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Abstract 

Deficits in executive functions (EFs), cognitive processes that control goal-directed 

behaviors, are associated with psychopathology and neurological disorders. Little is known about 

the molecular bases of EF individual differences; existing EF genome-wide association studies 

(GWAS) used small sample sizes and/or focused on individual tasks that are imprecise measures 

of EF. We conducted a GWAS of a Common EF (cEF) factor based on multiple tasks in the UK 

Biobank (N=427,037 European-descent individuals), finding 129 independent genome-wide 

significant lead variants in 112 distinct loci. cEF was associated with fast synaptic transmission 

processes (synaptic, potassium channel, and GABA pathways) in gene-based analyses. cEF was 

genetically correlated with measures of intelligence (IQ) and cognitive processing speed, but cEF 

and IQ showed differential genetic associations with psychiatric disorders and educational 

attainment. Results suggest that cEF is a genetically distinct cognitive construct that is 

particularly relevant to understanding the genetic variance in psychiatric disorders. 
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Introduction 

Deficits in executive functions (EFs), higher-level cognitive abilities that enable control 

over thoughts and actions during goal-directed behavior1, are debilitating for daily life and are a 

hallmark of brain disorders. In particular, EF deficits are associated with almost all psychiatric 

disorders, leading some to suggest that EF deficits are a risk factor for general psychopathology 

(i.e., the p factor)2–5. Recent work using single nucleotide polymorphism (SNP) effects from 

large genome-wide associations studies (GWAS) to estimate genetic correlations suggests that 

cognition–psychopathology associations may be partially genetic in origin6,7. These studies have 

focused on general cognitive ability or intelligence quotient (IQ), the cognitive construct with the 

largest GWAS sample sizes. Within the GWAS literature, there is an implicit assumption that IQ 

captures most of the genetic variance across cognitive phenotypes. However, adult phenotypic 

and twin studies suggest that a Common EF (cEF) factor capturing variance shared across 

diverse EF tasks is distinguishable from general IQ at the phenotypic and genetic levels, and 

predicts behavior over and above IQ1,8,9. Here, we conduct a large GWAS of a cEF factor score 

generated from data in the UK Biobank (UKB) study10 to discover cEF's molecular 

underpinnings. We then use the GWAS results to test the hypotheses that cEF is genetically 

separable from IQ and cognitive processing speed, and that it is the cognitive dimension most 

relevant for understanding genetic variation underlying psychopathology.  

EF is a blanket term for a family of cognitive functions11. Commonly studied EFs include 

response inhibition, interference control, working memory updating and capacity, and mental set 

shifting1. EFs are typically measured with laboratory cognitive tasks such as the antisaccade, 

Stroop, n-back, complex working memory span, and task-switching paradigms, or with 

neuropsychological tests such as trail making form B, digit span, and Wisconsin card sorting test. 
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Because EFs are control processes, an EF task requires the combination of lower-level cognitive 

processes (e.g., visual processing of stimuli) in addition to the higher-level EF processes of 

interest (e.g., biasing of attention towards task-relevant lower-level information)12. These lower-

level processes contribute to individual differences in performance on specific tasks, leading to 

the "task impurity problem”12. This task impurity means that GWAS loci and molecular 

processes associated with individual EF tasks may capture cognitive processes other than cEF. 

Individual EF tasks can also show low reliability12, decreasing power for association tests. 

The task impurity problem is alleviated by extracting common variance across multiple 

EF tasks with a cEF factor8,13,14. Four independent twin studies showed that across samples and 

ages, cEF is moderately to highly heritable13–15 (46% to 100%) and highly phenotypically and 

genetically stable across time9,16. However, little is known about the molecular underpinnings of 

cEF. Most historical perspectives from the candidate gene17 and animal18 literature have argued 

that neurocognitive function is supported by metabotropic processes, in particular the slow 

neuromodulator effects of the dopaminergic systems. However, recent work in humans with 

ketamine suggests that fast ionotropic processes influence neurocognitive ability, in particular, 

the excitatory neurotransmitter glutamate (via activation of Anti-N-methyl-D-aspartate (NMDA) 

receptors)19. Fast inhibitory GABAergic processes have also been studied in relation to EFs, but 

are often neglected in the literature20.  

Existing GWAS of EF have had insufficient power to test hypotheses regarding the 

molecular mechanisms that underlie EF. To date, the largest GWAS of neurocognitive tasks 

included 1,311 to 32,070 individuals, depending on the task, and found a single genome-wide 

significant association for a processing speed task21. If cEF follows the pattern observed for 

almost all other complex traits, it is likely that larger samples will be required to discover and 
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differentiate the molecular pathways associated with cEF. Furthermore, all previous molecular 

genetic studies have measured EF using individual tasks. Using a factor score should both bolster 

power by increasing the effect sizes of SNP associations with cEF12 and reduce GWAS 

associations reflecting task impurity. 

Because cEF reflects variance shared among multiple cognitive tasks, a natural question 

is whether cEF is synonymous with general cognitive ability or IQ. Data from several 

independent twin studies suggest that phenotypically and genetically, cEF is moderately to 

highly correlated with IQ (r=.53–.91; rG=.57–1.0)8,13,22. In adult samples8,13, cEF correlations 

with IQ are moderate (r=.53–.68; rG=.57–.59) and significantly lower than 1. Moreover, IQ 

genetically correlates with variance specific to working memory processes in addition to cEF8,13, 

suggesting that IQ variation is supported by both cEF and working memory-specific abilities in 

adults. Phenotypic literature also suggests that EFs show discriminant predictive validity of 

behavioral problems when controlling for IQ23. Genetic correlations derived from GWAS 

provide a new opportunity to evaluate whether cEF may capture distinct genetic variance from 

IQ and show stronger relations to psychopathology, including a p factor3 that would be 

impossible to evaluate in phenotypic/twin studies. 

This study is the first GWAS of cEF using a factor based on multiple cognitive tasks. We 

generated a cEF factor score in the UKB sample of over 427,000 individuals of European 

ancestry based on the commonality of five EF tasks across multiple measurement occasions. We 

also estimated factor scores for IQ (verbal-numerical reasoning; n=216,381 in the genetic 

analysis) and cognitive processing speed (n=432,297 in the genetic analysis) for comparison. To 

further validate these factors, we computed polygenic scores (PGSs) for cEF and IQ based on 

these GWAS and tested whether they differentially predicted multiple EF latent variables and IQ 
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in samples that were deeply phenotyped for these constructs in young adulthood. 

We hypothesized that there would be a sizeable genetic correlation of cEF with IQ, but 

that this genetic correlation would be significantly less than 1.0. Moreover, we expected that cEF 

would show stronger genetic correlations than IQ or speed with psychopathology, and would 

predict a p factor when controlling for IQ and speed.  

Results 

GWAS of cEF Factor 

Using confirmatory factor analysis, we calculated a cEF factor score in the UKB sample 

of 427,037 individuals (the “full” sample) and conducted a GWAS on this score as our main 

analysis (see Figure 1). The actual n for each EF task varied because individuals completed a 

different number of online tasks (see Table 1 for task descriptive statistics and Table 2 for rGs 

among tasks). We tested consistency by conducting GWAS in two UKB subsamples that were 

densely (n=93,024) or only sparsely phenotyped (n=256,135 after removing relatives of those in 

the densely phenotyped sample). 

SNP-heritability of cEF estimated via BOLT-REML24 was 0.104 (se=0.002). We found 

129 lead (r2 <.1) and 299 independent SNPs (r2 < .6) in 112 distinct loci that were significantly 

associated with cEF in the full sample, using BOLT24 to run a linear mixed model test of 

association controlling for age, age2, sex, the first 20 principal components (PCs), and batch and 

site (Figure 2, supplemental Figures S1-S3, and supplemental Tables S1-S6). The most 

significantly associated SNP (rs12707117, β= –0.012, p=2.1e-26) is an expression Quantitative 

Trait Loci (eQTL) in cerebellar tissue mapped to EXOC4. Q-Q plots (supplemental Figure S1) 

showed departure from expected p-values under the null hypothesis for the full sample and 

subsamples ( λfull=1.6946, λdense=1.311, λsparse=1.3101), but the low linkage disequilibrium (LD) 
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score regression intercepts (full=1.0381, dense=1.0128, sparse=1.0238) suggest that this inflation 

reflects polygenicity rather than confounding stratification.  

As shown in Table 2, the SNP-heritability for the densely-phenotyped sample (SNP-

h2=0.189, se=0.011) was higher than for the sparsely-phenotyped sample (SNP-h2=0.070, 

se=0.004), as would be expected given that factor scores based on more tasks (densely-

phenotyped) should have lower error variance (see online methods). However, the genetic 

correlation of the densely and sparsely phenotyped subsamples confirmed they measured 

substantially overlapping constructs (rG=0.923, se=0.029).  

As expected given the smaller sample sizes, the subsamples showed weaker genome 

wide-discovery compared to the full sample. Yet despite the three-fold smaller sample size in the 

densely phenotyped sample, we identified a similar number of genome-wide significant loci in 

both samples: 34 independent and 15 lead SNPs in the densely phenotyped sample; 30 

independent and 16 lead SNPs in the sparsely phenotyped sample (see supplemental Table S7). 

The fact that we detected as many SNPs in the smaller densely phenotyped sample as we did in 

the larger sparsely phenotyped sample suggests we had greater measurement precision in the 

densely phenotyped subsample, and that adequate measurement of phenotypes is an important 

aspect of discovering cEF-associated loci.  However, the larger number of identified loci when 

using the combined dataset demonstrates the statistical power gained from utilizing our factor-

based approach to leverage the entire sample. Therefore, the following analyses use the full 

sample. 

Genetic Separability of cEF and IQ  

Genetic Correlation. To assess the genetic separability of cEF and IQ, we estimated their 

genetic correlation using LD Score regression (LDSC) and BOLT-REML. We first conducted a 
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GWAS of IQ and Speed factor scores using relevant measures from the UKB. We did so because 

previously published GWAS of general cognitive ability and IQ included measures of EF 

tasks6,7, which might confound the test whether they are separable constructs. cEF factor scores 

were phenotypically correlated with IQ factor scores (r=.35, p<.001) and Speed factor scores 

(r=.28, p<.001); IQ and Speed factor scores were weakly correlated with each other (r=.17, 

p<.001), demonstrating divergence at the phenotypic level. Based on the GWAS association 

statistics using LDSC, we estimated the genetic correlation between cEF and IQ at .743 (se=.013, 

p=1.00e-221), which was significantly lower than 1 (p=1.4e-59). Similarly, using BOLT-REML 

we estimated the genetic correlation to be .766 (se=.007), p<1e-300); the 95% confidence 

interval (.752–.778) did not include 1.  

These SNP-based genetic correlations reflect the genetic separability of cEF and IQ and 

are similar to those from twin-based rG estimates of IQ and cEF (rG=.69) in middle aged 

adults13. The genetic correlations are higher than the phenotypic correlations because genetic 

correlations consider the covariance only of the reliable genetic variance (standardized by the 

genetic variances of both traits), whereas phenotypic correlation consider the total covariance 

adjusted for the total phenotypic variances, which can include unique environmental effects and 

measurement error. The latter thus have a proportionally larger denominator, leading to smaller 

phenotypic than genetic correlations. Genetic correlations of our IQ factor score and past GWAS 

IQ6,7 were close to unity (rGs = .964–.982; supplemental Table S8).  

GWAS of cEF conditioned on IQ. Due to cEF’s high genetic correlation with IQ in 

particular, we used mt-COJO25 to estimate unique genetic effects associated with cEF and IQ, 

when conditioned on each other (supplemental Figure S4, supplemental Table S9). Due to the 

moderate to high genetic correlation between the two constructs, we anticipated that statistical 
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power would be lower for this conditional GWAS. Consistent with this expectation, we 

identified 41 lead SNPs significantly associated with cEF when conditioned on IQ. Notably, the 

EXOC4 variant remained significantly associated with cEF, as did APOE. We identified 17 lead 

SNPs significantly associated with IQ, conditioning on cEF (supplemental Table S10). These 

results indicate that there are cEF-specific genetic effects when controlling for IQ, and IQ-

specific genetic effects, when controlling for cEF, further demonstrating their separability. 

Polygenic score analyses. To further validate the cEF phenotype in UKB and confirm 

that our cEF SNPs showed some commonality across ages, we created polygenic scores (PGS) of 

cEF and IQ in two young adult twin samples that were deeply phenotyped on multiple EF latent 

variables (cEF, Updating-specific, and Shifting-specific) and full-scale IQ. To maximize power 

and minimize the number of tests, we created the model shown in Figure 3. This Unity/Diversity 

EF model1 integrates full-scale IQ data and the multiple waves of EF data in line with our 

previously published twin models of these data15,16. All measures were residualized on age, sex, 

and age*sex within each sample at each wave prior to analysis, and the model included 10 PCs 

and batch as covariates, as shown. We restricted the PGS analysis to individuals of European 

ancestry (based the first 3 PCs), resulting in a final N of 916 (results for less conservative 

ancestry restrictions are also shown in supplemental Table S11). The variance explained by these 

PRS are expected to be substantially less than the SNP-h2 because the discovery sample size is 

finite26. 

Controlling for its shared variance with the IQ PGS (r=.607, se=.027), the cEF PGS 

predicted the cEF latent variable in this twin sample (standardized β=.171, p=.014, partial 

r=.136), but not the Updating-specific and Shifting-specific factors or full-scale IQ (β= –.068 to 

.078, p>.101, partial rs= –.053 to .050). Conversely, controlling for its shared variance with the 
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cEF PGS, the IQ PGS predicted full-scale IQ (β=.149, p=.003, partial r=.121) as well as the 

Updating-specific latent variable (β=.147, p=.046, partial r=.119), but not the cEF or Shifting-

specific latent variables (β= –.037 to .003, p>.591, partial rs= –.030 to .007). The association of 

the IQ PGS with working memory updating-specific variance is consistent with prior adult twin 

studies showing that IQ is genetically related to working-memory-specific latent variables over 

and above its association with cEF8,13. These results are consistent with the hypothesis that the 

cEF and IQ factors in UKB are tapping similar constructs as those assessed in these carefully 

phenotyped young adult population samples. 

Genetic Separability of cEF and IQ is Key for Psychiatric Dysfunction 

We used LD Score regression27 with GWAS summary statistics from previously published 

studies to estimate the genetic correlation between cEF and other major behavioral and 

neurological phenotypes (supplemental Table S12), many of which have been associated with EF 

phenotypically and/or genetically in the literature. cEF was significantly negatively genetically 

correlated (with Bonferroni correction α=.0011 for 46 traits) with all psychiatric disorders except 

autism (Figure 4A). 95% confidence intervals of cEF and IQ rG did not overlap for five of nine 

psychiatric traits, but did overlap for neuropsychiatric symptoms, personality, sleep, biometric 

traits, and most substance use measures.  

In multiple regressions framework using GenomicSEM28 (Figure 4B, Table S13), we 

estimated significant negative cEF genetic effects on seven of nine psychiatric disorders after 

controlling for speed and IQ. After controlling for speed and cEF, IQ had a significant negative 

association only with ADHD and had positive associations with Anorexia Nervosa, Autism 

spectrum disorder, bipolar disorder, PGC cross-disorder, and (marginally) major depressive 

disorder. Together, these results suggest that the genes specific to cEF and those specific to IQ 
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have very different influences on the pathogenesis of psychiatric traits.  

To formally test the hypothesis that cEF genetic effects are more related to common 

psychiatric disorders than IQ genetic effects, we estimated a GenomicSEM28 model in which 

UKB cEF, IQ, and Speed predicted a p factor estimated from the genetic correlations across 

psychiatric disorders (Figure 5A; note that GenomicSEM does not provide standard errors for the 

fully standardized estimates, but we computed the p-values based on the STD_Genotype 

estimates/se in the GenomicSEM outputs). cEF was negatively associated with p, controlling for 

IQ and Speed (fully standardized β= –.50, p=1.8e-11), but IQ was no longer negatively 

associated with p (now positive), after controlling for Speed and cEF (β=.12, p=.052).  

Figure 5B highlights results for traits that show the opposite pattern (also shown in Figure 

4): When estimating a GenomicSEM of cEF, IQ, and Speed to predict educational attainment 

and childhood IQ, IQ was significantly positively related to both, controlling for cEF and Speed 

(βs= .79 to .85, p<7.4e-9); there was a weaker (educational attainment β= –.30, p=1.0e-4) or a 

null (childhood IQ β= –.11, p=.438) effect of cEF (Figure 5B and supplemental Table S13). 

Interestingly, the cEF genetic association with educational attainment changed from positive to 

significantly negative after controlling for IQ. We discuss this result in the Discussion.  

Given the relationships between cEF and psychiatric disorders with and without 

controlling for IQ, we used latent causal variable analysis29, a type of genetic causality analysis 

that uses whole-genome summary statistics, to estimate the genetic causality proportion (gcp) of 

cEF with schizophrenia, bipolar disorder, MDD, eating disorders, neuroticism, and well-being; 

these measures were disorders used as indicators in the p-factor model (Figure 5), or more 

general predictors of psychiatric risk that also showed relationships with cEF controlling for IQ 

in Figure 4B (see supplemental Table S14 for results with the full cEF summary statistics and 
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with the cEF mtCOJO statistics controlling for IQ). We found no evidence for cEF causally 

influencing any psychiatric disorders, psychiatric dimensions, or other cognitive abilities (all 

gcp<.42, p>.078, with the exception that cEF conditioned on IQ did show a significant influence 

on Speed, gcp=.18, p=.016). These results suggest that the association between cEF and 

psychiatric disorders may not reflect a simple directional causal mechanism; cEF and IQ are 

influenced by pleiotropic genes.  

Genetic Associations with cEF Implicate GABAergic and Synaptic Molecular Pathways 

We used aggregated gene and gene-set analysis in Multi-marker Analysis of GenoMic 

Annotation (MAGMA) to understand the GWAS associations. We identified 319 genes 

significantly associated with cEF in the full sample (Bonferroni α= 0.05/18597=2.689e-6), 21 of 

which were consistent across the dense and sparse subsamples. The strongest association again 

was EXOC4 (supplemental Figures S4-S5, supplemental Table S15).  

Using gene-set analyses of this gene list, we found 12 associated gene sets (post-

Bonferroni correction), all of which could be summarized under three broad pathways: 

potassium channel activity, synaptic structure, or GABA receptor activity (Figure 6A, 

supplemental Table S16). Suggestive associations of additional pathways (corrected p<0.1), also 

implicated synaptic, potassium channel, and ionotropic pathways. To account for some genes 

appearing in multiple associated pathways, we conducted a conditional gene-set analysis 

accounting for overlap in genes amongst the top pathways30 (excluding the Gene Ontology31,32 

[GO] terms “synapse,” “GABAA gene,” and “voltage-gated potassium channel” pathways due to 

multicollinearity). Results indicated that the GO “GABA receptor complex” and “regulation of 

synapse structure or activity” pathways were associated with cEF over and above other 

discovered pathways.  
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We confirmed that GABAergic function was implicated via cell-type specific gene 

expression in three human brain tissues: specifically, GABA2 cells in the hippocampus and 

GABAergic neurons in the prefrontal cortex (specific to 26 weeks of gestation). Hybrid and 

neurons cells in the whole human cortex (across age) were also significantly enriched for overlap 

with genes implicated by our GWAS of cEF (supplemental Figure S5). 

We expanded our exploration to possible products of genes via a Transcriptome-Wide 

Analysis (TWAS) using PrediXcan33. TWAS uses (cis-)eQTL data to impute gene 

transcriptomes from available eQTL and GWAS data. Finally, we compared the transcriptomic 

profile we imputed to the Library of Integrated Cell lines (LINCs) to see if any pertubagens 

could cause the pattern associated with better cEF. Results are available in supplemental Tables 

S17-S18 and described in the Supplemental Results.  

Transcriptional differences between cEF and IQ: To assess the distinction between cEF 

and IQ, we characterized their different expression impacts using overlap with eQTL data, 

identifying 334,554 cis-eQTLs from the Genotype-Tissue Expression (GTEx)34 and the Brain 

eQTL Almanac (BRAINEAC)35 samples. Notably, GRIN2A (the second strongest gene-level 

association with cEF) expression is altered by ketamine, which has been shown to impair EF 

performance19. We therefore searched for GRIN2A receptor eQTLs within brain regions, finding 

10 overlapping cEF associations in the basal ganglia (rs74729488, rs72772387, rs117583711, 

rs12932206l, rs12597701, rs1213323, rs720717, rs9934226, rs4780790, rs28550823). 

The cEF-specific GWAS from mt-COJO showed significant association with only one 

genetic pathway based on a MAGMA gene-set analysis, Ikeda mir30 targets, which is a pathway 

involved in the regulation of calcium signaling (b=1.008, pbon=0.020). cEF was still marginally 

related to GABA receptor pathways, with a similar effect size as cEF without conditioning on IQ 
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(b=1.17, pbon=0.079).  

Genetic Associations with cEF Do Not Strongly Implicate Dopaminergic Pathways or 

Replicate Candidate Genes 

Test of hypothesized/popular pathways. We hypothesized a priori that genes in 

dopaminergic, glutaminergic, and GABA pathways would be enriched, and it is possible that our 

multiple comparison threshold was too conservative. We extracted the effects of these pathways 

that were above nominal significance but did not meet Bonferroni significance. While there were 

10 nominally significant pathways from a priori categories, the effect sizes and significance 

values were highest for GABA (Figure 6B). For glutaminergic pathways, the strongest 

association was NMDA receptor activation, which is previously supported19. Finally, 

dopaminergic genes showed the weakest evidence for association among pre-hypothesized 

pathways: Only two pathways were nominally associated with cEF, and both pathways showed 

weaker effect sizes than GABA and glutamate.  

Candidate gene analysis. Similar to other recent studies on schizophrenia and major 

depression36–38, we found little evidence that the most popular candidate gene polymorphisms 

(those reviewed by Barnes et al.17) were related to cEF at levels above chance. COMT val/met 

(rs4680), the most-studied candidate gene polymorphism for cEF, was not significant at the 

genome-wide level (β= –.002, p=.021). Previously studied polymorphisms of DRD2 (rs1079596: 

β=0.010, p=1.3e-10; rs2075654: β=0.010, p=1.4e-100) were genome-wide significant; however, 

these effects sizes are much smaller than previously reported39. No other associations were even 

nominally significant. We also used MAGMA to derive combined p-values from GWAS 

summary statistics to determine the degree of association of historical cEF candidate genes 

themselves as opposed to the most-studied specific polymorphisms within them17. Only DRD2 
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was associated with cEF (p=1.15E-12, all gene-wise summary statistics available in 

supplemental Table S15). Dopaminergic genes other than DRD2 were not significant, suggesting 

that the weak dopaminergic signal in our pathway analysis above is likely driven by DRD2.  

Discussion 

We conducted the largest GWAS of EF to date, using a cEF factor score in the UKB that 

minimized the task impurity problem and incorporated existing knowledge of the factor structure 

of EFs1. Our results suggest that genetic influences on cEF involve variation within fast 

ionotropic and synaptic pathways, in particular GABAergic pathways, rather than the commonly 

studied metabotropic and neuronal pathways. We demonstrated cEF's genetic overlap with IQ, 

but found important differences between them as shown through differential associations with 

education and psychiatric disorders.  

In line with existing twin literature8,13, this study supports the importance of cEF as a 

cognitive dimension that is partially genetically related to IQ and Speed in adulthood. Although 

there was a high genetic correlation between cEF and IQ (rG=.743), this correlation was 

significantly lower than 1, indicating some specific variance. This separability has important 

implications for understanding cognitive aspects of psychopathology. Controlling for IQ and 

Speed, cEF remained significantly negatively genetically associated with a genetic p factor, 

accounting for one-quarter of common genetic influences across psychiatric disorders. This 

stronger association of cEF with p cannot be explained as arising from the possibility that cEF 

may be a more reliable or valid measure of general cognitive ability than the IQ factor score, 

because the opposite pattern was observed for education and childhood IQ. Specifically, 

controlling for their genetic overlap, IQ remained strongly positively associated with these 

measures, while cEF did not. Thus, we observed discriminant validity of the cEF and IQ factor 
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scores at the genetic level, consistent with the phenotypic literature1.  

Interestingly, when controlling for covariance with IQ, genetic influences on cEF became 

significantly negatively related to educational attainment, although the genetic correlation 

without controlling for IQ was positive. We do not know of prior phenotypic studies reporting 

this suppression effect, nor do we know if it would even be evident at the phenotypic level. It 

may reflect the fact that cEF shows negative genetic correlations with several disorders that are 

actually positively genetically correlated with both IQ and educational attainment, such as 

anorexia nervosa, autism spectrum disorder, and bipolar disorder25. Thus, it may be that the 

genetic variance unique to lower cEF reflects some of this genetic risk for these disorders that is 

positively associated with education, leading to a negative partial genetic correlation with higher 

cEF.  

 Multiple lines of evidence suggested the importance of GABA to cEF variation, with 

synaptic and ionotropic pathways more strongly associated with cEF than the traditionally 

studied metabotropic and dopaminergic pathways. GABAergic pathways were the most 

associated molecular pathways tested and influenced cEF above and beyond other 

neurotransmitter pathways. Cell-type-specific analyses also implicated GABA in both the cortex 

and hippocampus. Tests of specificity when accounting for IQ showed that GABA remained 

marginally related to cEF, with a larger effect size than most other enrichment categories. 

Together, our findings strongly implicate a key role of fast-synaptic communication mechanisms 

underlying the inheritance of cEF, rather than the slow neuromodulatory processes that are often 

hypothesized in the literature.  

We found little evidence that dopaminergic processes genetically relate to individual 

differences in cEF, outside the popular DRD2 gene. Importantly, almost all monoamine 
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(dopamine and serotonin) candidate genes that are currently used in the neurocognitive and 

imaging literature17 were not associated with cEF, despite very high power to detect previously 

reported associations. These results suggest that continued focus on traditional candidate genes 

outside of DRD2 in cEF research is likely to be fruitless, and that future research should instead 

be directed toward its relationship with GABAergic (and perhaps glutaminergic) processes. 

It is likely these fast-synaptic processes influencing cEF could further elucidate 

mechanisms of psychiatric disorders, as cEF was genetically correlated with nearly all 

psychiatric disorders. We found novel genetic associations with schizophrenia, bipolar disorder, 

alcohol dependence, and anorexia nervosa, and replicated a genetic association of cEF with 

depression40. These results are in line with past literature, suggesting cEF is broadly genetically 

associated with psychopathology2.  

These results should be interpreted in context of a few limitations. First, the cognitive 

battery in the UKB study was not designed to tap cEF. This battery contained one classic 

neuropsychological EF task, the trail making task; the other cognitive measures were not tasks 

that are commonly used to assess EFs. However, as described in the online methods, those 

measures had EF components that can be extracted through our structural modeling approach. 

We reasoned that a common factor extracting shared variance across these tasks and the trail 

making task would be closely related to the Common EF factors examined in smaller studies9,14–

16, two of which also used the trail making task9,14. Results of our PRS analyses support this 

reasoning: We validated our cEF factor and its separability from IQ using PGSs in a sample 

deeply phenotyped for multiple EF latent variables and full-scale IQ. 

Second, almost all bioinformatic follow-up depended on tissue-based analysis from the 

GTEx sample (with GABAergic replications from single-cell RNA seq datasets). While this 
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sample is the richest source of eQTL data to date, a lack of generalizability from this population 

would affect our results as well as our interpretations. Third, we used tissue-specific expression 

with Bonferroni correction thresholds to minimize false positives, but this does not mean we can 

draw strong conclusions about which tissues are implicated above and beyond one another.  

Finally, because the UKB is overwhelmingly European ancestry, we restricted our 

analysis to European samples to avoid confounds due to population stratification. Although it is 

possible and perhaps likely that the molecular underpinnings of cEF generalize to non-European 

populations, further work is needed to replicate these observations in diverse populations of 

sufficient sizes and similar phenotypes.  

Conclusion 

 cEF is heritable and highly polygenic, with clear indication for a role of synaptic, 

GABAergic, and ionotropic pathways. cEF is genetically related to, but separable from, IQ, and 

cEF is robustly related to genetic risk for general psychopathology even controlling for its 

genetic overlap with general IQ and Speed.  
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Table 1. Descriptive statistics for cognitive measures used to obtain factor scores 

Measure N Mean SD Min Max Skewness Kurtosis 

Trail making        

Onlinea 104,050 0.00 0.11 -0.44 0.44 0.48 0.73 

Numericb 104,052 1.57 0.14 1.14 2.87 0.65 0.67 

Alphanumericb 104,050 1.80 0.15 1.31 2.87 0.49 0.46 

Symbol-digit substitution       

Online 117,785 19.76 5.11 0 40 -0.40 0.54 

Prospective Memoryc       

Initial visit 171,309 0.24 -- -- -- -- -- 

Repeat visit 20,314 0.15 -- -- -- -- -- 

Imaging visit 15,880 0.12 -- -- -- -- -- 

Pairs Matchingd        

Initial visit 484,340 0.76 0.37 0.00 2.22 0.39 0.56 

Repeat visit 20,085 0.70 0.34 0.00 2.06 0.33 0.55 

Imaging visit 15,472 0.66 0.33 0.00 2.00 0.35 0.61 

Online 114,828 0.83 0.37 0.00 2.31 0.39 0.26 

Digit Span        

Initial visit 50,116 6.69 1.34 2 12 -0.32 0.84 

Imaging visit 4,237 6.80 1.24 2 11 -0.20 0.68 

Online 111,086 6.92 1.49 2 11 -0.38 1.09 

Note. Descriptive statistics and sample information for each task loading on the common 
executive functioning (cEF) factor from the UKBiobank sample.  
aUnstandardized residual of the log10-transformed alphanumeric path time after regressing out 
the log10-transformed numeric path time; only this score was used in the model. 
bLog10-transformed total times in seconds to complete the numeric and alphanumeric paths; 
these variables were not used in the confirmatory factor analysis model but were used to obtain 
the residualized trails measure used in the model. 
cCategorical variable coded as 1 for correct and 0 for incorrect on first try. The mean described 
proportion correct. Dashes indicate that other descriptive statistics were not calculated. 
dSum of the log10-transformed number of incorrect matches +1 in the 6- and 12-card rounds.  
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Table 2. Heritability (diagonal) and genetic correlations (off-diagonal) between Common 
Executive Functioning (cEF) indicators and cEF factor scores  

 
Measure 

Symbol 
Digit 

Pairs 
Memory 

Digit 
Span 

Prospect. 
Memory 

Trail 
Making 

Dense 
cEF 

Sparse 
cEF 

Full  
cEF 

Symbol–
Digit 

0.1245 
(0.0079) 

       

Pairs 
Memory 

0.6603 
(0.0271) 

0.0713 
(0.003) 

      

Digit Span 0.3226 
(0.0345) 

0.4420 
(0.0263) 

0.1337 
(0.0069) 

     

Prospective 
Memory 

0.4479 
(0.0414) 

0.5982 
(0.0348) 

0.4539 
(0.0355) 

0.0527 
(0.0039) 

    

Trail 
Making 

0.7126 
(0.0322) 

0.7085 
(0.0317) 

0.6530 
(0.0293) 

0.5927 
(0.0463) 

0.1136 
(0.0084) 

   

Dense 
sample cEF 

0.8428 
(0.0138) 

0.8580 
(0.0207) 

0.6653 
(0.0214) 

0.6416 
(0.0365) 

0.9274 
(0.0133) 

0.1894 
(0.0105) 

  

Sparse 
sample cEF 

0.7031 
(0.0307) 

0.9831 
(0.0074) 

0.5580 
(0.0259) 

0.7052 
(0.0308) 

0.7771 
(0.0381) 

0.9230 
(0.0286) 

0.0696 
(0.0038) 

 

Full  
sample cEF 

0.7683 
(0.0178) 

0.9527 
(0.0047) 

0.6164 
(0.0178) 

0.7046 
(0.0255) 

0.8452 
(0.0215) 

0.9629 
(0.0106) 

0.9892 
(0.0073) 

0.0906 
(0.0038) 

Note. The heritability of each measure (standard error) is shown on the diagonal in bold-face 
type. The lower diagonal contains the genetic correlations of each indicator and common 
executive functioning (cEF) factor scores in the densely phenotyped (dense), sparsely 
phenotyped (sparse), and full samples, as estimated by LD score regression. When there were 
multiple assessments of the same task (pairs memory, digit span), the measure is the average of 
the z-scores for all assessments, except for the categorical prospective memory task, for which 
the measure used for this table is the first assessment.  
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Data Access: 

Summary statistics for all GWAS (cEF, IQ, RT, and all indicators) will be available upon 
publication of this work through the FriedmanLab github or available upon request. All results 
run on FUMA have been made publicly available through that platform. cEF results can be 
accessed via FUMA (cEF full sample: https://fuma.ctglab.nl/browse/65, cEF densely phenotyped 
sample: https://fuma.ctglab.nl/browse/66, cEF sparsely phenotyped sample: 
https://fuma.ctglab.nl/browse/67). Full results for the IQ and Speed GWAS are also available on 
FUMA (IQ: https://fuma.ctglab.nl/browse/114, Speed: https://fuma.ctglab.nl/browse/118). All 
biological results for cEF-specific and IQ-specific GWAS can be downloaded here (cEF-
specific: https://fuma.ctglab.nl/browse/116, IQ-specific: https://fuma.ctglab.nl/browse/117).  
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Figure 1. Development of a Common Executive Functioning (cEF) factor across cognitive 
tasks in the UK Biobank: (A) Correlations taken from Mplus; (B) Confirmatory factor analysis 
model used to extract factor scores. Ellipses indicate latent variables; rectangles indicate 
observed variables. Numbers on arrows are standardized factor loadings, and numbers at the end 
of arrows are residual variances. All parameters were statistically significant (p < .05). Trails= 
trail making (online); SymDig= symbol-digit substitution (online); PM= prospective memory; 
Pairs= pairs memory; Digit= digit span. Task names with 1= first assessment; with 2= repeat 
assessment; with 3= imaging visit assessment; with O= online follow-up. Directionality was 
reversed for some variables so that for all variables, higher scores indicate better performance. 
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Figure 2. Manhattan plots for GWAS of Common Executive Functioning (cEF) in the full sample (Panel A), the densely 
phenotyped sample (Panel B), and the sparsely phenotyped sample (Panel C). Each dot is a single nucleotide polymorphism 
(SNP), chromosomes are organized on the x-axis, and the y-axis represents the negative log10 of the p-value for each SNP.  
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Figure 3. Analysis model of polygenic scores (PGSs) predicting executive functioning (EF) latent variables and full-scale 
intelligence scores (IQ) in Colorado twin data, χ2(350) = 473.85, p < .001, CFI = .962, RMSEA = .020. Paths of primary interest 
are shown in black with thicker lines. Solid lines and boldface type indicate p < .05; dashed lines indicate p > .05. Analyses were 
limited to twins with European ancestry based on the first three principal components (N=916 with genetic data). The three EF latent 
variables were based on 9 laboratory tasks at Wave 1 (W1; Longitudinal Twin Study [LTS] age 17 n=571, Community Twin Sample 
[CTS] age 21 n=298), and on 9 tasks at Wave 2 (W2; LTS only at age 23, n=555).  Full-scale IQ was based on 11 Wechsler Adult 
Intelligence Scale subtests in the LTS (age 16, n=584), and 4 Wechsler Abbreviated Scale of Intelligence subtests in the CTS (age 21, 
n=297). Age, sex, and age*sex were regressed out of each measure within each sample and wave prior to analysis.  
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Figure 4. Genetic associations of Common Executive Functioning (cEF) and Intelligence (IQ) factor scores in the UK Biobank 
(UKB) with psychiatric, behavioral, and health traits in independent samples from LD Hub. (A) genetic correlations, estimated 
with LD score regression; (B) standardized partial regression coefficients from genomic structural equation models for cEF controlling 
for the genetics of IQ and Speed, and for IQ controlling for the genetics of cEF and Speed. Bars indicate 95% confidence intervals. 

B. Multiple RegressionsA. Genetic Correlations

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

under a
not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available 

T
he copyright holder for this preprint (w

hich w
as

this version posted S
eptem

ber 2, 2020. 
; 

https://doi.org/10.1101/674515
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/674515
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

 

Figure 5. Genomic structural equation models of standardized Common Executive Functioning (cEF), Intelligence (IQ), and 
Speed factor scores predicting a general psychopathology (p) factor (Panel A) and IQ-related traits (Panel B). The fit for the 
model in panel A was χ2(31)= 510.96, p<.001, CFI=.901; the model in panel B was saturated, so fit perfectly. Ellipses indicate latent 
variables; rectangles indicate observed variables. Numbers on single-headed arrows are fully standardized factor loadings or 
regression coefficients, numbers on curved double-headed arrows are correlations, and numbers at the end of arrows are residual 
variances. Boldface type and solid lines indicate p < .05; dashed lines indicate p > .05.  
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Figure 6.  Associated gene-set categories from MAGMA gene-set analysis. Signal GO term and curated gene set enrichment 
for SNPs influencing Common Executive Functioning (cEF) as the MAGMA gene enrichment beta and standard error. (A) 
Gene-sets significantly associated post Bonferroni correction for 10,651 tests (α = 4.7E-06); (B) Gene-sets in hypothesized pathways 
that were nominally significant. VG = voltage-gated. Bars indicate standard errors.  
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