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Abstract

Deficits in executive functions (EFs), cognitive processes that control goal-directed
behaviors, are associated with psychopathology and neurological disorders. Little is known about
the molecular bases of EF individual differences; existing EF genome-wide association studies
(GWAYS) used small sample sizes and/or focused on individual tasks that are imprecise measures
of EF. We conducted a GWAS of a Common EF (cEF) factor based on multiple tasks in the UK
Biobank (N=427,037 European-descent individuals), finding 129 independent genome-wide
significant lead variantsin 112 distinct loci. cEF was associated with fast synaptic transmission
processes (Ssynaptic, potassium channel, and GABA pathways) in gene-based analyses. cEF was
genetically correlated with measures of intelligence (1Q) and cognitive processing speed, but cEF
and 1Q showed differential genetic associations with psychiatric disorders and educational
attainment. Results suggest that cEF is a genetically distinct cognitive construct that is

particularly relevant to understanding the genetic variance in psychiatric disorders.
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Introduction

Deficits in executive functions (EFs), higher-level cognitive abilities that enable control
over thoughts and actions during goal-directed behavior', are debilitating for daily life and are a
hallmark of brain disorders. In particular, EF deficits are associated with aimost all psychiatric
disorders, leading some to suggest that EF deficits are arisk factor for general psychopathology
(i.e., the p factor)®™. Recent work using single nucleotide polymorphism (SNP) effects from
large genome-wide associations studies (GWAYS) to estimate genetic correl ations suggests that
cogniti on—psychopathol ogy associations may be partially genetic in origin®’. These studies have
focused on general cognitive ability or intelligence quotient (1Q), the cognitive construct with the
largest GWAS sample sizes. Within the GWAS literature, thereis an implicit assumption that 1Q
captures most of the genetic variance across cognitive phenotypes. However, adult phenotypic
and twin studies suggest that a Common EF (CEF) factor capturing variance shared across
diverse EF tasksis distinguishable from general 1Q at the phenotypic and genetic levels, and
predicts behavior over and above 1Q*®°. Here, we conduct alarge GWAS of a cEF factor score
generated from datain the UK Biobank (UKB) study® to discover cEF's molecular
underpinnings. We then use the GWAS results to test the hypotheses that cEF is genetically
separable from 1Q and cognitive processing speed, and that it is the cognitive dimension most
relevant for understanding genetic variation underlying psychopathology.

EF is ablanket term for afamily of cognitive functions™. Commonly studied EFsinclude
response inhibition, interference control, working memory updating and capacity, and mental set
shifting®. EFs are typically measured with laboratory cognitive tasks such as the antisaccade,
Stroop, n-back, complex working memory span, and task-switching paradigms, or with

neuropsychological tests such astrail making form B, digit span, and Wisconsin card sorting test.
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Because EFs are control processes, an EF task requires the combination of lower-level cognitive
processes (e.g., visual processing of stimuli) in addition to the higher-level EF processes of
interest (e.g., biasing of attention towards task-relevant lower-level information)*?. These lower-
level processes contribute to individual differencesin performance on specific tasks, leading to
the "task impurity problem”*2. This task impurity means that GWAS loci and molecular
processes associated with individual EF tasks may capture cognitive processes other than cEF.
Individual EF tasks can also show low reliability™?, decreasing power for association tests.

The task impurity problem is alleviated by extracting common variance across multiple
EF tasks with a cEF factor®****. Four independent twin studies showed that across samples and
ages, CEF is moderately to highly heritable™ ™ (46% to 100%) and highly phenotypically and
genetically stable across time®*®. However, little is known about the molecular underpinnings of
cEF. Most historical perspectives from the candidate gene'” and animal*® literature have argued
that neurocognitive function is supported by metabotropic processes, in particular the slow
neuromodulator effects of the dopaminergic systems. However, recent work in humanswith
ketami ne suggests that fast ionotropic processes influence neurocognitive ability, in particular,
the excitatory neurotransmitter glutamate (via activation of Anti-N-methyl-D-aspartate (NMDA)
receptors)™®. Fast inhibitory GABAergic processes have also been studied in relation to EFs, but
are often neglected in the literature®.

Existing GWAS of EF have had insufficient power to test hypotheses regarding the
molecular mechanismsthat underlie EF. To date, the largest GWAS of neurocognitive tasks
included 1,311 to 32,070 individuals, depending on the task, and found a single genome-wide
significant association for a processing speed task?. If cEF follows the pattern observed for

almost all other complex traits, it islikely that larger samples will be required to discover and
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differentiate the molecular pathways associated with cEF. Furthermore, all previous molecular
genetic studies have measured EF using individual tasks. Using a factor score should both bolster
power by increasing the effect sizes of SNP associations with cEF*? and reduce GWAS
associations reflecting task impurity.

Because cEF reflects variance shared among multiple cognitive tasks, a natural question
iswhether cEF is synonymous with general cognitive ability or 1Q. Data from several
independent twin studies suggest that phenotypically and genetically, cEF is moderately to
highly correlated with 1Q (r=.53—.91; rG=.57-1.0)3**%. In adult samples®*3, cEF correlations
with 1Q are moderate (r=.53-.68; rG=.57-59) and significantly lower than 1. Moreover, 1Q
genetically correlates with variance specific to working memory processes in addition to cEF®*,
suggesting that 1Q variation is supported by both cEF and working memory-specific abilitiesin
adults. Phenotypic literature also suggests that EFs show discriminant predictive validity of
behavioral problems when controlling for 1Q%. Genetic correlations derived from GWAS
provide a new opportunity to evaluate whether cEF may capture distinct genetic variance from
|Q and show stronger relations to psychopathology, including a p factor® that would be
impossible to evaluate in phenotypic/twin studies.

This study isthe first GWAS of cEF using a factor based on multiple cognitive tasks. We
generated a cEF factor score in the UKB sample of over 427,000 individuals of European
ancestry based on the commonality of five EF tasks across multiple measurement occasions. We
also estimated factor scores for 1Q (verbal-numerical reasoning; n=216,381 in the genetic
analysis) and cognitive processing speed (n=432,297 in the genetic analysis) for comparison. To
further validate these factors, we computed polygenic scores (PGSs) for cEF and 1Q based on

these GWAS and tested whether they differentially predicted multiple EF latent variables and IQ
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in samples that were deeply phenotyped for these constructs in young adulthood.

We hypothesized that there would be a sizeable genetic correlation of cEF with 1Q, but
that this genetic correlation would be significantly less than 1.0. Moreover, we expected that cEF
would show stronger genetic correlations than 1Q or speed with psychopathology, and would
predict ap factor when controlling for IQ and speed.

Results
GWAS of cEF Factor

Using confirmatory factor analysis, we calculated a cEF factor score in the UKB sample
of 427,037 individuals (the “full” sample) and conducted a GWAS on this score as our main
analysis (see Figure 1). The actual n for each EF task varied because individuals completed a
different number of online tasks (see Table 1 for task descriptive statistics and Table 2 for rGs
among tasks). We tested consistency by conducting GWAS in two UKB subsamples that were
densely (n=93,024) or only sparsely phenotyped (n=256,135 after removing relatives of thosein
the densely phenotyped sample).

SNP-heritability of cEF estimated via BOL T-REML?* was 0.104 (se=0.002). We found
129 lead (r* <.1) and 299 independent SNPs (1% < .6) in 112 distinct loci that were significantly
associated with cEF in the full sample, using BOLT?* to run alinear mixed model test of
association controlling for age, age?, sex, the first 20 principal components (PCs), and batch and
site (Figure 2, supplemental Figures S1-S3, and supplemental Tables S1-S6). The most
significantly associated SNP (rs12707117, p=—0.012, p=2.1e-26) is an expression Quantitative
Trait Loci (eQTL) in cerebellar tissue mapped to EXOCA4. Q-Q plots (supplemental Figure S1)
showed departure from expected p-values under the null hypothesis for the full sample and

subsamples ( Awii=1.6946, Adense=1.311, Agarse=1.3101), but the low linkage disequilibrium (LD)
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score regression intercepts (full=1.0381, dense=1.0128, sparse=1.0238) suggest that thisinflation
reflects polygenicity rather than confounding stratification.

As shown in Table 2, the SNP-heritability for the densaly-phenotyped sample (SNP-
h?=0.189, se=0.011) was higher than for the sparsely-phenotyped sample (SNP-h?=0.070,
se=0.004), as would be expected given that factor scores based on more tasks (densely-
phenotyped) should have lower error variance (see online methods). However, the genetic
correlation of the densely and sparsely phenotyped subsamples confirmed they measured
substantially overlapping constructs (rG=0.923, se=0.029).

As expected given the smaller sample sizes, the subsamples showed weaker genome
wide-discovery compared to the full sample. Y et despite the three-fold smaller sample sizein the
densdly phenotyped sample, we identified a similar number of genome-wide significant loci in
both samples: 34 independent and 15 lead SNPs in the densely phenotyped sample; 30
independent and 16 lead SNPsin the sparsely phenotyped sample (see supplemental Table S7).
The fact that we detected as many SNPsin the smaller densely phenotyped sample aswe did in
the larger sparsely phenotyped sample suggests we had greater measurement precision in the
densely phenotyped subsample, and that adequate measurement of phenotypes is an important
aspect of discovering cEF-associated loci. However, the larger number of identified loci when
using the combined dataset demonstrates the statistical power gained from utilizing our factor-
based approach to leverage the entire sample. Therefore, the following analyses use the full
sample.

Genetic Separability of cEF and 1Q
Genetic Correlation. To assess the genetic separability of cEF and 1Q, we estimated their

genetic correlation using LD Score regression (LDSC) and BOLT-REML. We first conducted a
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GWAS of 1Q and Speed factor scores using relevant measures from the UKB. We did so because
previously published GWAS of general cognitive ability and 1Q included measures of EF
tasks®’, which might confound the test whether they are separable constructs. cEF factor scores
were phenotypically correlated with 1Q factor scores (r=.35, p<.001) and Speed factor scores
(r=.28, p<.001); 1Q and Speed factor scores were weakly correlated with each other (r=.17,
p<.001), demonstrating divergence at the phenotypic level. Based on the GWAS association
statisticsusing LDSC, we estimated the genetic correlation between cEF and 1Q at .743 (se=.013,
p=1.00e-221), which was significantly lower than 1 (p=1.4e-59). Similarly, using BOLT-REML
we estimated the genetic correlation to be .766 (se=.007), p<1e-300); the 95% confidence
interval (.752—.778) did not include 1.

These SNP-based genetic correlations reflect the genetic separability of cEF and 1Q and
are similar to those from twin-based rG estimates of 1Q and cEF (rG=.69) in middle aged
adults™. The genetic correlations are higher than the phenotypic correlations because genetic
correlations consider the covariance only of the reliable genetic variance (standardized by the
genetic variances of both traits), whereas phenotypic correlation consider the total covariance
adjusted for the total phenotypic variances, which can include unique environmental effects and
measurement error. The latter thus have a proportionally larger denominator, leading to smaller
phenotypic than genetic correlations. Genetic correlations of our |Q factor score and past GWAS
1Q%" were close to unity (rGs = .964—982; supplemental Table S8).

GWAS of cEF conditioned on IQ. Due to cEF s high genetic correlation with 1Q in
particular, we used mt-COJO® to estimate unique genetic effects associated with cEF and 1Q,
when conditioned on each other (supplemental Figure $4, supplemental Table S9). Dueto the

moderate to high genetic correlation between the two constructs, we anticipated that statistical
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power would be lower for this conditional GWAS. Consistent with this expectation, we
identified 41 lead SNPs significantly associated with cEF when conditioned on IQ. Notably, the
EXOCA4 variant remained significantly associated with cEF, as did APOE. Weidentified 17 lead
SNPs significantly associated with 1Q, conditioning on cEF (supplemental Table S10). These
results indicate that there are cEF-specific genetic effects when controlling for 1Q, and 1Q-
specific genetic effects, when controlling for cEF, further demonstrating their separability.

Polygenic score analyses. To further validate the cEF phenotype in UKB and confirm
that our cEF SNPs showed some commonality across ages, we created polygenic scores (PGS) of
cEF and 1Q in two young adult twin samples that were deeply phenotyped on multiple EF latent
variables (cEF, Updating-specific, and Shifting-specific) and full-scale 1Q. To maximize power
and minimize the number of tests, we created the model shown in Figure 3. This Unity/Diversity
EF model* integrates full-scale 1Q data and the multiple waves of EF datain line with our
previously published twin models of these data™*®. All measures were residualized on age, sex,
and age* sex within each sample at each wave prior to analysis, and the model included 10 PCs
and batch as covariates, as shown. We restricted the PGS analysis to individuals of European
ancestry (based thefirst 3 PCs), resulting in afinal N of 916 (results for less conservative
ancestry restrictions are also shown in supplemental Table S11). The variance explained by these
PRS are expected to be substantially less than the SNP-h? because the discovery sample sizeis
finite®.

Controlling for its shared variance with the IQ PGS (r=.607, se=.027), the cEF PGS
predicted the cEF latent variable in this twin sample (standardized p=.171, p=.014, partial
r=.136), but not the Updating-specific and Shifting-specific factors or full-scale 1Q (B=—.068 to

.078, p>.101, partial rs= —053 to .050). Conversely, controlling for its shared variance with the
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CEF PGS, the 1Q PGS predicted full-scale 1Q (3=.149, p=.003, partial r=.121) aswell asthe
Updating-specific latent variable (3=.147, p=.046, partial r=.119), but not the cEF or Shifting-
specific latent variables (3= —037 to .003, p>.591, partial rs= —.030 to .007). The association of
the IQ PGS with working memory updating-specific variance is consistent with prior adult twin
studies showing that 1Q is genetically related to working-memory-specific latent variables over
and above its association with cEF®*3. These results are consistent with the hypothesis that the
cEF and 1Q factorsin UKB are tapping similar constructs as those assessed in these carefully
phenotyped young adult population samples.

Genetic Separability of cEF and 1Q isKey for Psychiatric Dysfunction

We used LD Score regression®” with GWAS summary statistics from previously published
studies to estimate the genetic correlation between cEF and other mgjor behavioral and
neurological phenotypes (supplemental Table S12), many of which have been associated with EF
phenotypically and/or genetically in the literature. cEF was significantly negatively genetically
correlated (with Bonferroni correction a=.0011 for 46 traits) with all psychiatric disorders except
autism (Figure 4A). 95% confidence intervals of cEF and IQ rG did not overlap for five of nine
psychiatric traits, but did overlap for neuropsychiatric symptoms, personality, sleep, biometric
traits, and most substance use measures.

In multiple regressions framework using GenomicSEM? (Figure 4B, Table S13), we
estimated significant negative cEF genetic effects on seven of nine psychiatric disorders after
controlling for speed and 1Q. After controlling for speed and cEF, 1Q had a significant negative
association only with ADHD and had positive associations with Anorexia Nervosa, Autism
spectrum disorder, bipolar disorder, PGC cross-disorder, and (marginally) major depressive

disorder. Together, these results suggest that the genes specific to cEF and those specific to 1Q
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have very different influences on the pathogenesis of psychiatric traits.

To formally test the hypothesis that cEF genetic effects are more related to common
psychiatric disorders than 1Q genetic effects, we estimated a GenomicSEM?® model in which
UKB cEF, 1Q, and Speed predicted a p factor estimated from the genetic correlations across
psychiatric disorders (Figure 5A; note that GenomicSEM does not provide standard errors for the
fully standardized estimates, but we computed the p-values based on the STD_Genotype
estimates/se in the GenomicSEM outputs). cEF was negatively associated with p, controlling for
1Q and Speed (fully standardized B=—.50, p=1.8e-11), but 1Q was no longer negatively
associated with p (now positive), after controlling for Speed and cEF (3=.12, p=.052).

Figure 5B highlights results for traits that show the opposite pattern (also shown in Figure
4): When estimating a GenomicSEM of cEF, 1Q, and Speed to predict educational attainment
and childhood 1Q, 1Q was significantly positively related to both, controlling for cEF and Speed
(Bs= .79 t0 .85, p<7.4e-9); there was a weaker (educational attainment f=—.30, p=1.0e-4) or a
null (childhood IQ B=—-.11, p=.438) effect of cEF (Figure 5B and supplemental Table S13).
Interestingly, the cEF genetic association with educational attainment changed from positive to
significantly negative after controlling for 1Q. We discuss this result in the Discussion.

Given the relationships between cEF and psychiatric disorders with and without
controlling for 1Q, we used latent causal variable analysis®, atype of genetic causality analysis
that uses whole-genome summary statistics, to estimate the genetic causality proportion (gcp) of
cEF with schizophrenia, bipolar disorder, MDD, eating disorders, neuroticism, and well-being;
these measures were disorders used as indicators in the p-factor model (Figure 5), or more
genera predictors of psychiatric risk that also showed relationships with cEF controlling for 1Q

in Figure 4B (see supplemental Table S14 for results with the full cEF summary statistics and


https://doi.org/10.1101/674515
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/674515; this version posted September 2, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

with the cEF mtCOJO datistics controlling for 1Q). We found no evidence for cEF causally
influencing any psychiatric disorders, psychiatric dimensions, or other cognitive abilities (all
gcp<.42, p>.078, with the exception that cEF conditioned on 1Q did show a significant influence
on Speed, gcp=.18, p=.016). These results suggest that the association between cEF and
psychiatric disorders may not reflect a simple directional causal mechanism; cEF and 1Q are
influenced by ple otropic genes.

Genetic Associationswith cEF Implicate GABAergic and Synaptic Molecular Pathways

We used aggregated gene and gene-set analysisin Multi-marker Anaysis of GenoMic
Annotation (MAGMA) to understand the GWAS associations. We identified 319 genes
significantly associated with cEF in the full sample (Bonferroni a= 0.05/18597=2.689e-6), 21 of
which were consistent across the dense and sparse subsamples. The strongest association again
was EXOC4 (supplemental Figures $4-S5, supplemental Table S15).

Using gene-set analyses of this gene list, we found 12 associated gene sets (post-
Bonferroni correction), all of which could be summarized under three broad pathways.
potassium channel activity, synaptic structure, or GABA receptor activity (Figure 6A,
supplemental Table S16). Suggestive associations of additional pathways (corrected p<0.1), also
implicated synaptic, potassium channel, and ionotropic pathways. To account for some genes
appearing in multiple associated pathways, we conducted a conditional gene-set analysis
accounting for overlap in genes amongst the top pathways™® (excluding the Gene Ontology*"*
[GQ] terms “synapse,” “GABAA gene,” and “voltage-gated potassium channgl” pathways due to
multicollinearity). Resultsindicated that the GO “GABA receptor complex” and “regulation of
synapse structure or activity” pathways were associated with cEF over and above other

discovered pathways.
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We confirmed that GABAergic function was implicated via cell-type specific gene
expression in three human brain tissues. specifically, GABAZ2 cdllsin the hippocampus and
GABAergic neuronsin the prefrontal cortex (specific to 26 weeks of gestation). Hybrid and
neurons cells in the whole human cortex (across age) were also significantly enriched for overlap
with genes implicated by our GWAS of cEF (supplemental Figure Sb).

We expanded our exploration to possible products of genes via a Transcriptome-Wide
Analysis (TWAS) using PrediXcan®. TWAS uses (cis-)eQTL data to impute gene
transcriptomes from available eQTL and GWAS data. Finally, we compared the transcriptomic
profile we imputed to the Library of Integrated Cell lines (LINCs) to seeif any pertubagens
could cause the pattern associated with better cEF. Results are available in supplemental Tables
S17-S18 and described in the Supplemental Results.

Transcriptional differences between cEF and 1Q: To assess the distinction between cEF
and 1Q, we characterized their different expression impacts using overlap with eQTL data,
identifying 334,554 cis-eQTLs from the Genotype-Tissue Expression (GTEx)* and the Brain
eQTL Almanac (BRAINEAC)® samples. Notably, GRIN2A (the second strongest gene-level
association with cEF) expression is altered by ketamine, which has been shown to impair EF
performance™. We therefore searched for GRIN2A receptor eQTLs within brain regions, finding
10 overlapping cEF associations in the basal ganglia (rs74729488, rs72772387, rs117583711,
rs12932206l, rs12597701, rs1213323, rs720717, rs9934226, rs4780790, rs28550823).

The cEF-specific GWAS from mt-COJO showed significant association with only one
genetic pathway based on aMAGMA gene-set analysis, Ikeda mir30 targets, which is a pathway
involved in the regulation of calcium signaling (b=1.008, ppo=0.020). cEF was still marginally

related to GABA receptor pathways, with asimilar effect size as cEF without conditioning on 1Q
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(b=1.17, pron=0.079).
Genetic Associationswith cEF Do Not Strongly I mplicate Dopaminer gic Pathways or
Replicate Candidate Genes

Test of hypothesized/popular pathways. We hypothesized a priori that genesin
dopaminergic, glutaminergic, and GABA pathways would be enriched, and it is possible that our
multiple comparison threshold was too conservative. We extracted the effects of these pathways
that were above nominal significance but did not meet Bonferroni significance. While there were
10 nominally significant pathways from a priori categories, the effect sizes and significance
values were highest for GABA (Figure 6B). For glutaminergic pathways, the strongest
association was NMDA receptor activation, which is previously supported™. Finally,
dopaminergic genes showed the weakest evidence for association among pre-hypothesi zed
pathways: Only two pathways were nominally associated with cEF, and both pathways showed
weaker effect sizesthan GABA and glutamate.

Candidate gene analysis. Similar to other recent studies on schizophrenia and major

depression®**®

, we found little evidence that the most popular candidate gene polymorphisms
(those reviewed by Barnes et al.™”) were related to cEF at levels above chance. COMT val/met
(rs4680), the most-studied candidate gene polymorphism for cEF, was not significant at the
genome-wide level (B=—.002, p=.021). Previously studied polymorphisms of DRD2 (rs1079596:
=0.010, p=1.3e-10; rs2075654: 3=0.010, p=1.4e-100) were genome-wide significant; however,
these effects sizes are much smaller than previously reported®. No other associations were even
nominally significant. We also used MAGMA to derive combined p-values from GWAS

summary statistics to determine the degree of association of historical cEF candidate genes

themselves as opposed to the most-studied specific polymorphisms within them®’. Only DRD2
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was associated with cEF (p=1.15E-12, all gene-wise summary statistics availablein
supplemental Table S15). Dopaminergic genes other than DRD2 were not significant, suggesting
that the weak dopaminergic signal in our pathway analysis aboveis likely driven by DRD2.
Discussion

We conducted the largest GWAS of EF to date, using a cEF factor score in the UKB that
minimized the task impurity problem and incorporated existing knowledge of the factor structure
of EFs'. Our results suggest that genetic influences on cEF involve variation within fast
ionotropic and synaptic pathways, in particular GABAergic pathways, rather than the commonly
studied metabotropic and neuronal pathways. We demonstrated cEF's genetic overlap with 1Q,
but found important differences between them as shown through differential associations with
education and psychiatric disorders.

In line with existing twin literature®*3

, this study supports the importance of cEF asa
cognitive dimension that is partially genetically related to 1Q and Speed in adulthood. Although
there was a high genetic correlation between cEF and 1Q (rG=.743), this correlation was
significantly lower than 1, indicating some specific variance. This separability has important
implications for understanding cognitive aspects of psychopathology. Controlling for 1Q and
Speed, cEF remained significantly negatively genetically associated with agenetic p factor,
accounting for one-quarter of common genetic influences across psychiatric disorders. This
stronger association of cEF with p cannot be explained as arising from the possibility that cEF
may be amore reliable or valid measure of general cognitive ability than the 1Q factor score,
because the opposite pattern was observed for education and childhood 1Q. Specifically,

controlling for their genetic overlap, 1Q remained strongly positively associated with these

measures, while cEF did not. Thus, we observed discriminant validity of the cEF and 1Q factor
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scores at the genetic level, consistent with the phenotypic literature™.

Interestingly, when controlling for covariance with 1Q, genetic influences on cEF became
significantly negatively related to educational attainment, although the genetic correlation
without controlling for 1Q was positive. We do not know of prior phenotypic studies reporting
this suppression effect, nor do we know if it would even be evident at the phenotypic level. It
may reflect the fact that cEF shows negative genetic correlations with several disorders that are
actually positively genetically correlated with both 1Q and educational attainment, such as
anorexia nervosa, autism spectrum disorder, and bipolar disorder®. Thus, it may be that the
genetic variance unigue to lower cEF reflects some of this genetic risk for these disordersthat is
positively associated with education, leading to a negative partial genetic correlation with higher
CEF.

Multiple lines of evidence suggested the importance of GABA to cEF variation, with
synaptic and ionotropic pathways more strongly associated with cEF than the traditionally
studied metabotropic and dopaminergic pathways. GABAergic pathways were the most
associated molecular pathways tested and influenced cEF above and beyond other
neurotransmitter pathways. Cell-type-specific analyses also implicated GABA in both the cortex
and hippocampus. Tests of specificity when accounting for 1Q showed that GABA remained
marginally related to cEF, with alarger effect size than most other enrichment categories.
Together, our findings strongly implicate a key role of fast-synaptic communication mechanisms
underlying the inheritance of cEF, rather than the slow neuromodulatory processes that are often
hypothesized in the literature.

We found little evidence that dopaminergic processes genetically relate to individual

differences in cEF, outside the popular DRD2 gene. Importantly, ailmost all monoamine


https://doi.org/10.1101/674515
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/674515; this version posted September 2, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

(dopamine and serotonin) candidate genes that are currently used in the neurocognitive and
imaging literature'’ were not associated with cEF, despite very high power to detect previously
reported associations. These results suggest that continued focus on traditional candidate genes
outside of DRD2 in cEF research islikely to be fruitless, and that future research should instead
be directed toward its relationship with GABAergic (and perhaps glutaminergic) processes.

It islikely these fast-synaptic processes influencing cEF could further elucidate
mechanisms of psychiatric disorders, as cEF was genetically correlated with nearly all
psychiatric disorders. We found novel genetic associations with schizophrenia, bipolar disorder,
alcohol dependence, and anorexia nervosa, and replicated a genetic association of cEF with
depression®. These results arein line with past literature, suggesting cEF is broadly genetically
associated with psychopathology?.

These results should be interpreted in context of afew limitations. First, the cognitive
battery in the UKB study was not designed to tap cEF. This battery contained one classic
neuropsychological EF task, the trail making task; the other cognitive measures were not tasks
that are commonly used to assess EFs. However, as described in the online methods, those
measures had EF components that can be extracted through our structural modeling approach.
We reasoned that a common factor extracting shared variance across these tasks and the trall
making task would be closely related to the Common EF factors examined in smaller studies®*
18 two of which also used the trail making task®*. Results of our PRS analyses support this
reasoning: We validated our cEF factor and its separability from IQ using PGSsin a sample
deeply phenotyped for multiple EF latent variables and full-scale 1Q.

Second, almost all bioinformatic follow-up depended on tissue-based analysis from the

GTEx sample (with GABAergic replications from single-cell RNA seq datasets). While this
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sampleistherichest source of eQTL datato date, alack of generalizability from this population
would affect our results as well as our interpretations. Third, we used tissue-specific expression
with Bonferroni correction thresholds to minimize false positives, but this does not mean we can
draw strong conclusions about which tissues are implicated above and beyond one another.

Finally, because the UKB is overwhelmingly European ancestry, we restricted our
analysis to European samples to avoid confounds due to population stratification. Althoughiitis
possible and perhaps likely that the molecular underpinnings of cEF generalize to non-European
populations, further work is needed to replicate these observations in diverse populations of
sufficient sizes and similar phenotypes.
Conclusion

CEF is heritable and highly polygenic, with clear indication for arole of synaptic,

GABAergic, and ionotropic pathways. cEF is genetically related to, but separable from, 1Q, and
CEF isrobustly related to genetic risk for general psychopathology even controlling for its

genetic overlap with general 1Q and Speed.
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Table 1. Descriptive statistics for cognitive measur es used to obtain factor scores

Measure N Mean SD Min Max Skewness Kurtosis
Trail making

Onling® 104,050 0.00 011 -044 044 0.48 0.73

Numeric® 104,052  1.57 014 114 287 0.65 0.67

Alphanumeric® 104,050 1.80 015 131 287 0.49 0.46

Symbol-digit substitution
Online 117,785 19.76 5.11 0 40 -0.40 0.54
Pr ospective M emory*
Initial vist 171,309 0.24 -- -- -- - -
Repeat vist 20,314 0.15 -- -- -- - -
Imagingvisit 15,880 0.12 -- -- - - -

Pairs Matching®

Initial visit 484,340 076 037 0.00 222 0.39 0.56
Repeat vist 20,085 0.70 0.34 000 2.06 0.33 0.55
Imagingvisit 15472 066 033 0.00 2.00 0.35 0.61
Online 114828 083 037 000 231 0.39 0.26

Digit Span
Initial vist 50,116  6.69 1.34 2 12 -0.32 0.84
Imaging visit 4,237 6.80 124 2 11 -0.20 0.68
Online 111,086 6.92 1.49 2 11 -0.38 1.09

Note. Descriptive statistics and sample information for each task loading on the common
executive functioning (cEF) factor from the UK Biobank sample.

4Unstandardized residual of the log10-transformed alphanumeric path time after regressing out
the log10-transformed numeric path time; only this score was used in the model.
®lLog10-transformed total times in seconds to complete the numeric and alphanumeric paths;
these variables were not used in the confirmatory factor analysis model but were used to obtain
the residualized trails measure used in the model.

“Categorical variable coded as 1 for correct and O for incorrect on first try. The mean described
proportion correct. Dashes indicate that other descriptive statistics were not calcul ated.

9Sum of the log10-transformed number of incorrect matches +1 in the 6- and 12-card rounds.
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Table 2. Heritability (diagonal) and genetic correations (off-diagonal) between Common
Executive Functioning (cEF) indicators and cEF factor scores

Symbol  Pairs Digit Prospect. Trail Dense Sparse  Full
Measure Digit Memory Span Memory Making CcEF CEF CEF
Symbol- 0.1245
Digit (0.0079)
Pairs 0.6603  0.0713
Memory (0.0271) (0.003)
Digit Span  0.3226 04420  0.1337
(0.0345) (0.0263) (0.0069)
Prospective 04479 05982 04539  0.0527
Memory (0.0414) (0.0348) (0.0355) (0.0039)
Trail 0.7126  0.7085  0.6530  0.5927 0.1136
Making (0.0322) (0.0317) (0.0293) (0.0463) (0.0084)
Dense 0.8428 0.8580 0.6653 0.6416 09274  0.1894
samplecEF (0.0138) (0.0207) (0.0214) (0.0365) (0.0133) (0.0105)
Sparse 0.7031 09831 05580 0.7052 0.7771 0.9230 0.0696
samplecEF (0.0307) (0.0074) (0.0259) (0.0308) (0.0381) (0.0286) (0.0038)
Full 0.7683 0.9527 0.6164 0.7046 0.8452 09629 0.9892  0.0906
samplecEF (0.0178) (0.0047) (0.0178) (0.0255) (0.0215) (0.0106) (0.0073) (0.0038)

Note. The heritability of each measure (standard error) is shown on the diagonal in bold-face
type. The lower diagonal contains the genetic correlations of each indicator and common
executive functioning (CEF) factor scores in the densely phenotyped (dense), sparsely
phenotyped (sparse), and full samples, as estimated by LD score regression. When there were
multiple assessments of the same task (pairs memory, digit span), the measure is the average of
the z-scores for all assessments, except for the categorical prospective memory task, for which
the measure used for this table is the first assessment.
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Data Access:

Summary statistics for all GWAS (cEF, 1Q, RT, and all indicators) will be available upon
publication of this work through the FriedmanLab github or available upon request. All results
run on FUMA have been made publicly available through that platform. cEF results can be
accessed via FUMA (cEF full sample: https://fuma.ctglab.nl/browse/65, cEF densely phenotyped
sample: https.//fuma.ctglab.nl/browse/66, cEF sparsely phenotyped sample:
https.//fuma.ctglab.nl/browse/67). Full results for the 1Q and Speed GWAS are also available on
FUMA (IQ: https://fuma.ctglab.nl/browse/114, Speed: https://fuma.ctglab.nl/browse/118). All
biological results for cEF-specific and 1Q-specific GWAS can be downloaded here (CEF-
specific: https.//fuma.ctglab.nl/browse/116, 1Q-specific: https://fuma.ctglab.nl/browse/117).
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A. Phenotypic Correlations

Trails SymDig PM1 PM2 PM3 Pairsl Pairs2 Pairs3 PairsO Digitl Digit3 DigitO

Trails

SymDig 0.34

PM1 0.20 0.24

PM2 022 025 071
PM3 022 024 052 0.69

Pairsl 019 025 028 022 0.19

Pairs2 018 026 024 023 022 023

Pairs3 019 028 019 021 019 023 0.22

PairsO 022 027 018 022 020 023 024 024

Digit1 025 019 029 031 021 019 016 005 014

Digit3 027 025 012 021 018 018 0.15 0.16 0.16 0.57

DigitO 024 023 016 021 019 013 0.13 013 015 043 0.50

Pairs- Digit-
specific specific
A48 54 71

.26 .21 26 .28

B. Confirmatory Factor Analysis Model

PM-
specific

42 ] a1 ] 40 A2 A5~ AT 38
[ PM3 |[ Pairs1 |[ Pairs2 |[ Pairs3 |[ PairsO |[ Digit1 |[ Digit3 || DigitO |

f f 1 t t f t t 1

72 .63 44 .01 .50 .78 .76 77 .76 51 .32 .63

Figure 1. Development of a Common Executive Functioning (cEF) factor across cognitive
tasksin the UK Biobank: (A) Correlations taken from Mplus, (B) Confirmatory factor analysis
model used to extract factor scores. Ellipses indicate latent variables; rectangles indicate
observed variables. Numbers on arrows are standardized factor loadings, and numbers at the end
of arrows are residual variances. All parameters were statistically significant (p < .05). Trails=
trail making (online); SymDig= symbol-digit substitution (online); PM= prospective memory;
Pairs= pairs memory; Digit= digit span. Task names with 1= first assessment; with 2= repesat
assessment; with 3= imaging visit assessment; with O= online follow-up. Directionality was
reversed for some variables so that for all variables, higher scores indicate better performance.
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Figure 2. Manhattan plotsfor GWAS of Common Executive Functioning (CEF) in the full sample (Panel A), the densely
phenotyped sample (Panel B), and the spar sely phenotyped sample (Panel C). Each dot is a single nucleotide polymorphism
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Figure 3. Analysis model of polygenic scores (PGSs) predicting executive functioning (EF) latent variablesand full-scale
intelligence scores (1Q) in Colorado twin data, y(350) = 473.85, p < .001, CFl = .962, RMSEA = .020. Paths of primary interest
are shown in black with thicker lines. Solid lines and boldface type indicate p < .05; dashed linesindicate p > .05. Analyses were
limited to twins with European ancestry based on the first three principal components (N=916 with genetic data). The three EF latent
variables were based on 9 laboratory tasks at Wave 1 (W1, Longitudinal Twin Study [LTS] age 17 n=571, Community Twin Sample
[CTS] age 21 n=298), and on 9 tasks at Wave 2 (W2; LTS only at age 23, n=555). Full-scale 1Q was based on 11 Wechsler Adult
Intelligence Scale subtestsin the LTS (age 16, n=584), and 4 Wechsler Abbreviated Scale of Intelligence subtestsin the CTS (age 21,
n=297). Age, sex, and age* sex were regressed out of each measure within each sample and wave prior to analysis.
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Figure 4. Genetic associations of Common Executive Functioning (cEF) and Intelligence (1Q) factor scoresin the UK Biobank
(UK B) with psychiatric, behavioral, and health traitsin independent samplesfrom LD Hub. (A) genetic correlations, estimated
with LD score regression; (B) standardized partial regression coefficients from genomic structural equation models for cEF controlling
for the genetics of 1Q and Speed, and for 1Q controlling for the genetics of cEF and Speed. Bars indicate 95% confidence intervals.
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Figure 5. Genomic structural equation models of standar dized Common Executive Functioning (cEF), Intelligence (1Q), and
Speed factor scores predicting a general psychopathology (p) factor (Panel A) and | Q-related traits (Panel B). Thefit for the
model in panel A was x%(31)= 510.96, p<.001, CFI=.901; the model in panel B was saturated, so fit perfectly. Ellipses indicate latent
variables; rectangles indicate observed variables. Numbers on single-headed arrows are fully standardized factor loadings or
regression coefficients, numbers on curved double-headed arrows are correlations, and numbers at the end of arrows are residual
variances. Boldface type and solid linesindicate p < .05; dashed linesindicate p > .05.
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Figure 6. Associated gene-set categoriesfrom MAGMA gene-set analysis. Signal GO term and curated gene set enrichment
for SNPsinfluencing Common Executive Functioning (CEF) asthe MAGM A gene enrichment beta and standard error. (A)
Gene-sets significantly associated post Bonferroni correction for 10,651 tests (a = 4.7E-06); (B) Gene-sets in hypothesized pathways
that were nominally significant. VG = voltage-gated. Bars indicate standard errors.
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