruskal-

162 Wallis test with Dunn’s multiple corrections for each sex. A 2-way ANOVA was used to look 

163 for an interaction effect between sex and mannitol concentration on body size. A linear 

164 regression was fitted to the data for each sex across concentrations, and the slopes and intercepts 

165 were compared in Graphpad to assess if sexes differed in body size and in the degree of 

166 mannitol’s effect on their body size. 

167 Effects of eclosion day on male or female body size within a concentration were assessed using 

168 linear regressions in GraphPad, to understand the effects of mannitol in individuals that are more 

169 or less delayed in their development within a concentration and sex. This allowed us to look for 

170 any effect of day-based sampling bias, as we did not measure every emerging adult’s body size, 

171 but only two per day of each sex in each vial. There was no significant trend within each pair of 

172 concentration and sex (e.g. 0 M + females) of emergence day on body size, except in 0.4 M 

173 males, indicating that flies emerging earlier and later within a concentration were not differently 

174 affected by mannitol and reducing the likelihood of day-based sampling bias on our results (S1 
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175 Fig; 0 M-female, F=0.47, p=0.50; 0 M-male, F=3.52, p=0.07; 0.4 M-f, F=0.80, p=0.37; 0.4 M-m, 

176 F=10.51, p=0.002; 0.8 M-f, F=0.16, p=0.69; 0.8 M-m, F= 2.00, p=0.16). The slopes of the 

177 regressions across all six concentration-sex pairs were not significantly different from one 

178 another (F=0.53, p=0.75).

179 Larval mortality data across mannitol concentrations at 48 hours, 72 hours, and pre-eclosion was 

180 assessed using survival analyses in SPSS [39], with subjects living to the end of the trial or 

181 eclosed included in the analysis as right-censored values on the final day of that test (48 hours, 

182 72 hours, and the last day of the trial respectively). Pupae that had not eclosed after at least six 

183 days at the end of the trial were marked as ‘dead’ on the final day of the trial (day 27). 

184 Differences in survival distributions across concentrations were tested using pairwise log-rank 

185 Mantel Cox tests. Three-parameter, best-fit sigmoidal function LC50 curves for larvae at 72 

186 hours, pre-pupation, and pre-eclosion were generated in Sigmaplot. To analyze any effects on 

187 survival of delaying the introduction of mannitol to larvae by 72 hours, we used a pairwise log-

188 rank Mantel Cox test (with subjects eclosed before the end of the trial included as right-censored 

189 values on day 25, and pupae that had not eclosed marked as ‘dead’ on the final day).

190 To analyze developmental delays across concentrations, we used a one-way ANOVA with 

191 Tukey’s multiple comparisons test in Graphpad. To analyze differences in time from pupation to 

192 eclosion, a one-way ANOVA with Tukey’s multiple comparisons was used. To analyze any 

193 phenotypic effects on pupation/eclosion time across replicates (n=6/concentration) by delaying 

194 the introduction of mannitol to larvae by 72 hours, we used a 2-way ANOVA and Tukey’s 

195 multiple comparisons Tests in Graphpad. Differences in the number of larvae that pupated, but 

196 did not eclose, across concentrations in the delayed-introduction treatments were analyzed using 

197 Fisher’s exact tests in Graphpad. 
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198 Oviposition choice was tested using a chi square against a 50-50 population, and against our 

199 control-control vial populations.

200 Results

201 Effects of larval ingestion of mannitol on adult body size

202 Adult female body size decreased as mannitol concentration increased, with 0.8 M emerging 

203 adults having smaller body sizes than 0 M or 0.4 M emerging adults (Fig 1, Dunn’s: 0 M-0.8 M, 

204 Z=4.44, p<0.0001; 0.4 M-0.8 M, Z=2.59, p=0.029; 0 M-0.4 M, Z=2.12, p=0.10). Male body size 

205 also decreased as mannitol concentration increased, with 0.8 M and 0.4 M emerging adults 

206 having smaller body sizes than 0 M emerging adults (Fig 1, Dunn’s: 0 M-0.8 M, Z=4.77, 

207 p<0.0001; 0 M-0.4 M, Z=4.12, p=0.0001; 0.4 M-0.8 M, Z=0.88, p>0.99). For females, the linear 

208 regression of mannitol concentration on body size was y=-0.04930x+1.022 (F=21.7, p<0.0001, 

209 R2=0.12); for males, y=-0.04644x+0.8992 (F=26.90, p<0.0001, R2=0.14). The slopes did not 

210 differ between males and females (F=0.04, p=0.84) indicating increasing mannitol concentration 

211 did not affect one sex’s body size differently than the other (2-way ANOVA: interaction effect, 

212 F=1.07, df=2, p=0.34). The intercepts were significantly different (F=792.6, p<0.0001) 

213 indicating females had larger body sizes than males at all concentrations (2-way ANOVA: sex, 

214 F=769.2, df=1, p<0.0001). 

215

216 Fig 1. Concentration-dependent decreases in body sizes of adult D. melanogaster fed 

217 mannitol as larvae. Boxplots showing thorax lengths of males and females across increasing 

218 concentrations of mannitol; ingesting increasing mannitol concentration as larvae significantly 

219 decreases thorax lengths in emerging adults. Letters indicate significant differences between 
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220 treatments (Dunn’s: p<0.05). Linear regressions show larval ingestion of increasing mannitol 

221 concentrations decreases emerging adult thorax lengths in males and females [females: y=-

222 0.04930x+1.022 (F=21.7, p<0.0001, R2=0.12); for males, y=-0.04644x+0.8992 (F=26.90, 

223 p<0.0001, R2=0.14)]. 

224 Concentration-dependent developmental delay prior to the onset of 

225 pupation and reductions in survival

226 Developmental delay

227 Time to pupation was significantly increased in the 0.4 M, 0.6 M, and 0.8 M conditions as 

228 compared to controls (Fig 2, ANOVA with Tukey’s: 0.4 M, q=8.61, p<0.0001; 0.6 M, q=14.35, 

229 p<0.0001; 0.8 M, q=8.97, p<0.0001), but not the 0.2 M condition (q=3.15, p=0.18). Time to 

230 adult eclosion was significantly increased in all the treatment conditions as compared to controls 

231 (ANOVA with Tukey’s: 0.2 M, q=4.11, p=0.04; 0.4 M, q=8.96, p<0.0001; 0.6 M, q=14.85, 

232 p<0.0001; 0.8 M, q=11.52, p<0.0001). However, the time between pupation and eclosion was 

233 not significantly different from controls in any mannitol treatment (S2 Fig, ANOVA: F=1.04, 

234 p=0.39), indicating the major cause of eclosion delay was a delay in the onset of pupation. 

235

236 Fig 2. Concentration-dependent developmental delay in D. melanogaster larvae fed 

237 increasing concentrations of mannitol. (left) Time to pupation in D. melanogaster larvae was 

238 significantly increased in 0.4 M-0.8 M conditions as compared to 0.2 M and control conditions. 

239 Letters indicate highly significant differences between concentrations (ANOVA with Tukey’s, 

240 p<0.05). (right) Time to eclosion in D. melanogaster pupae was significantly increased in 0.2 
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241 M-0.8 M conditions. Letters indicate significant differences between concentrations (ANOVA 

242 with Tukey’s, p<0.05). Error bars represent one standard deviation.

243 Reduced survival

244 We next assessed the effect of mannitol on D. melanogaster larval and pupal mortality. Mortality 

245 was concentration dependent for D. melanogaster larvae and pupae when assessed prior to 

246 eclosion, with 0.4 M, 0.6 M, and 0.8 M treatments showing a significant difference from the 

247 control (S3 Fig, Mantel-Cox: 0.2 M, X2=0.28, p=0.60; 0.4 M, X2=9.40, p=0.002; 0.6 M, 

248 X2=23.53, p<0.001; 0.8 M, X2=19.41, p<0.001). 

249 Highly significant differences in larval mortality occurred as early as 48 hours after egg laying in 

250 the 0.6 M and 0.8 M (Fig 3, Mantel-Cox: 0.6 M, X2=5.24, p=0.022; 0.8 M, X2=10.39, p=0.001) 

251 and 72 hours after egg laying in the 0.4 M, 0.6 M, and 0.8 M (Mantel-Cox: 0.4 M, X2=4.47, 

252 p=0.035; 0.6 M, X2=11.81, p=0.001; 0.8 M, X2=11.88, p=0.001). 

253

254 Fig 3. Proportion of larvae dead after mannitol ingestion at different time points during 

255 development. Proportion of D. melanogaster larvae dead at 72 hours after egg lay, prior to 

256 pupation (inclusive of deaths at 72 hours), and prior to eclosion (inclusive of 72 hour and prior to 

257 pupation deaths), across increasing concentrations of mannitol. The three-parameter best-fit 

258 sigmoidal functions are shown, and the function for pre-eclosion mortality was used to calculate 

259 the LC50 for D. melanogaster prior to eclosion (0.36 M mannitol). 

260 The best-fit sigmoidal curve for pre-eclosion LC50 data was:

261 Pr(Pre-eclosion mortality) = 0.7765/(1+e(-([mannitol]-0.3019)/0.0984))
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262 This curve was a significant fit to the data (Fig 3; R2=0.96, p=0.039) and using the equation we 

263 found the pre-eclosion LC50 to be 0.36 M mannitol. 

264 In 0.4 M and 0.6 M treatments, there were significant increases in the proportion of larvae that 

265 died prior to eclosion but after pupation, compared to both 0 M (Fig 6, Fisher’s: 0.4 M, 

266 p=0.0015; 0.6 M, p=0.0046) and 0.2 M (0.4 M, p=0.0023; 0.6 M, p=0.0062); 0 M and 0.2 M 

267 were not different from one another (p>0.99). 0.8 M treatments were not significantly different, 

268 but this may be an effect of small sample size due to decreased survival during the larval stage in 

269 this treatment (n=9 pupae, Fisher’s: 0 M, p=0.08; 0.2 M, p=0.09). 

270 Concentration-dependent reduction of mannitol’s developmental 

271 effects by delaying mannitol introduction to larvae for 72 hours

272 Partial rescue of developmental delays

273 Introducing larvae to mannitol after 72 hours [72-hour plates] significantly decreased pupation 

274 and eclosion times in the 0.4 M treatment (Fig 4a; ANOVA with Tukey’s, pupation, q=12.71, 

275 p<0.0001; eclosion time, q=7.94, p<0.0001), and the 0.8 M treatment (pupation time: q=7.02, 

276 p<0.0001; eclosion time: q=5.23, p=0.0047) as compared to plates where larvae were fed the 

277 same concentration of mannitol from hour 0 after egg lay. 

278 Pupation and eclosion times were no longer significantly different from 0 M conditions in the 0.4 

279 M 72-hour plates (Fig 4b; ANOVA with Tukey’s, pupation, q=2.00, p=0.72; eclosion, q=2.82, 

280 p=0.35). Pupation and eclosion times were still significantly longer than controls in 0.8 M 72-

281 hour plates (pupation: q=9.30, p<0.0001; eclosion: q=9.20, p<0.0001).

282
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283 Fig 4. Differences in developmental delay when mannitol introduction is introduced after 

284 72 hours. (a) Pupation and eclosion times in D. melanogaster larvae were significantly 

285 decreased in 0.4 M and 0.8 M conditions when larvae were first placed on mannitol 72 hours 

286 after egg lay. Stars indicate significant differences between 0 hour and 72-hour plates (Tukey’s, 

287 ns=not significant, **=p<0.01, ***=p<0.001). Error bars represent one standard deviation. (b) 

288 Pupation and eclosion times were not significantly different between 0 M and 0.4 M treatments 

289 when larvae were first placed on mannitol 72 hours after egg lay; larvae fed 0.8 M mannitol after 

290 72 hours still had prolonged pupation and eclosion times. Stars indicate significant differences 

291 between 0 hour and 72-hour plates (Tukey’s, ns= not significant, ****=p<0.0001). Error bars 

292 represent one standard deviation.

293 Partial rescue of larval survival

294 Waiting 72 hours before introducing larvae to mannitol media also significantly increased 

295 survival to eclosion across replicates at 0.4 M and 0.8 M (Fig 5a, Mantel-Cox: 0.4 M, X2=8.91, 

296 p=0.003; 0.8M, X2=6.80, p=0.009). In the 0.4 M 72-hour plates, survival was no longer 

297 significantly different from 0 M treatment (Fig 5b; X2=0.00, p=0.986). The 0.8 M 72-hour plates 

298 treatments were still significantly different from 0 M (X2=8.03, p=0.005).

299

300 Fig 5. Concentration-dependent partial rescue of survival when mannitol is introduced 

301 after 72 hours. (a) When mannitol introduction to D. melanogaster larvae is delayed by 72 

302 hours, 0.4 M and 0 M treatments no longer differ in their survival while 0.8 M treatments still 

303 have significantly decreased survival compared to controls. Stars indicate significant differences 

304 between 0 hour and 72-hour plates (Mantel-Cox, ns=not significant, **=p<0.01). Error bars 

305 represent one standard deviation. (b) Pre-eclosion survival was significantly increased in 0.4 M 
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306 and 0.8 M conditions when larvae were first placed on mannitol media after 72 hours instead of 

307 at hour 0 (egg lay). Stars indicate significant differences between control and 72-hour treatments 

308 (Mantel-Cox, ns=not significant, **=p<0.01). Error bars represent one standard deviation. 

309 The percent of pupae that did not eclose significantly decreased in 0.4 M treatments when 

310 mannitol introduction was delayed by 72 hours, but no significant difference was found between 

311 0 hour and 72 hour mannitol introduction in 0.8 M treatments (Fig 6, Fisher’s: 0.4 M, p=0.017; 

312 0.8 M, p>0.99). The percent of pupae that did not eclose in 0.4 M 72-hour plates was not 

313 significantly different from 0 M controls (Fisher’s: p>0.99). 

314

315 Fig 6. Concentration-dependent eclosion failure, and change in eclosion failure due to 

316 delayed mannitol introduction, across increasing concentrations of mannitol. Percent of 

317 larvae that pupated but failed to eclose across increasing concentrations of mannitol (0 M-0.8 M) 

318 and in 0.4 M and 0.8 M 72-hour plate treatments. Letters indicate highly statistically significant 

319 differences between treatments (Fisher’s: p<0.01). Stars indicated significant differences 

320 between 72 hour and 0 hour plates of the same concentration (Fisher’s: ns=not significant, 

321 *=p<0.05).

322 Mannitol avoidance in female oviposition choice assays

323 The number of eggs laid in the 0.5 M mannitol vials of the mannitol-control choice arenas was 

324 significantly lower than expected when compared to a 50-50 population of the same number, or 

325 to either side of the control-control arenas (Fig 7, Chi square: 0.5 M vs 50-50, X2=514.0, 

326 p<0.0001; 0.5 M vs 0 M left side, X2=600.8, p<0.0001 or vs 0 M right side, X2=392.3, 

327 p<0.0001). 24.7 % of the total eggs were laid in the mannitol side.

328
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329 Figure 7. Adult females avoid laying eggs on mannitol foods in choice arenas. Females laid 

330 more eggs on control media than 0.5 M mannitol media in mannitol-control choice arenas 

331 (n=7,120 eggs; Chi square, ***= p<0.0001). 

332 Discussion 

333 Several recent studies support the idea that the positive relationship between body size 

334 and developmental duration can be reversed due to variable diets, even across different insect 

335 taxa [17,40–42]. The phenotypic effects of a mannitol diet on this relationship in D. 

336 melanogaster are similar to the effects of high-sugar diets, produced via disrupting the insulin-

337 signaling pathway [10,12,17,18]. Mannitol increased D. melanogaster developmental duration 

338 and decreased emerging adult body size in a concentration-dependent manner. Increased 

339 developmental duration was a result of delayed onset of pupation, not prolonged pupal 

340 metamorphosis. Stage of larval development when mannitol was introduced (first or third larval 

341 instar) and mannitol concentration influenced the severity of mannitol’s phenotypic effects; 0.4 

342 M mannitol introduced at 72 hours no longer affected development time or survival, but 0.8 M 

343 mannitol still had significant, if lessened, effects. These phenotypic effects are consistent with 

344 those of high-sugar diets that generate smaller adult body sizes and prolonged development prior 

345 to the onset of pupation [10,17,18]; as with mannitol, the high-concentration sugar diets have 

346 stronger effects earlier in larval development (prior to the third instar) [10] . Females avoided 

347 mannitol foods as oviposition substrates despite the heightened carbohydrate concentration, 

348 indicating that mannitol (a product of microbial fermentation) may provide important 

349 information about oviposition site quality to females [16].
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350 Models of the independent effects of growth rate, critical weight, and the interval to the 

351 cessation of growth on the relationship between body size and developmental duration in 

352 Manduca sexta indicate that variation in growth rate can lead to a negative relationship 

353 (decreasing body size while increasing developmental duration), while variations in interval to 

354 the cessation of growth and critical weight generally lead to positive relationships [4,43]. Critical 

355 weight typically occurs directly after the second molt in D. melanogaster, at  approximately 72 

356 hours post-hatching [2,31]. Mannitol, when given at high concentrations only after 72 hours of 

357 development, still increased D. melanogaster developmental times, making it unlikely that 

358 mannitol decouples the positive relationship between body size and developmental duration via 

359 altering critical weight. Instead, mannitol is likely impacting growth rate and/or the interval to 

360 cessation of growth, potentially by disrupting the insulin/TOR signaling pathway which is 

361 responsible for regulating these variables in D. melanogaster [44]. 

362 In D. melanogaster, a carbohydrate-rich diet led to delays in eclosion and smaller pupal 

363 case sizes [17]. Extremely high sugar (e.g., 1 M sucrose) diets produced insulin resistance, 

364 leading to smaller wandering third instar larvae and smaller eclosed adults irrespective of protein 

365 availability, the sugar used, or osmolarity of the food medium during development [10]. In 

366 addition, high-sugar feeding led to dramatic delays in pupation [10,12], similar to what we saw 

367 in our 0.4 M - 0.8 M mannitol treatments. Delays in eclosion due to high-sugar diets affecting the 

368 insulin-signaling pathway cause delayed onset of pupation, not prolonged metamorphosis [18]; 

369 again, this is the same phenotype we saw when larvae were fed mannitol diets.

370 Feeding third instar larvae high-sugar diets for just 12 hours produced similar 

371 transcriptional effects in genes associated with glucose transport and metabolism, lipid synthesis 

372 and storage, trehalose synthesis and stability, and oxidative stress compared to larvae being fed 
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373 high-sugar diets since egg lay, just with lower fold-changes in expression [10]. We observed that 

374 third instar larvae fed 0.4 M mannitol had normal developmental durations, while third instar 

375 larvae fed 0.8 M mannitol had only partially alleviated mannitol’s developmental effects. Lower, 

376 but still significant, levels of gene expression changes in third instar larvae due to the 

377 introduction of high-sugar diets may explain how mannitol’s developmental effects were not 

378 completely restored to normal at the highest concentrations (0.8 M), even when mannitol 

379 introduction was delayed to the third instar.

380 Because concentrations of all non-mannitol carbohydrates were kept the same in larval 

381 foods, D. melanogaster would need to be able to metabolize mannitol in order for it to increase 

382 levels of trehalose in the hemolymph like the other, metabolizable sugars (glucose and sucrose) 

383 used in previous studies. No studies have examined if D. melanogaster, or its common gut 

384 microbes, can metabolize mannitol, but recent work on another insect, Tribolium castaneum, 

385 shows that adult females have higher trehalose levels in the hemolymph after feeding on 

386 mannitol [26]. Circulating trehalose is responsible for TOR activation in D. melanogaster fat 

387 bodies, contributing to cell growth during development; mannitol’s catalysis to trehalose may be 

388 responsible for mediating its effects on growth rate and the interval to the cessation of growth via 

389 the insulin/TOR signaling pathway similar to other carbohydrates [11,45].

390 The insulin/TOR signaling pathway regulates development in response to nutrients, and 

391 disruptions of this pathway are known to affect body size and developmental duration 

392 [19,44,46,47]. Genetic defects in the insulin signaling pathway (including dILPs, Drosophila 

393 insulin-like proteins), reduced insulin receptor activity, the inhibition of DREF (DNA 

394 replication-related element-binding factor), or disruptions in TOR activation, can cause long 

395 development times and smaller-bodied flies, similar to the adverse mannitol developmental 
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396 effects we observed in larvae [9,19,48–53]. High-sugar diet fed larvae experience reduced 

397 growth due to insulin signaling resistance, even when dILP levels are increased, while reductions 

398 in nutrition can simply prevent the release of dILPs, thereby reducing growth [10,44]. dILP 

399 expression in response to a mannitol diet should be explored to better understand if disruptions to 

400 the insulin/TOR signaling pathway mediate mannitol effects on larval body size, growth, and 

401 developmental duration, especially given the similarity between the adverse effects of mannitol 

402 and the adverse effects of high-carbohydrate diets on D. melanogaster larvae. 

403 Proper growth during development can also influence survival to, and in, adulthood [28]. 

404 High sugar diets cause mortality in larvae of numerous fly species, including D. melanogaster 

405 and Drosophila mojavensis [12,18]; We found that mannitol causes mortality in D. melanogaster 

406 larvae after 48 hours in a concentration-dependent manner, with an LC50 of 0.36 M. In addition, 

407 of the larvae that pupated in the 0.4 M and 0.6 M treatments, a significant number of them failed 

408 to eclose. Adverse mannitol effects were ameliorated in third instar larvae fed 0.4 M mannitol 

409 only after 72 hours of development, but not in larvae fed 0.8 M mannitol after 72 hours, 

410 indicating that mannitol’s effects depend on both the developmental stage and concentration at 

411 which it is introduced. 

412 Alternatively, starvation and/or osmotic stress could be potential mechanisms for 

413 mannitol’s effects on larval survival. However, mannitol’s effects are unlikely to be related 

414 strictly to starvation given mismatches between starvation phenotypes and our results. Post-

415 critical weight starvation causes accelerated emergence (our 72 hour plates saw normal or 

416 delayed emergence) while pre-critical weight starvation causes developmental delay but normal 

417 adult body sizes (unlike our smaller adults) [54]. Simply reducing nutritional availability 

418 throughout development generates smaller adult body sizes, but no change in survival through 
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419 eclosion [55]. For these reasons, as well as the fact that all mannitol-fed larvae received the same 

420 basic nutrients as controls, we consider reduced nutritional availability to be an unlikely driver of 

421 mannitol’s lethality.

422 Mannitol may also be acting as an osmotic stressor to larvae, as mannitol is known for its 

423 diuretic effects [56–58].  Other species (including the Dipteran, Aedes aegypti) exhibit longer 

424 development times, decreased body size, and/or reduced survival in osmotically stressful 

425 environments [59–62]. D. melanogaster larvae have a severe aversive reaction to high 

426 concentrations of osmotically stressful substances like salt [63]. This aversive reaction is coupled 

427 with larvae decreasing their food intake [63], and decreases of 30 % in larval mass at the third 

428 instar [64]. Extremely high sugar diets (20% sucrose) have been shown to decrease feeding in D. 

429 melanogaster larvae [12] and decreased feeding at the highest mannitol concentrations may 

430 explain the atypical trends of survival and developmental duration in our 0.8 M conditions 

431 (where 0.6 M mannitol often had slightly more adverse effects than 0.8 M mannitol). However, it 

432 should be noted that D. melanogaster larvae have excellent osmoregulatory ability and other 

433 Drosophila species’ larvae have been found living in abundance in osmotically stressful, high 

434 sugar environments [65,66].

435 Our oviposition choice data shows that females avoid laying on mannitol media, even 

436 when the media has more abundant carbohydrates, suggesting they may be able to perceive the 

437 presence of mannitol at concentrations of 0.5 M and above. As a product of microbial 

438 fermentation in many microorganisms [21,23], mannitol may indicate important information 

439 about the quality of oviposition locations to females, especially given that females pick 

440 nutritional compositions of pre-rotting fruit over a composition more similar to currently-rotting 

441 fruit to lay their eggs (despite these environments being suboptimal for larval performance at the 
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442 time of egg lay; [16,67]). Adult body size affects individual fecundity [68,69], so female D. 

443 melanogaster should attempt to avoid oviposition sites that reduce the body size and survival of 

444 offspring. 

445 This study is the first to examine the effects of mannitol on development in any species of 

446 holometabolous insect. In the sweet potato whitefly (Bemisia tabaci), mannitol was found not to 

447 be lethal to nymphs, only adults, at a concentration of 10% [70]. Given mannitol’s vastly 

448 different effects on adults of different species (from nutritive to lethal), more work should be 

449 done to understand mannitol’s effects on development across taxa [20,26,27,70–74]. This may 

450 further our understanding of how species differ mechanistically in their responses to this polyol, 

451 particularly important since adverse mannitol developmental effects closely align with the 

452 phenotypic effects of high-sugar diets on D. melanogaster larvae, mediated via the insulin-

453 signaling pathway. 

454 A single, genetically variable insulin signaling pathway regulates growth, reproduction, 

455 longevity, and metabolism in all insects, and contains conserved elements across all animals 

456 [75,76]. This pathway is involved in numerous examples of environmentally-driven 

457 polyphenisms generated during insect development, including caste differentiation in social 

458 insects, as well as geographically- and nutritionally-driven morphological variation [77–81]. 

459 Genetic and epigenetic differences in this pathway allow species and populations to take unique 

460 advantage of environmental variables (e.g. diet, temperature, seasonality), generating phenotypic 

461 plasticity in developmental variables and allometric relationships that maximize fitness [79–81]. 

462 Mannitol’s developmental effects, if acting through this pathway, provide an opportunity to 

463 compare phenotypic variation in response to the nutritional environment, generated by the 

464 evolution of insulin signaling genes across species. This study joins a growing body of work 
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465 indicating that the frequently-cited positive relationship between duration of development and 

466 body size within a population can be complicated by environmental variation, particularly via 

467 dietary influences on insulin signaling. Our work also suggests that the importance of this 

468 variation, and its influence on specific developmental parameters, may change as development 

469 progresses past various internal regulatory cues. Mannitol’s effects on development provide a 

470 novel paradigm for exploring the environmentally-cued regulation of developmental-

471 physiological relationships in insects.

472 Conclusion

473 Mannitol causes concentration-dependent developmental delays, smaller adult body sizes, and 

474 decreased survival in D. melanogaster larvae and pupae. These adverse developmental effects 

475 can be alleviated at a concentration of 0.4 M if mannitol introduction is delayed until larvae are 

476 72 hours old (approximately L3), but not at a concentration of 0.8 M. Adult females perceive and 

477 avoid mannitol (at a concentration of 0.5 M) when given a choice in oviposition site, likely due 

478 to mannitol’s adverse effects on offspring survival and in spite of the mannitol food having more 

479 abundant carbohydrates. Mannitol at high concentrations may be acting via the insulin 

480 signaling/TOR pathway to decouple the typical, direct relationship observed between body size 

481 and developmental duration, creating similar effects to other high-carbohydrate diets. 
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693 S1 Fig. Linear regressions showing effect of emergence day on thorax length in males and 

694 females at each concentration. Only 0.4M-males saw a significant decreasing in thorax length as 

695 eclosion was more delayed (y=-0.0029x+0.9777; F=10.51, p=0.002, R2=0.1534); slopes were not 

696 significantly different from one another (F=0.5298, p=0.7537). Error bars represent one standard 

697 deviation.

698 S2 Fig. Time from pupation to eclosion did not differ between control and any mannitol 

699 treatments (ANOVA, F=1.04, p=0.39). Error bars represent one standard deviation.

700 S3 Fig. Survival plots showing percent survival to eclosion versus post-hatching fly age given 

701 control food or foods with increasing concentrations of mannitol (0.2M to 0.8M). Observations 

702 were terminated at 27 days after egg laying (n=30eggs/treatment). Highly significant differences 

703 (p<0.01) from the control are in black, non-significant differences are in grey.
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