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Abstract

Background: A perfect phylogeny is a rooted binary tree that recursively partitions sequences. The nested partitions of a

perfect phylogeny provide insight into the pattern of ancestry of genetic sequence data. For example, sequences may cluster

together in a partition indicating that they arise from a common ancestral haplotype. Results: We present an R package

perfectphyloR to reconstruct the local perfect phylogenies underlying a sample of binary sequences. The package enables users

to associate the reconstructed partitions with a user-defined partition. We describe and demonstrate the major functionality

of the package. Conclusion: The perfectphyloR package should be of use to researchers seeking insight into the ancestral

structure of their sequence data. The reconstructed partitions have many applications, including the mapping of trait-influencing

variants.
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Background
A perfect phylogeny is a rooted binary tree that represents a recursive partitioning of a set of objects such
as deoxyribonucleic acid (DNA) sequences [1]. Though the perfect phylogenies are not ancestral trees, the
structure of their nested partitions provides insight into the pattern of ancestry of DNA sequences. For
example, the perfect phylogeny near a trait-influencing variant can provide useful information about trait
association [2]. For instance, in a case-control study, case alleles may tend to cluster in a partition if the
corresponding variant influences disease susceptibility. If a cluster has proportionally more case sequences
than other clusters in the partition, there will be an association between the disease and cluster membership
[3]. Thus, an R package to reconstruct perfect phylogenies from sequence data can be of use to researchers
mapping the genetic location of trait-influencing variants.

We present an R package perfectphyloR to reconstruct perfect phylogenies underlying a sample of DNA
sequences. The package uses a classic algorithm [1] together with heuristics [2] to partition sequences.
Related software includes PerfectPhy [4] and BLOck aSSOCiation (BLOSSOC) [2].

PerfectPhy is a C++ program that implements efficient algorithms [5, 6] for reconstructing perfect phyloge-
nies from multi-allelic DNA markers. The software comes with a collection of tools for importing/exporting
files, handling missing data, filtering markers and drawing trees. PerfectPhy takes a given set of sequences
and determines if it can be represented by a perfect phylogeny; if so, the partition is returned. The filtering
tool can be applied in advance to select a maximal subset of markers compatible with a perfect phylogeny.

BLOSSOC is a C++ program for genetic fine-mapping that returns association statistics computed on
perfect phylogenies. The statistics are calculated for moving windows of DNA markers across a genomic
region of interest. The statistics are returned but not the partitions used to construct them. Unfortunately,
BLOSSOC is no longer actively maintained (T. Mailund, personal communication) and is challenging to
install on up-to-date operating systems.
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Our package perfectphyloR, like BLOSSOC, is intended for use with moving windows of markers along
the genome. The window sizes should be large enough to allow relatively fine partitioning of the sample of
input sequences. However, requiring all the DNA markers in the window to be compatible with a perfect
phylogeny tends to be too restrictive and leads to crude partitions. To avoid this limitation, we have
incorporated the heuristics implemented in the partitioning algorithm of BLOSSOC. Since perfectphyloR

returns the sequence partitions, users can then leverage any of the statistical and phylogenetic tools available
in R to understand them. In addition, as an R package, the software is easier to install and to maintain as
operating systems change.

Throughout, we assume the infinite-sites model and account for diallelic DNA markers only. Since our
package reconstructs partitions regardless of whether the variants are common or rare, we refer to markers
as single-nucleotide variants (SNVs) instead of single-nucleotide polymorphisms. By SNV, we mean any
strictly diallelic marker. Our package is primarily directed to applications at the population level, rather
than the interspecies level. Briefly, a neighborhood of SNVs is determined about a focal SNV, as described
below. Then, the perfect phylogeny is built by recursive partitioning on SNVs in this neighborhood.

We first discuss the implementation of the reconstruction of the partitions underlying a sample of DNA
sequences. We then illustrate the major functionality of the package with worked examples.

Implementation
In this section, we describe the reconstruction process, which consists of three steps:

1. Create a hapMat data object.

2. Reconstruct the perfect phylogeny at a focal SNV.

3. Reconstruct perfect phylogenies across a genomic region.

We first create an object of (S3) class hapMat containing SNV sequences to be partitioned with the function
createHapMat(). To construct a hapMat data object, users are required to specify:

• hapmat, a matrix of 0’s and 1’s, with rows representing sequences and columns representing SNVs,

• snvNames, a vector of names of SNVs labelling the columns of hapmat,

• hapNames, a vector of names labelling the sequences in the rows of hapmat,

• posns, a numeric vector specifying the physical locations along the chromosome (in base pairs) of SNVs
in the columns of hapmat.

In principle, and as noted by a reviewer, the hapMat structure could be extended to accommodate multi-allelic
variants, although we do not pursue this here.

With the main function reconstructPP(), the user can reconstruct the perfect phylogeny at a chosen focal
SNV. The result is a phylo object to which the user may apply all the tools from the ape package [7] for
summarizing the reconstructed partition of sequences.

The function reconstructPP() consists of three major steps:

1. Determine a neighborhood of SNVs around a given focal SNV.

2. Order the SNVs in the neighborhood.

3. Recursively partition sequences based on SNVs in the neighborhood.

For a given focal SNV, the algorithm finds a neighborhood of SNVs. Starting from the focal SNV, the
neighborhood of SNVs that are compatible with the focal SNV is expanded as much as possible on either
side of the focal SNV until an incompatible SNV is found. The compatibility of a pair of SNVs is determined
by the Four-Gamete Test [8]. For example, under the infinite-sites mutation model and no recombination, if
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the patterns at two SNVs are 00, 01, 10 and 11, then a mutation must have occurred twice at the same SNV
and the two SNVs are said to be incompatible. If the neighborhood of compatible SNVs is smaller than a
user-defined minimum size, we include incompatible SNVs in order of their physical proximity to the focal
SNV, until the minimum size is reached.

Once the neighborhood of SNVs is determined, we order the compatible SNVs in the neighborhood from
the most ancient to the most recent based on the minor allele frequency. We use the minor allele frequency
of an SNV as a proxy for its age. Our rationale is that, under the infinite-sites mutation model, the age
of SNVs can be inferred from the derived allele frequency. Then, we order incompatible SNVs according to
their physical proximity to the focal SNV.

The algorithm partitions sequences based on the most ancient compatible SNV in the neighborhood, and
then recursively moves towards the most recent compatible SNV. When there are no further compatible SNVs
in the neighborhood, the algorithm partitions sequences based on the incompatible SNVs, in order of their
physical proximity to the focal SNV. Starting with the most ancient compatible SNV in the neighborhood,
the algorithm partitions the sequences based on their carrier status for its derived allele. Then the algorithm
jumps to the next-oldest compatible SNV in the neighborhood based on allele frequency and continues
partitioning. After considering the compatible SNVs, the algorithm moves to any incompatible SNVs in
the neighborhood in order of their physical proximity to the focal SNV. This process is repeated until each
cluster contains only one sequence or there are no more SNVs to consider in the neighborhood. Thus, the
method requires phased data. If a user has unphased data, phasing can be done in advance with software
such as fastPHASE [9], BEAGLE [10] , IMPUTE2 [11], or MACH [12, 13].

Examples
This section gives worked examples illustrating how to reconstruct the partitions underlying a sample of DNA
sequences. In addition, we show how to investigate the association between the reconstructed partitions and
a user-specified partition. The association statistics we consider include the Rand index [14], the distance
correlation (dCor) statistic [15], the Heller-Heller-Gorfin (HHG) statistic [16], the Mantel statistic [17], and
the R-Vector (RV) coefficient [18]. The Rand index quantifies the association between two partitions directly.
The dCor statistic, HHG statistic, Mantel statistic, and RV coefficient quantify the association between two
distance matrices derived from partitions.

We first illustrate how to create a hapMat data object of SNV sequences. We then reconstruct a perfect
phylogeny at a focal SNV. Next, we reconstruct perfect phylogenies across a genomic region. Finally, we
show how to visualize and test associations between these reconstructed partitions and

• a comparator partition or dendrogram,

• a comparator distance matrix, and

• a phenotypic distance matrix.

To illustrate, we consider a toy example with 4 sequences comprised of 4 SNVs at positions 1, 2, 3, and 4
kilo-base pairs (kbp). The required hapMat object is created by executing the following command:

R> ex_hapMat <- createHapMat(hapmat = matrix(c(1,1,1,0,

0,0,0,0,

1,1,1,1,

1,0,0,0),

byrow = TRUE , ncol = 4),

snvNames = c(paste("SNV" ,1:4,sep = "")),

hapNames = c("h1","h2","h3","h4"),

posns = c(1000 , 2000, 3000, 4000))
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The structure of the resulting object of class hapMat is as follows.

R> ex_hapMat

$hapmat

SNV1 SNV2 SNV3 SNV4

h1 1 1 1 0

h2 0 0 0 0

h3 1 1 1 1

h4 1 0 0 0

$posns

[1] 1000 2000 3000 4000

attr(,"class")

[1] "hapMat"

If a user has a variant call format (vcf) file that consists of SNV data with a single alternative allele and
no missing values in the genotype field, the hapMat data object can be created by supplying the file path to
the vcf file as follows:

R> # specify the file path

vcf_file_path <- "C:/vcfData/vcfData.vcf.gz"

# Create a hapMat object

ex_vcf_hapMat <- perfectphyloR :: vcftohapMat(vcf_file_path)

Once the hapMat object is created, the user can reconstruct a perfect phylogeny at a focal SNV with
reconstructPP(), by specifying the following four arguments:

1. hapMat: A data structure of class hapMat, created by createHapMat().

2. focalSNV: The column number of the focal SNV at which to reconstruct the perfect phylogeny.

3. minWindow: Minimum number of SNVs around the focal SNV in the neighborhood of SNVs used to
reconstruct the perfect phylogeny (default is the maximum of one and 2% of the total number of the
SNVs).

4. sep: Character string separator to separate sequence names for sequences that can not be distingiushed
in the neighborhood around the focal point. For example, if sequences “h1” and “h3” can not be
distinguished and sep = "-", then they will be grouped together with the label “h1-h3”. The default
value is "-".

For example, consider the dataset ex hapMatSmall data comprised of 10 sequences and 20 SNVs. This
dataset is a subset of the larger example dataset, ex hapMat data, that comes with the package. The larger
dataset has 200 sequences and 2747 SNVs, and was used in a previously published association association
analysis [19]. We can reconstruct a perfect phylogeny at the first SNV of ex hapMatSmall data by executing
the following commands:

R> # Load the example hapMat data object.

data(ex_hapMatSmall_data)

# Reconstruct dendrogram at the first SNV of ex_hapMatSmall_data.
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rdend <- reconstructPP(hapMat = ex_hapMatSmall_data ,

focalSNV = 1,

minWindow = 1,

sep = "-")

Figure 1 shows the reconstructed dendrogram, rdend, at the first SNV of ex hapMatSmall data. The
structure of rdend is as follows:

R> str(rdend)

List of 6

$ edge : num [1:6, 1:2] 5 6 6 5 7 7 6 1 2 7 ...

$ Nnode : int 3

$ tip.label : chr [1:4] "1249" "354 -1009 -2818" "2909"

"1904 -454 -2931 -2994 -370"

$ edge.length : num [1:6] 6 3 3 4 5 5

$ node.label : NULL

$ snvWinIndices: int [1:2] 1 5

- attr(*, "class")= chr "phylo"

- attr(*, "order")= chr "cladewise"

The user can extract the positions of the lower and upper limits of the neighborhood of SNVs used to
reconstruct rdend as follows:

R> ex_hapMatSmall_data$posns[rdend$snvWinIndices]

[1] 1500 7000

To see the sequences in the neighborhood of SNVs used for the reconstruction, the user can execute the
following command:

R> ex_hapMatSmall_data$hapmat[, rdend$snvWinIndices [1]:

rdend$snvWinIndices [2]]

SNV3 SNV4 SNV7 SNV9 SNV14

1904 0 0 0 0 0

454 0 0 0 0 0

1249 1 1 1 1 0

2931 0 0 0 0 0

2994 0 0 0 0 0

2909 0 0 0 0 1

354 1 1 1 0 0

1009 1 1 1 0 0

370 0 0 0 0 0

2818 1 1 1 0 0

As can be seen in the above output, there are two groups of sequences that have the same ancestral and
derived alleles at each SNV position: sequences 354, 1009 and 2818, and sequences 1904, 454, 2931, 2994
and 370. These two groups of sequences therefore cannot be distinguished in the reconstructed partition. In
Figure 1, we can verify that two tips of the partition are comprised of these two groups of sequences.
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Figure 1: The reconstructed partition at the first SNV of ex hapMatSmall data.

With reconstructPPregion(), the user can reconstruct perfect phylogenies at each possible focal SNV in a
hapMat data object. In the following example, we consider the 10 sequences with 20 SNVs in ex hapMatSmall data.
We reconstruct perfect phylogenies across the 20 SNVs.

R> # Reconstruct partitions across the region.

rdends <- reconstructPPregion(hapMat = ex_hapMatSmall_data ,

minWindow = 1)

rdends is an ape multiphylo object. The reconstructed partition at the first focal SNV in ex hapMatSmall data

is the first phylo object in rdends:

R> str(rdends [[1]])

List of 6

$ edge : num [1:6, 1:2] 5 6 6 5 7 7 6 1 2 7 ...

$ Nnode : int 3

$ tip.label : chr [1:4] "1249" "354 -1009 -2818" "2909"

"1904 -454 -2931 -2994 -370"

$ edge.length : num [1:6] 6 3 3 4 5 5

$ node.label : NULL

$ snvWinIndices: int [1:2] 1 5

- attr(*, "class")= chr "phylo"

- attr(*, "order")= chr "cladewise"

If a user wants to reconstruct perfect phylogenies within a user-provided subregion of a hapMat object, they
may specify the lower and upper values of the subregion in base pairs as follows:
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# Reconstruct partitions between a given range SNV positions.

R> rdends_range <- reconstructPPregion(hapMat = ex_hapMatSmall_data ,

minWindow = 1,

posn.lb = 500,

posn.ub = 2000)

The function testDendAssoRI() uses the Rand Index to investigate the association between a comparator
dendrogram or partition and multiple reconstructed dendrograms or partitions across a genomic region.
Detailed descriptions of the function arguments and output of testDendAssoRI() are provided in the Ad-
ditional file 1, along with a worked example.

Figure 2 shows the association profile between a comparator true dendrogram, tdend, at position 975 kbp,
and a list of reconstructed dendrograms across the genomic region of ex hapMat data. In the two panels
of the figure, the Rand indices are based on six and 24 clusters. Since we use simulated data, we know
the true dendrogram at position 975 kbp. In Figure 2, using the Rand index, we investigate how the true
dendrogram at position 975 kbp associates with the reconstructed dendrograms across the genomic region.
As can be seen, the highest point for six clusters lies at position 975 kbp, and for 24 clusters is very close to
position 975 kbp. According to the omnibus p-value, returned by testDendAssoRI(), the association across
the genomic region is significant (P ≈ 0.001) for both six and 24 clusters.
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Figure 2: Rand indices associating a comparator true dendrogram at position 975 kbp and reconstructed
dendrograms across the genomic region. a) Based on the six clusters. b) Based on 24 clusters. Red vertical
dashed lines represent the position of the comparator dendrogram at 975 kbp.
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The function testAssoDist() investigates the association between a comparator distance matrix and mul-
tiple reconstructed dendrograms across a genomic region. The association statistics available in the function
are the dCor statistic, HHG statistic, Mantel statistic, and RV coefficient. The function has the following
five key arguments:

1. rdend: An ape multiphylo object of reconstructed dendrograms at each focal SNV.

2. cdmat: A comparator matrix of pairwise distances (e.g. pairwise distances between sequences of a
comparator dendrogram).

3. method: A character string specifying one of "dCor", "HHG", "Mantel" or "RV" for the dCor, HHG,
Mantel or RV statistics, respectively.

4. hapMat: An object of class hapMat containing SNV sequences.

5. nperm: Number of permutations for the omnibus test of any association across the genomic region.
The default is nperm = 0; i.e., association will not be tested.

To illustrate, we plot the dCor statistics summarizing the association between a comparator distance matrix,
cdmat, and the reconstructed dendrograms across the genomic region of the example dataset ex hapMat data.

First, we compute the pairwise distances between sequences based on the comparator true dendrogram at
SNV position 975 kbp. These pairwise distances are computed with the function rdistMatrix(), available
in the package. The rdistMatrix() function uses the rankings of the nested partitions in the dendrogram
to calculate rank-based distances between the sequences. However, users can provide any distance measures
of interest for cdmat. We then plot the dCor statistic summarizing the association between the rank-based
distance matrix for the reconstructed dendrograms at each SNV position and the comparator distance matrix
at SNV position 975 kbp (Figure 3).

R> # Comparator true dendrogram at SNV position 975 kbp.

data(tdend)

# hapMat data object.

data(ex_hapMat_data)

# Compute rank -based distances between sequences based on

# the comparator true dendrogram (tdend) using the function ,

# rdistMatrix ().

tdendDmat = perfectphyloR :: rdistMatrix(tdend)

# Reconstruct dendrograms across the region.

allrdends <- reconstructPPregion(hapMat = ex_hapMat_data ,

minWindow = 55)

# dCor profile comparing the association between distance

# matrix of true dendrogram (comparator dendrogram)

# and all reconstructed dendrogram across the genomic region.

dCor_profile <- testAssoDist(cdmat = tdendDmat ,

rdend = allrdends ,

method = "dCor",

hapMat = ex_hapMat_data ,

nperm = 1000,

xlab = "SNV positions(bp)",
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ylab = "dCor Statistics",

main = "Association Profile")

# Omnibus p-value for overall association.

dCor_profile$OmPval

[1] 0.000999001

In Figure 3, we can clearly see the strongest association around the SNV position 975 kbp, and the association
across the genomic region is significant (P ≈ 0.001), as expected. The association signal is much clearer than
for the Rand index plotted in Figure 2 because dCor uses the full information from the pairwise distance
matrices whereas the Rand index is based on a discrete number of clusters.
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Figure 3: Associations between a comparator distance matrix from the true dendrogram at position 975
kbp and the reconstructed dendrograms across the genomic region. Red vertical dashed line represents the
position of the comparator dendrogram at 975 kbp.

9

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 5, 2019. ; https://doi.org/10.1101/674523doi: bioRxiv preprint 

https://doi.org/10.1101/674523
http://creativecommons.org/licenses/by-nc-nd/4.0/


To illustrate another application of the function testAssoDist(), we perform the RV test of association
between a phenotypic distance matrix as the cdmat argument and the reconstructed dendrograms across
the genomic region of ex hapMat data. The phenotype data and distances are described in [19] and are
contained in the data object phenoDist. Binary phenotype status was assigned based on causal SNVs from
a causal subregion defined from 950 - 1050 kbp within the 2-Mbp genomic region.

R> # Phenotypic distances.

data(phenoDist)

# RV profile.

RV_profile <- testAssoDist(cdmat = phenoDist ,

rdend = allrdends ,

method = "RV",

hapMat = ex_hapMat_data ,

nperm = 1000,

xlab = "SNV positions (bp)",

ylab = "RV coefficients",

main = "Association Profile")

# Indicate the region containing the causal SNVs.

abline(v = 950000); abline(v = 1050000)

# Omnibus P value for overall association.

RV_profile$OmPval

[1] 0.118

Figure 4 shows the resulting association profile between the phenotypic distances and the reconstructed
dendrograms across the genomic region in ex hapMat data. The vertical lines indicate the causal subregion
of 950 - 1050 kbp. The strongest association is close to the causal subregion. However, in this example, the
association across the genomic region is not significant (P ≈ 0.1).
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Figure 4: Associations between the phenotypic distance matrix and the reconstructed dendrograms across
the genomic region. Black vertical lines indicate the limits of the genomic region containing trait-influencing
SNVs.

Timing
Table 1 shows the computation times of the package’s major functions. These computation times are for
the 200 sequences comprised of 2747 SNVs in the example data ex hapMat data that is included in the
package. Table 2 compares computation times of the function reconstructPPregion() for different numbers
of sequences and numbers of SNVs. These times scale approximately linearly in the number of SNVs and
quadratically in the number of sequences. Computation times are measured on an Intel E5-2683 v4 at 2.1
GHz with 20 GB of RAM.
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Table 1: Computation times of the major functions of the package perfectphyloR for 200 sequences com-
prised of 2747 SNVs.

Function Computation Time (minutes)
No permutation 1000 permutations

reconstructPP() Few seconds NA
reconstructPPregion() 12.00 NA

testDendAssoRI() 1.12 70.00
testAssoDist() 0.28 193.71

Table 2: reconstructPPregion() timing results (in minutes) for different number of sequences and SNVs.

Number of sequences
Number of SNVs 200 300 400 500

3000 17.66 21.47 26.07 26.38
4000 23.38 28.26 33.41 33.80
5000 29.99 34.82 41.40 41.87
6000 36.58 43.41 49.86 50.67
7000 43.17 51.68 58.72 59.42
8000 49.25 59.11 67.89 68.65
9000 55.63 66.75 77.00 77.92
10000 61.56 75.53 86.11 86.99

Discussion
We note that the computation time of reconstructPPregion() can vary a lot based on the size of the
hapMat object (Table 2). Starting from the first SNV of the hapMat object, this function continues the re-
construction process until the last SNV. At each focal SNV, the function starts from ground level to construct
a surrounding window of SNVs and rebuilds the partition, without utilizing the information from previously
constructed partitions at nearby SNVs. As a result, many of the same computations may be done several
times for similar focal SNVs. As noted by a reviewer, there may be ways to make reconstructPPregion()

faster. For example, clustering similar successive SNVs before starting the reconstruction could lead to
computational efficiencies and would be an avenue for future work.

Although we know of no software that is directly comparable to perfectphyloR, the PerfectPhy suite of
tools is also set up to return sequence partitions. We therefore explored the use of PerfectPhy in a moving-
window approach similar to that of perfectphyloR. Briefly, for each placement of the moving window, the
following two steps were repeated: (i) filter out incompatible SNVs in the window and (ii) reconstruct the
perfect phylogeny using the remaining compatible SNVs. We applied this approach to the 200 sequences in
the example dataset, ex hapMat data, using the default minimum-window size of 55 for 2747 SNVs. For the
first few window placements, we compared the computational time of steps (i) and (ii) in the PerfectPhy-
based approach to that of reconstructPP() in perfectphyloR. For the PerfectPhy approach, the filtering
step is the bottleneck, with computation times in excess of 600 minutes. By contrast, reconstructPP()
took no more than 0.18 seconds.
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Conclusion
The R package perfectphyloR provides functions to reconstruct a perfect phylogeny at a user-given focal
SNV and perfect phylogenies across a genomic region of interest. The package also computes, tests and
displays association measures based on the reconstructed partitions in a genomic region. The reconstructed
partitions are useful to researchers seeking insight into the ancestral structure of DNA sequences. For
example, associating the reconstructed partitions with a trait can help to localise trait-influencing variants
in association studies. perfectphyloR can be freely downloaded from the Comprehensive R Archive Network
(CRAN) or from https://github.com/cbhagya/perfectphyloR/.

Availability and requirements
Project name: perfectphyloR
Project home page: https://CRAN.R-project.org/package=perfectphyloR
Operating system(s): Windows, Linux, OS X
Programming language: R
Other requirements: R 3.4.0 or newer
License: GPL-2, GPL-3
Any restrictions to use by non-academics: none

The package perfectphyloR can be installed from CRAN using install.packages("perfectphyloR").
The local zip file can be installed using R Studio by selecting the install package(s) from local zip files.

List of abbreviations
DNA: Deoxyribonucleic acid; BLOSSOC: BLOck aSSOCiation;
SNV: Single Nucleotide Variant; dCor: Distance Correlation;
RI: Rand Index; HHG: Heller-Heller-Gorfin;
RV: R-Vector, a vector version of standard r correlation;
GHz: Giga Hertz; GB: Gigabyte; RAM: Random Access Memory;
CRAN: Comprehensive R Archive Network
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Appendix: testDendAssoRI(): Arguments and example call
The function testDendAssoRI() has five key arguments:

1. rdend: An ape multiphylo object of reconstructed dendrograms at each focal SNV.

2. cdend: An ape phylo object of the comparator dendrogram.

3. hapMat: An object of class hapMat containing SNV sequences.

4. k: An integer that specifies the number of clusters that the dendrogram should be cut into. The default
is k = 2. Clusters are defined by starting from the root of the dendrogram, moving towards the tips
and cutting across when the appropriate number of clusters is reached.

5. nperm: Number of permutations for the test of any association across the genomic region. The default
is nperm = 0; i.e., association will not be tested.

To illustrate, we use the example dataset ex hapMat data with 200 sequences and 2747 SNVs. We plot the
Rand index values summarizing the association between the comparator dendrogram at SNV position 975
kilobase pairs and the reconstructed dendrogram at each SNV position across the 2 Mbp genomic region
(Figure 2a).

R> # Comparator true dendrogram at 975 kbp.

data(tdend)

# hapMat data object.

data(ex_hapMat_data)

# Reconstruct dendrograms across the region.

allrdends <- reconstructPPregion(hapMat = ex_hapMat_data ,

minWindow = 55)

# Rand index profile based on 6 clusters.

RI_profile <- testDendAssoRI(rdend = allrdends ,

cdend = tdend ,

k = 6,

hapMat = ex_hapMat_data ,

nperm = 1000,

xlab = "SNV positions (bp)",

ylab = "Rand indices",

main = "Association Profile")

# Omnibus P value for overall associaion.

RI_profile$OmPval

[1] 0.000999001
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